Green Synthetic Methodology of (E)-2-cyano-3-aryl Selective Knoevenagel Adducts Under Microwave Irradiation

Author(s): David Esteban Quintero Jimenez, Lucas Lima Zanin, Luan Farinelli Diniz, Javier Ellena, André Luiz Meleiro Porto*.

Journal Name: Current Microwave Chemistry

Volume 6 , Issue 1 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: The Knoevenagel condensation is an important reaction in organic chemistry because of its capacity to form new C-C bonds and its products are mainly used in organic synthesis as intermediates, due to the large number of reactions they can undergo. Based on the importance of the Knoevenagel adducts, a sustainable synthetic methodology was developed employing microwave irradiation.

Objective: Develop a synthetic methodology employing microwave irradiation and green solvents to obtain Knoevenagel adducts with high yields.

Methods: Knoevenagel condensation reactions were evaluated with different basic catalysts, as well as in the presence or absence of microwave irradiation. The scope of the reaction was expanded using different aldehydes, cyanoacetamide or methyl cyanoacetate. The geometry of the formed products was also evaluated.

Results: After the optimization process, the reactions between aldehydes and cyanoacetamide were performed with triethylamine as catalyst, in the presence of microwave irradiation, in 35 minutes, using NaCl solution as solvent and resulted in high yields 90-99%. The reactions performed between aldehydes and methyl cyanoacetate were also performed under these conditions, but showed better yields with EtOH as solvent 70-90%. Finally, from X-ray analysis, the (E)-geometry of these compounds was confirmed.

Conclusion: In this study we developed synthetic methodology of Knoevenagel condensation using triethylamine, green solvents and microwave irradiation. In 35 minutes, products with high yields (70- 99%) were obtained and the (E)-geometry of the adducts was confirmed.

Keywords: Aldol reaction, cyanoacetamide, methyl cyanoacetate, crystallographic structures, knoevenagel condensation, microwave.

[1]
Guillemin, J.C.; Breneman, C.M.; Joseph, J.C.; Ferris, J.P. Regioselectivity of the photochemical addition of ammonia, phosphine, and silane to olefinic and acetylenic nitriles. Chemistry, 1998, 4, 1074-1082.
[2]
Liu, R.S.H.; Matsumoto, H.; Asato, A.E.; Denny, M.; Shichida, Y.; Yoshizawa, T.; Dahlquist, F.W. Synthesis and properties of 12-fluororetinal and 12-fluororhodopsin. Model system for fluorine-19 NMR studies of visual pigments. J. Am. Chem. Soc., 1981, 103, 7195-7201.
[3]
Fringuelli, F.; Pani, G.; Piermatti, O.; Pizzo, F. Condensation reactions in water of active methylene compounds with arylaldehydes. One-pot synthesis of flavonols. Tetrahedron, 1994, 50, 11499-11508.
[4]
Mori, K. Synthetic chemistry of insect pheromones and juvenile hormones; Recent developments in the chemistry of natural carbon compounds; Bognár, R.; Bruckner, V.; Szántay, C; Eds.; Akadémiai Kiadó: . Budapest, 1979, Vol. 9, p. 11.
[5]
Michel, F.; Mercklein, L.; de Paulet, A.C.; Doré, J.C.; Gilbert, J.; Miquel, J.F. The effect of various acrylonitriles and related compounds on prostaglandin biosynthesis. Prostaglandins, 1984, 27(1), 69-84.
[6]
Maruyama, S.; Tao, X-T.; Hokari, H.; Noh, T.; Zhang, Y.; Wada, T.; Sasabe, H.; Suzuki, H.; Watanabe, T.; Miyata, S. A cyclic carbazole oligomer for electroluminescence applications. Chem. Lett., 1998, 1, 749-750.
[7]
Trilleras, J.E.; Velasques, K.J.; Pacheco, D.J.; Quiroga, J.; Ortiz, A. Microwave-assisted synthesis under solvent-free conditions of (E)-2-(benzo[d]thiazol-2-yl)-3-arylacrylonitriles. J. Braz. Chem. Soc., 2011, 22, 2396-2402.
[8]
Van de Velde, C.M.L.; Blockhuys, F.; Van Alsenoy, C.; Lenstra, A.T.H.; Geise, H.J. Structural effects influencing cis–trans isomerisation in methoxy and cyano substituted stilbene derivatives. J. Chem. Soc., Perkin Trans., 2002, 7, 1345-1351.
[9]
Jones, G. The knoevenagel condensation. Org. React., 1967, 15, 204-207.
[10]
Lehnert, W. Knoevenagel-Kondensation Mit TiCl4/Base-V1,3-alkyliden-und-3-aryliden-2,4-pentandione aus aldehyden und acetylaceton. Synthesis, 1974, 1, 667-669.
[11]
Rao, P.S.; Venkataratnam, R.V. Zinc chloride as a new catalyst for Knoevenagel condensation. Tetrahedron Lett., 1991, 32, 5821-5822.
[12]
Parajatapati, D.; Sandhu, J.S. Cadmium iodide as a new catalyst for Knoevenagel condensations. J. Chem. Soc., Perkin Trans., 1993, 1, 7939-7940.
[13]
Sharma, V.K.; Shahriari-Zavarch, H.; Garratt, P.J.; Sondheimer, F. Syntheses of 2-carbomethoxy-5,10-dimethyl-6,8-didehydro[13]annulenone, a potential precursor of macrocyclic azulene analogs and (Z)- and (E)-14-carbethoxy-2-carbomethoxy-5,10-dimethyl-6,8-didehydro[13]fulvenes. J. Org. Chem., 1983, 48, 2379-2383.
[14]
Angeletti, E.; Canepa, C.; Martinetti, G.; Venturello, P. Silica gel functionalized with amino groups as a new catalyst for Knoevenagel condensation under heterogeneous catalysis conditions. Tetrahedron Lett., 1988, 29, 2261-2264.
[15]
Simpson, J.; Rathbone, D.L.; Billington, D.C. New solid phase Knoevenagel catalyst. Tetrahedron Lett., 1999, 40, 7031-7033.
[16]
Hayashi, Y.; Miyamoto, Y.; Shoji, M. β-Ketothioester as a reactive Knoevenagel donor. Tetrahedron Lett., 2002, 43, 4079-4082.
[17]
Naglla, M.; El-Rahman, A.; El-Kateb, A.A.; Mady, M.F. Simplified approach to the uncatalyzed Knoevenagel condensation and Michael addition reactions in water using microwave irradiation. Synth. Commun., 2007, 37, 3961-3970.
[18]
Yadav, J.S.; Reddy, B.S.S.; Basak, A.K.; Visali, B.; Narsaiah, A.V.; Nagaiah, K. Phosphane‐catalyzed Knoevenagel condensation: A facile synthesis of α‐cyanoacrylates and α‐cyanoacrylonitriles. Eur. J. Org. Chem., 2004, 1, 546-551.
[19]
Rai, S.K.; Khanam, S.; Khanna, R.S.; Tewari, A.K. Cascade synthesis of 2-pyridones using acrylamides and ketones. Royal Soc. Chem. Adv., 2014, 4, 44141-44145.
[20]
Yuan, S.; Li, Z.; Xu, L. Knoevenagel condensation of aldehydes with active methylene compounds catalyzed by MgC2O4/SiO2 under microwave irradiation and solvent-free conditions. Chem. Intermediat., 2012, 38, 393-402.
[21]
Jimenez, D.E.Q.; Ferreira, I.M.; Birolli, W.G.; Fonseca, L.P.; Porto, A.L.M. Synthesis and biocatalytic ene-reduction of Knoevenagel condensation compounds by the marine-derived fungus Penicillium citrinum CBMAI 1186. Tetrahedron, 2016, 72, 7317-7322.
[22]
Jimenez, D.E.Q.; Ferreira, I.M.; Yoshioka, S.A.; Fonseca, L.P.; Porto, A.L.M. Silk fibroin functionalized with CuSO4 on Knoevenagel condensation under microwave radiation. Curr. Microw. Chem., 2017, 4, 131-138.
[23]
Rigaku Oxford Diffraction (2010),; CrysAlisPro Software system, version 1.171.40.61a; Rigaku Corporation, Oxford, UK.
[24]
Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A Complete structure solution, refinement and analysis program. J. Appl. Cryst., 2009, 42, 339-341.
[25]
Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. A, 2008, 64(Pt 1), 112-122.
[26]
Allen, F.H. The Cambridge Structural Database: a quarter of a million crystal structures and rising. Acta Crystallogr. B, 2002, 58, 380-388.
[27]
Xie, L.; Isenberger, K.M.; Held, G.; Dahl, L.M. Highly stereoselective kinetic enolate formation: steric vs electronic effects. J. Org. Chem., 1997, 62(21), 7516-7519.
[28]
Zhong, Y.X.U. Y.; Anslyn, E. V. Studies of reversible conjugate additions. Eur. J. Org. Chem., 2013, 1, 2017-2021.
[29]
Schneider, E.M.; Zeltner, M.; Kränzlin, N.; Grass, R.N.; Stark, W.J. Base-free Knoevenagel condensation catalyzed by copper metal surfaces. Chem. Commun. (Camb.), 2015, 51(53), 10695-10698.
[30]
Xu, H.; Pan, L.; Fang, X.; Liu, B.; Zhang, W.; Lu, M.; Xu, Y.; Ding, T.; Chang, H. Knoevenagel condensation catalyzed by novel Nmm-based ionic liquids in water. Tetrahedron Lett., 2017, 58, 2360-2365.
[31]
Jing, Y.; Meng, J.; Liu, Y.; Wan, J.P. Direct three-component synthesis of α-cyano acrylates involving cascade Knoevenagel reaction and esterification. Chin. J. Chem., 2015, 33, 1194-1198.
[32]
Ford, L.; Ylijoki, K.E.O.; Garcia, M.T.; Singer, R.D.; Scammells, P.J. Nitrogen-containing ionic liquids: biodegradation studies and utility in base-mediated reactions. Aust. J. Chem., 2015, 68, 849-857.
[33]
Ghislieri, D.; Gilmore, K.; Seeberger, P.H. Chemical assembly systems: layered control for divergent, continuous, multistep syntheses of active pharmaceutical ingredients. Angew. Chem. Int. Ed. Engl., 2015, 54(2), 678-682.
[34]
Balalaie, S.; Bararjanian, M.; Hekmat, S.; Salehi, P. Novel, efficient, and green procedure for the Knoevenagel condensation catalyzed by diammonium hydrogen phosphate in water. Synth. Commun., 2006, 36, 2549-2557.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 6
ISSUE: 1
Year: 2019
Page: [54 - 60]
Pages: 7
DOI: 10.2174/2213335606666190906123431

Article Metrics

PDF: 34
HTML: 4
EPUB: 1

Special-new-year-discount