MiR-125a-5p Alleviates Dysfunction and Inflammation of Pentylenetetrazol- induced Epilepsy Through Targeting Calmodulin-dependent Protein Kinase IV (CAMK4)

Author(s): Qishuai Liu, Li Wang, Guizhen Yan, Weifa Zhang, Zhigang Huan, Jianyuan Li*.

Journal Name: Current Neurovascular Research

Volume 16 , Issue 4 , 2019

Become EABM
Become Reviewer

Abstract:

Background: MicroRNAs (miRNA) are known to play a key role in the etiology and treatment of epilepsy through controlling the expression of gene. However, miR-125a-5p in the epilepsy is little known. Epilepsy in rat models was induced by Pentylenetetrazol (PTZ) and miR- 125a-5p profiles in the hippocampus were investigated in our experiment. Also, the relationship between miR-125a-5p and calmodulin-dependent protein kinase IV (CAMK4) was identified and the related mechanism was also illustrated.

Methods: The miR-125a-5p mRNA expression levels were evaluated by quantitative real time polymerase chain reaction (qRT-PCR). Western Blot (WB) was used to analyze the CAMK4 protein expression levels. Seizure score, latency and duration were determined based on a Racine scale. The enzyme-linked immunosorbent assay (ELISA) was used to analyze the inflammatory factor expression. The relationship between miR-125a-5p and CAMK4 was detected through dual luciferase assay.

Results: Downregulation of miR-125a-5p was observed in the hippocampus of PTZ-induced epilepsy rats. The overexpression of miR-125a-5p attenuated seizure and decreased inflammatory factor level in the hippocampus of PTZ-induced rats. The miR-125a-5p alleviated epileptic seizure and inflammation in PTZ-induced rats by suppressing its target gene, CAMK4.

Conclusion: miR-125a-5p may represent a novel therapeutic treatment for PTZ-induced epilepsy by preventing the activation of CAMK4.

Keywords: Pentylenetetrazol, epilepsy, miR-125a-5p, CAMK4, dysfunction and inflammation, ELISA.

[1]
Patel AD, Berg AT, Billinghurst L, et al. Quality improvement in neurology: Child neurology quality measure set: Executive summary. Neurology 2018; 90(2): 67-73.
[http://dx.doi.org/10.1212/WNL.0000000000004806] [PMID: 29247076]
[2]
de Barros ACS, Furlan AER, Marques LHN, de Araújo Filho GM. Effects of a psychotherapeutic group intervention in patients with refractory mesial temporal lobe epilepsy and comorbid psychogenic nonepileptic seizures: A nonrandomized controlled study. Seizure 2018; 58: 22-8.
[http://dx.doi.org/10.1016/j.seizure.2018.03.023] [PMID: 29609146]
[3]
Holmes GL, Noebels JL. The epilepsy spectrum: Targeting future research challenges. Cold Spring Harb Perspect Med 2016; 6(7) a028043
[http://dx.doi.org/10.1101/cshperspect.a028043] [PMID: 27371672]
[4]
Liu DZ, Tian Y, Ander BP, et al. Brain and blood microRNA expression profiling of ischemic stroke, intracerebral hemorrhage, and kainate seizures. J Cereb Blood Flow Metab 2010; 30(1): 92-101.
[http://dx.doi.org/10.1038/jcbfm.2009.186] [PMID: 19724284]
[5]
McKiernan RC, Jimenez-Mateos EM, Sano T, et al. Expression profiling the microRNA response to epileptic preconditioning identifies miR-184 as a modulator of seizure-induced neuronal death. Exp Neurol 2012; 237(2): 346-54.
[http://dx.doi.org/10.1016/j.expneurol.2012.06.029] [PMID: 22771761]
[6]
Pichardo-Casas I, Goff LA, Swerdel MR, et al. Expression profiling of synaptic microRNAs from the adult rat brain identifies regional differences and seizure-induced dynamic modulation. Brain Res 2012; 1436(2): 20-33.
[http://dx.doi.org/10.1016/j.brainres.2011.12.001] [PMID: 22197703]
[7]
Henshall DC. MicroRNA and epilepsy: Profiling, functions and potential clinical applications. Curr Opin Neurol 2014; 27(2): 199-205.
[http://dx.doi.org/10.1097/WCO.0000000000000079] [PMID: 24553459]
[8]
Jimenez-Mateos EM, Henshall DC. Epilepsy and microRNA. Neuroscience 2013; 238: 218-29.
[http://dx.doi.org/10.1016/j.neuroscience.2013.02.027] [PMID: 23485811]
[9]
An N, Zhao W, Liu Y, Yang X, Chen P. Elevated serum miR-106b and miR-146a in patients with focal and generalized epilepsy. Epilepsy Res 2016; 127: 311-6.
[http://dx.doi.org/10.1016/j.eplepsyres.2016.09.019] [PMID: 27694013]
[10]
Xiang L, Ren Y, Cai H, Zhao W, Song Y. MicroRNA-132 aggravates epileptiform discharges via suppression of BDNF/TrkB signaling in cultured hippocampal neurons. Brain Res 2015; 1622: 484-95.
[http://dx.doi.org/10.1016/j.brainres.2015.06.046] [PMID: 26168887]
[11]
Xiang L, Ren Y, Li X, Zhao W, Song Y. MicroRNA-204 suppresses epileptiform discharges through regulating TrkB-ERK1/2-CREB signaling in cultured hippocampal neurons. Brain Res 2016; 1639: 99-107.
[http://dx.doi.org/10.1016/j.brainres.2016.02.045] [PMID: 26947618]
[12]
Haenisch S, von Rüden EL, Wahmkow H, et al. miRNA-187-3p-mediated regulation of the KCNK10/TREK-2 potassium channel in a rat epilepsy model. ACS Chem Neurosci 2016; 7(11): 1585-94.
[http://dx.doi.org/10.1021/acschemneuro.6b00222] [PMID: 27609046]
[13]
Racioppi L, Means AR. Calcium/calmodulin-dependent kinase IV in immune and inflammatory responses: Novel routes for an ancient traveller. Trends Immunol 2008; 29(12): 600-7.
[http://dx.doi.org/10.1016/j.it.2008.08.005] [PMID: 18930438]
[14]
Koga T, Hedrich CM, Mizui M, et al. CaMK4-dependent activation of AKT/mTOR and CREM-α underlies autoimmunity-associated Th17 imbalance. J Clin Invest 2014; 124(5): 2234-45.
[http://dx.doi.org/10.1172/JCI73411] [PMID: 24667640]
[15]
Ichinose K, Juang YT, Crispín JC, Kis-Toth K, Tsokos GC. Suppression of autoimmunity and organ pathology in lupus-prone mice upon inhibition of calcium/calmodulin-dependent protein kinase type IV. Arthritis Rheum 2011; 63(2): 523-9.
[http://dx.doi.org/10.1002/art.30085] [PMID: 20954187]
[16]
Otomo K, Koga T, Mizui M, et al. Cutting edge: Nanogel-based delivery of an inhibitor of CaMK4 to CD4+ T cells suppresses experimental autoimmune encephalomyelitis and lupus-like disease in mice. J Immunol 2015; 195(12): 5533-7.
[http://dx.doi.org/10.4049/jimmunol.1501603] [PMID: 26561550]
[17]
Timmins JM, Ozcan L, Seimon TA, et al. Calcium/calmodulin-dependent protein kinase II links ER stress with Fas and mitochondrial apoptosis pathways. J Clin Invest 2009; 119(10): 2925-41.
[http://dx.doi.org/10.1172/JCI38857] [PMID: 19741297]
[18]
Vogel HG, Vogel WH, Schölkens BA, Sandow J, Müller PG, Vogel WF. Guidelines for the care and use of laboratory animals 2002.
[19]
Huang Y, Liu X, Liao Y, et al. Role of miR-34c in the cognitive function of epileptic rats induced by pentylenetetrazol. Mol Med Rep 2018; 17(3): 4173-80.
[http://dx.doi.org/10.3892/mmr.2018.8441] [PMID: 29344671]
[20]
Rao X, Huang X, Zhou Z, Lin X. An improvement of the 2^(-delta delta CT) method for quantitative real-time polymerase chain reaction data analysis. Biostat Bioinforma Biomath 2013; 3(3): 71-85.
[PMID: 25558171]
[21]
Taha AY, Baghiu BM, Lui R, Nylen K, Ma DW, Burnham WM. Lack of benefit of linoleic and alpha-linolenic polyunsaturated fatty acids on seizure latency, duration, severity or incidence in rats. Epilepsy Res 2006; 71(1): 40-6.
[http://dx.doi.org/10.1016/j.eplepsyres.2006.05.011] [PMID: 16787740]
[22]
Castelhano ASS, Ramos FO, Scorza FA, Cysneiros RM. Early life seizures in female rats lead to anxiety-related behavior and abnormal social behavior characterized by reduced motivation to novelty and deficit in social discrimination. J Neural Transm (Vienna) 2015; 122(3): 349-55.
[http://dx.doi.org/10.1007/s00702-014-1291-2] [PMID: 25139483]
[23]
Naderali E, Nikbakht F, Ofogh SN, Rasoolijazi H. The role of rosemary extract in degeneration of hippocampal neurons induced by kainic acid in the rat: A behavioral and histochemical approach. J Integr Neurosci 2018; 17(1): 19-25.
[http://dx.doi.org/10.3233/JIN-170035] [PMID: 29376880]
[24]
Huang Y, Liu X, Liao Y, et al. MiR-181a influences the cognitive function of epileptic rats induced by pentylenetetrazol. Int J Clin Exp Pathol 2015; 8(10): 12861-8.
[PMID: 26722477]
[25]
Vidal B, Vázquez-Roque RA, Gnecco D, et al. Curcuma treatment prevents cognitive deficit and alteration of neuronal morphology in the limbic system of aging rats. Synapse 2017; 71(3) e21952
[http://dx.doi.org/10.1002/syn.21952] [PMID: 27997735]
[26]
Kerchner GA, Nicoll RA. Silent synapses and the emergence of a postsynaptic mechanism for LTP. Nat Rev Neurosci 2008; 9(11): 813-25.
[http://dx.doi.org/10.1038/nrn2501] [PMID: 18854855]
[27]
Pierrefiche O. Long term depression in rat hippocampus and the effect of ethanol during fetal life. Brain Sci 2017; 7(12): 157.
[http://dx.doi.org/10.3390/brainsci7120157] [PMID: 29182556]
[28]
Ramachandran B, Ahmed S, Dean C. Long-term depression is differentially expressed in distinct lamina of hippocampal CA1 dendrites. Front Cell Neurosci 2015; 9: 23.
[http://dx.doi.org/10.3389/fncel.2015.00023] [PMID: 25767434]
[29]
Pitkänen A, Lukasiuk K. Mechanisms of epileptogenesis and potential treatment targets. Lancet Neurol 2011; 10(2): 173-86.
[http://dx.doi.org/10.1016/S1474-4422(10)70310-0] [PMID: 21256455]
[30]
McNamara JO, Huang YZ, Leonard AS. Molecular signaling mechanisms underlying epileptogenesis. Sci STKE 2006; 2006(356): 12.
[http://dx.doi.org/10.1126/stke.3562006re12] [PMID: 17033045]
[31]
Wang J, Tan L, Tan L, et al. Circulating microRNAs are promising novel biomarkers for drug-resistant epilepsy. Sci Rep 2015; 5: 10201.
[http://dx.doi.org/10.1038/srep10201] [PMID: 25984652]
[32]
Wang J, Yu JT, Tan L, et al. Genome-wide circulating microRNA expression profiling indicates biomarkers for epilepsy. Sci Rep 2015; 5: 9522.
[http://dx.doi.org/10.1038/srep09522] [PMID: 25825351]
[33]
Antônio LGL, Freitas-Lima P, Pereira-da-Silva G, et al. Expression of MicroRNAs miR-145, miR-181c, miR-199a and miR-1183 in the blood and hippocampus of patients with mesial temporal lobe epilepsy. J Mol Neurosci 2019. [EPub ahead of Print]
[http://dx.doi.org/10.1007/s12031-019-01386-w] [PMID: 31368064]
[34]
Zhu X, Zhang A, Dong J, et al. MicroRNA-23a contributes to hippocampal neuronal injuries and spatial memory impairment in an experimental model of temporal lobe epilepsy. Brain Res Bull 2019; 152: 175-83.
[http://dx.doi.org/10.1016/j.brainresbull.2019.07.021] [PMID: 31336125]
[35]
Bartel DP. MicroRNAs target recognition and regulatory functions cell 2009; 136(2): 215-33.
[36]
Jiang L, Huang Q, Zhang S, et al. Hsa-miR-125a-3p and hsa-miR-125a-5p are downregulated in non-small cell lung cancer and have inverse effects on invasion and migration of lung cancer cells. BMC Cancer 2010; 10(1): 318.
[http://dx.doi.org/10.1186/1471-2407-10-318] [PMID: 20569443]
[37]
Murata K, Furu M, Yoshitomi H, et al. Comprehensive microRNA analysis identifies miR-24 and miR-125a-5p as plasma biomarkers for rheumatoid arthritis. PLoS One 2013; 8(7) e69118
[http://dx.doi.org/10.1371/journal.pone.0069118] [PMID: 23874885]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 4
Year: 2019
Page: [365 - 372]
Pages: 8
DOI: 10.2174/1567202616666190906125444
Price: $58

Article Metrics

PDF: 11
HTML: 2

Special-new-year-discount