Photochemical Synthesis of Fused Five-membered O-heterocycles

Author(s): Navjeet Kaur*, Meenu Devi, Yamini Verma, Pooja Grewal, Pranshu Bhardwaj, Neha Ahlawat, Nirmala Kumari Jangid.

Journal Name: Current Green Chemistry

Volume 6 , Issue 3 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Some transformations are not possible with ground-state reactions even in the presence of a catalyst, hence they are performed under photochemical conditions. Electron transfer occurs even with the photochemical excitement of one molecule where redox reaction is not possible at the ground state. The side products are obtained from ground-state reactions. For C-C bond formation during photochemical reactions, there is no requirement of any chemical activation of the substrates. Therefore, these reactions are presented here for the synthesis of fused five-membered O-heterocycles in the context of sustainable processes from 1964 to 2019.

Keywords: Heterocycles, oxygen, photochemical, ring system, coumarins, dimethylfuran.

[1]
Balaban, A.T.; Oniciu, D.C.; Katritzky, A.R. Aromaticity as a cornerstone of heterocyclic chemistry. Chem. Rev., 2004, 104(5), 2777-2812.
[http://dx.doi.org/10.1021/cr0306790] [PMID: 15137807]
[2]
(a) Martins, M.A.P.; Cunico, W.; Pereira, C.M.P.; Flores, A.F.C.; Bonacorso, H.G.; Zanatta, N. 4-Alkoxy-1, 1, 1-trichloro-3-alken-2-ones: preparation and applications in heterocyclic synthesis. Curr. Org. Synth., 2004, 1(4), 391-403.
[http://dx.doi.org/10.2174/1570179043366611]
(b) Kaur, N.; Bhardwaj, P.; Devi, M.; Verma, Y.; Grewal, P. Photochemical reactions in five and six-membered polyheterocycles synthesis. Synth. Commun., 2019, 49, 2281-2318.
[http://dx.doi.org/10.1080/00397911.2019.1622732]
[3]
(a) Druzhinin, S.V.; Balenkova, E.S.; Nenajdenko, V.G. Recent advances in the chemistry of α,β-unsaturated trifluoromethylketones. Tetrahedron, 2007, 63(33), 7753-7808.
[http://dx.doi.org/10.1016/j.tet.2007.04.029]
(b) Kaur, N. Palladium-catalyzed approach to the synthesis of S-heterocycles. Catal. Rev., 2015, 57(4), 478-564.
[http://dx.doi.org/10.1080/01614940.2015.1082824]
(c) Kaur, N. Synthesis of six and seven-membered heterocycles under ultrasound irradiation. Synth. Commun., 2018, 48(11), 1235-1258.
[http://dx.doi.org/10.1080/00397911.2018.1434894]
(d) Kaur, N. Photochemical reactions as key steps in five-membered N-heterocycles synthesis. Synth. Commun., 2018, 48(11), 1259-1284.
[http://dx.doi.org/10.1080/00397911.2018.1443218]
(e) Kaur, N. Solid-phase synthesis of sulfur containing heterocycles. J. Sulfur Chem., 2018, 39(5), 544-577.
[http://dx.doi.org/10.1080/17415993.2018.1457673]
(f) Kaur, N. Ionic liquid: an efficient and recyclable medium for the synthesis of fused six-membered oxygen heterocycles. Synth. Commun., 2019, 49, 1679-1707.
[http://dx.doi.org/10.1080/00397911.2019.1568149]
(g) Kaur, N. Multiple nitrogen-containing heterocycles: metal and non-metal assisted synthesis. Synth. Commun., 2019, 49, 1633-1658.
[http://dx.doi.org/10.1080/00397911.2018.1542497]
(h) Kaur, N.; Grewal, P.; Bhardwaj, P.; Devi, M.; Verma, Y. Nickel-catalyzed synthesis of five-membered heterocycles. Synth. Commun., 2019, 49, 1543-1577.
[http://dx.doi.org/10.1080/00397911.2019.1594306]
(i) Kaur, N. Gold and silver assisted synthesis of five-membered oxygen and nitrogen containing heterocycles. Synth. Commun., 2019, 49, 1459- 1485.
[http://dx.doi.org/10.1080/00397911.2019.1575423]
(j) Kaur, N. Synthesis of six- and seven-membered and larger heterocylces using Au and Ag catalysts. Inorg. Nano. Met. Chem., 2018, 48, 541- 568.
[http://dx.doi.org/10.1080/24701556.2019.1567544]
(k) Kaur, N.; Verma, Y.; Grewal, P.; Bhardwaj, P.; Devi, M. Application of titanium catalysts for the syntheses of heterocycles. Synth. Commun., 2019, 49, 1847-1894.
[http://dx.doi.org/10.1080/00397911.2019.1606922]
[4]
(a) Kaur, N. Palladium-catalyzed approach to the synthesis of five-membered O-heterocycles. Inorg. Chem. Commun., 2014, 49, 86-119.
[http://dx.doi.org/10.1016/j.inoche.2014.09.024]
(b) Kaur, N.; Kishore, D. Nitrogen-containing six-membered heterocycles: solid-phase synthesis. Synth. Commun., 2014, 44(9), 1173-1211.
[http://dx.doi.org/10.1080/00397911.2012.760129]
(c) Kaur, N.; Kishore, D. Solid-phase synthetic approach toward the synthesis of oxygen containing heterocycles. Synth. Commun., 2014, 44(8), 1019-1042.
[http://dx.doi.org/10.1080/00397911.2012.760131]
(d) Kaur, N. Microwave-assisted synthesis of five membered O-heterocycles. Synth. Commun., 2014, 44(24), 3483-3508.
[http://dx.doi.org/10.1080/00397911.2013.800213]
(e) Kaur, N. Microwave-assisted synthesis of five membered O,N-heterocycles. Synth. Commun., 2014, 44(24), 3509-3537.
[http://dx.doi.org/10.1080/00397911.2013.800214]
(f) Kaur, N. Microwave-assisted synthesis of five membered O,N,N-heterocycles. Synth. Commun., 2014, 44(22), 3229-3247.
[http://dx.doi.org/10.1080/00397911.2013.798666]
(g) Trost, B.M. The atom economy--a search for synthetic efficiency. Science, 1991, 254(5037), 1471-1477.
[http://dx.doi.org/10.1126/science.1962206] [PMID: 1962206]
(h) Kaur, N. Photochemical reactions for the synthesis of six-membered O-heterocycles. Curr. Org. Synth., 2018, 15, 298-320.
[http://dx.doi.org/10.2174/1570179414666171011160355]
(i) Kaur, N.; Tyagi, R.; Kishore, D. Expedient protocols for the installation of 1,5-benzoazepine based privileged templates on 2-position of α,β-enone incorporated derivatives of the 1,4-benzodiazepine nucleus linked through a phenoxyl spacer. J. Heterocycl. Chem., 2014, 51, E340-E343.
[http://dx.doi.org/10.1002/jhet.1924]
(j) Kaur, N.; Kishore, D. Synthesis of 2-(oxadiazolo, pyrimido, imidazolo, and benzimidazolo) substituted analogues of 1,4-benzodiazepin-5-carboxamides linked through a phenoxyl bridge. J. Chem. Sci., 2014, 126, 1861-1867.
[http://dx.doi.org/10.1007/s12039-014-0721-x]
(k) Kaur, N.; Kishore, D. Synthesis of oxadiazolo, pyrimido, imidazolo and benzimidazolo containing derivatives of 1,4-benzodiazepin-5-(4′-methylpiperazinyl)-carboxamide through phenylamino spacer. Synth. Commun., 2014, 44, 2789-2796.
[http://dx.doi.org/10.1080/00397911.2013.815215]
(l) Kaur, N.; Kishore, D. Application of chalcones in heterocycles synthesis: synthesis of 2-(isoxazolo, pyrazolo and pyrimido) substituted analogues of 1,4-benzodiazepin-5-carboxamides linked through an oxyphenyl bridge. J. Chem. Sci., 2013, 125, 555-560.
[http://dx.doi.org/10.1007/s12039-013-0412-z]
[5]
(a) Seebach, D. Organische Synthese - wohin? Angew. Chem., 1990, 102(11), 1363-1409.
[http://dx.doi.org/10.1002/ange.19901021118]
(b) Kaur, N. Applications of palladium dibenzylideneacetone as catalyst in the synthesis of five-membered N-heterocycles. Synth. Commun., 2019, 49, 1205-1230.
[http://dx.doi.org/10.1080/00397911.2018.1540048]
(c) Kaur, N. Copper catalyzed synthesis of seven and higher-membered heterocycles. Synth. Commun., 2019, 49, 879-916.
[http://dx.doi.org/10.1080/00397911.2018.1543780]
(d) Kaur, N. Ionic liquid assisted synthesis of S-heterocycles. Phosphorus Sulfur Silicon Relat. Elem., 2019, 194, 165-185.
[http://dx.doi.org/10.1080/10426507.2018.1539492]
(e) Kaur, N. Nickel catalysis: six membered heterocycle syntheses. Synth. Commun., 2019, 49, 1103-1133.
[http://dx.doi.org/10.1080/00397911.2019.1568499]
(f) Kaur, N. Seven-membered N-heterocycles: metal and non-metal assisted synthesis. Synth. Commun., 2019, 49, 987-1030.
[http://dx.doi.org/10.1080/00397911.2019.1574351]
(g) Kaur, N.; Bhardwaj, P.; Devi, M.; Verma, Y.; Grewal, P. Synthesis of five-membered O,N-heterocycles using metal and non-metal. Synth. Commun., 2019, 49, 1345-1384.
[http://dx.doi.org/10.1080/00397911.2019.1594308]
(h) Kaur, N. Synthetic routes to seven and higher membered S-heterocycles by use of metal and nonmetal catalyzed reactions. Phosphorus Sulfur Silicon Relat. Elem., 2019, 194, 186-209.
[http://dx.doi.org/10.1080/10426507.2018.1539493]
(i)Kaur, N. Synthesis of six-membered N-heterocycles using ruthenium catalysts. Catal. Lett., 2019, 14, 1513-1539.
[http://dx.doi.org/10.1007/s10562-019-02746-2]
(j)Kaur, N. Gold catalysts in the synthesis of five-membered N-heterocycles. Curr. Organocatal., 2017, 4, 122-154.
[http://dx.doi.org/10.2174/2213337204666171103142349]
[6]
(a) Hoberg, J.O. Synthesis of seven-membered oxacycles. Tetrahedron, 1998, 54, 12631-12670.
[http://dx.doi.org/10.1016/S0040-4020(98)00596-1]
(b) Kaur, N. Metal catalysts: applications in higher membered N-heterocycles synthesis. J. Iran. Chem. Soc., 2015, 12, 9-45.
[http://dx.doi.org/10.1007/s13738-014-0451-5]
(c) Kaur, N. Insight into microwave-assisted synthesis of benzo derivatives of five membered N,N-heterocycles. Synth. Commun., 2015, 45(11), 1269-1300.
[http://dx.doi.org/10.1080/00397911.2013.827725]
(d) Kaur, N. Synthesis of fused five-membered N,N-heterocycles using microwave irradiation. Synth. Commun., 2015, 45(12), 1379-1410.
[http://dx.doi.org/10.1080/00397911.2013.828078]
(e) Kaur, N. Microwave-assisted synthesis of seven membered S-heterocycles. Synth. Commun., 2014, 44(22), 3201-3228.
[http://dx.doi.org/10.1080/00397911.2013.798665]
(f) Kaur, N. Six membered N-heterocycles: microwave-assisted synthesis. Synth. Commun., 2015, 45(1), 1-34.
[http://dx.doi.org/10.1080/00397911.2013.813548]
(g) Kaur, N. Polycyclic six membered N-heterocycles: microwave-assisted synthesis. Synth. Commun., 2015, 45(1), 35-69.
[http://dx.doi.org/10.1080/00397911.2013.813549]
(h) Kaur, N. Ruthenium catalysis in six-membered O-heterocycles synthesis. Synth. Commun., 2018, 48, 1551-1587.
[http://dx.doi.org/10.1080/00397911.2018.1457698]
(i)Kaur, N. Green synthesis of three to five-membered O-heterocycles using ionic liquids. Synth. Commun., 2018, 48, 1588-1613.
[http://dx.doi.org/10.1080/00397911.2018.1458243]
(j)Kaur, N. Ultrasound-assisted green synthesis of five-membered O- and S-heterocycles. Synth. Commun., 2018, 48, 1715-1738.
[http://dx.doi.org/10.1080/00397911.2018.1460671]
(k)Kaur, N. Photochemical mediated reactions in five-membered O-heterocycles synthesis. Synth. Commun., 2018, 48(17), 2119-2149.
[http://dx.doi.org/10.1080/00397911.2018.1485165]
(l)Kaur, N. Application of silver-promoted reactions in the synthesis of five-membered O-heterocycles. Synth. Commun., 2019, 49, 743-789.
[http://dx.doi.org/10.1080/00397911.2019.1570525]
(m)Kaur, N. Synthesis of seven and higher-membered heterocycles using ruthenium catalysts. Synth. Commun., 2019, 49, 617-661.
[http://dx.doi.org/10.1080/00397911.2018.1555711]
[7]
(a) Kaur, N. Benign approaches for the microwave-assisted synthesis of five-membered 1,2-N,N-heterocycles. J. Heterocycl. Chem., 2015, 52, 953-973.
[http://dx.doi.org/10.1002/jhet.2129]
(b) Kaur, N. Methods for metal and non-metal catalyzed synthesis of six-membered oxygen containing poly-heterocycles. Curr. Org. Synth., 2017, 14(4), 531-556.
[http://dx.doi.org/10.2174/1570179413666161021104941]
(c) Kaur, N. Photochemical reactions: synthesis of six-membered N-heterocycles. Curr. Org. Synth., 2017, 14(7), 972-998.
[http://dx.doi.org/10.2174/1570179414666170201150701]
(d) Kaur, N. Ionic liquids: promising but challenging solvents for the synthesis of N-heterocycles. Mini Rev. Org. Chem., 2017, 14(1), 3-23.
[http://dx.doi.org/10.2174/1570193X13666161019120050]
(e) Kaur, N. Metal catalysts for the formation of six-membered N-polyheterocycles. Synth. React. Inorg. Met.-Org. Nano-Met. Chem., 2016, 46(7), 983-1020.
[http://dx.doi.org/10.1080/15533174.2014.989620]
(f) Kaur, N. Applications of gold catalysts for the synthesis of five-membered O-heterocycles. Inorg. Nano-Met. Chem, 2017, 47(2), 163-187.
(g) Stach, H.; Hesse, M. Synthesis of macrocyclic compounds by ring enlargement. Tetrahedron, 1988, 44(6), 1573-1590.
[http://dx.doi.org/10.1016/S0040-4020(01)86717-X]
(h) Kaur, N. Copper catalysts in the synthesis of five-membered N-polyheterocycles. Curr. Org. Synth., 2018, 15, 940-971.
[http://dx.doi.org/10.2174/1570179415666180815144442]
(i)Kaur, N. Recent developments in the synthesis of nitrogen containing five-membered polyheterocycles using rhodium catalysts. Synth. Commun., 2018, 48, 2457-2474.
[http://dx.doi.org/10.1080/00397911.2018.1487070]
[8]
Evans, P.A.; Holmes, A.B. Medium ring nitrogen heterocyles. Tetrahedron, 1991, 47(44), 9131-9166.
[http://dx.doi.org/10.1016/S0040-4020(01)96203-9]
[9]
Dowd, P.; Zhang, W. Free radical-mediated ring expansion and related annulations. Chem. Rev., 1993, 93(6), 2091-2115.
[http://dx.doi.org/10.1021/cr00022a007]
[10]
(a) Albini, A.; Fagnoni, M. Green chemistry and photochemistry were born at the same time. Green Chem., 2004, 6, 1-6.
[http://dx.doi.org/10.1039/b309592d]
(b) Kaur, N. Microwave-assisted synthesis: fused five membered N-heterocycles. Synth. Commun., 2015, 45(7), 789-823.
[http://dx.doi.org/10.1080/00397911.2013.824984]
(c) Kaur, N. Six membered heterocycles with three and four N-heteroatoms: microwave-assisted synthesis. Synth. Commun., 2015, 45(2), 151-172.
[http://dx.doi.org/10.1080/00397911.2013.813550]
(d) Kaur, N. Application of microwave-assisted synthesis in the synthesis of fused six-membered heterocycles with N-heteroatom. Synth. Commun., 2015, 45(2), 173-201.
[http://dx.doi.org/10.1080/00397911.2013.816734]
(e) Kaur, N. Microwave-assisted synthesis of fused polycyclic six membered N-heterocycles. Synth. Commun., 2015, 45(3), 273-299.
[http://dx.doi.org/10.1080/00397911.2013.816735]
(f) Kaur, N. Review of microwave-assisted synthesis of benzo fused six-membered N,N-heterocycles. Synth. Commun., 2015, 45(3), 300-330.
[http://dx.doi.org/10.1080/00397911.2013.816736]
(g) Kaur, N.; Kishore, D. Synthetic strategies applicable in the synthesis of privileged scaffold: 1,4-benzodiazepine. Synth. Commun., 2014, 44(10), 1375-1413.
[http://dx.doi.org/10.1080/00397911.2013.772202]
(h) Kaur, N. Mercury-catalyzed synthesis of heterocycles. Synth. Commun., 2018, 48, 2715-2749.
[http://dx.doi.org/10.1080/00397911.2018.1497657]
(i)Kaur, N. Photochemical irradiation: seven and higher membered O-heterocycles. Synth. Commun., 2018, 48, 2935-2964.
[http://dx.doi.org/10.1080/00397911.2018.1514051]
(j)Kaur, N. Synthesis of seven and higher membered nitrogen containing heterocycles using photochemical irradiation. Synth. Commun., 2018, 48, 2815-2849.
[http://dx.doi.org/10.1080/00397911.2018.1501488]
(k)Kaur, N. Ruthenium catalyzed synthesis of five-membered O-heterocycles. Inorg. Chem. Commun., 2018, 99, 82-107.
[http://dx.doi.org/10.1016/j.inoche.2018.11.011]
[11]
Albini, A.; Fagnoni, M.; Mella, M. Environment-friendly organic synthesis. The photochemical approach. Pure Appl. Chem., 2000, 72(7), 1321-1326.
[http://dx.doi.org/10.1351/pac200072071321]
[12]
(a) Kaur, N. Environmentally benign synthesis of five membered 1,3-N,N-heterocycles by microwave irradiation. Synth. Commun., 2015, 45(8), 909-943.
[http://dx.doi.org/10.1080/00397911.2013.825808]
(b) Kaur, N. Advances in microwave-assisted synthesis for five membered N-heterocycles synthesis. Synth. Commun., 2015, 45(4), 432-457.
[http://dx.doi.org/10.1080/00397911.2013.824982]
(c) Kaur, N. Microwave-assisted synthesis of five membered S-heterocycles. J. Iran. Chem. Soc., 2014, 11, 523-564.
[http://dx.doi.org/10.1007/s13738-013-0325-2]
(d) Kaur, N. Review on the synthesis of six membered N,N-heterocycles by microwave irradiation. Synth. Commun., 2015, 45(10), 1145-1182.
[http://dx.doi.org/10.1080/00397911.2013.827208]
(e) Kaur, N. Greener and expeditious synthesis of fused six-membered N,N-heterocycles using microwave irradiation. Synth. Commun., 2015, 45(13), 1493-1519.
[http://dx.doi.org/10.1080/00397911.2013.828236]
(f) Kaur, N. Applications of microwaves in the synthesis of polycyclic six membered N,N-heterocycles. Synth. Commun., 2015, 45(14), 1599-1631.
[http://dx.doi.org/10.1080/00397911.2013.828755]
(g) Kaur, N. Synthesis of five-membered N,N,N- and N,N,N,N-heterocyclic compounds: applications of microwaves. Synth. Commun., 2015, 45(15), 1711-1742.
[http://dx.doi.org/10.1080/00397911.2013.828756]
(h) Kaur, N. Cobalt-catalyzed C-N, C-O, C-S bond formation: Synthesis of heterocycles. J. Iran. Chem. Soc., 2019, 16, 2525-2553.
[http://dx.doi.org/10.1002/anie.200503908] [PMID: 16498692]
(i)Kaur, N. Palladium acetate and phosphine assisted synthesis of five-membered N-heterocycles. Synth. Commun., 2019, 49, 483-514.
[http://dx.doi.org/10.1080/00397911.2018.1536213]
[13]
Dalko, P.I.; Moisan, L. In the golden age of organocatalysis. Angew. Chem. Int. Ed. Engl., 2004, 43(39), 5138-5175.
[http://dx.doi.org/10.1002/anie.200400650] [PMID: 15455437]
[14]
List, B. Proline-catalyzed asymmetric reactions. Tetrahedron, 2002, 58, 5573-5590.
[http://dx.doi.org/10.1016/S0040-4020(02)00516-1]
[15]
Schreiner, P.R. Metal-free organocatalysis through explicit hydrogen bonding interactions. Chem. Soc. Rev., 2003, 32(5), 289-296.
[http://dx.doi.org/10.1039/b107298f] [PMID: 14518182]
[16]
(a) Czarnik, A.W. Guest editorial. Acc. Chem. Res., 1996, 29(3), 112-113.
[http://dx.doi.org/10.1021/ar950256n]
(b) Kaur, N. Role of microwaves in the synthesis of fused five membered heterocycles with three N-heteroatoms. Synth. Commun., 2015, 45(4), 403-431.
[http://dx.doi.org/10.1080/00397911.2013.824981]
(c) Kaur, N. Recent impact of microwave-assisted synthesis on benzo derivatives of five membered N-heterocycles. Synth. Commun., 2015, 45(5), 539-568.
[http://dx.doi.org/10.1080/00397911.2013.824983]
(d) Kaur, N.; Kishore, D. Microwave-assisted synthesis of seven and higher membered N-heterocycles. Synth. Commun., 2014, 44(18), 2577-2614.
[http://dx.doi.org/10.1080/00397911.2013.783922]
(e) Kaur, N.; Kishore, D. Microwave-assisted synthesis of six-membered S-heterocycles. Synth. Commun., 2014, 44(18), 2615-2644.
[http://dx.doi.org/10.1080/00397911.2013.792354]
(f) Kaur, N.; Kishore, D. Microwave-assisted synthesis of seven and higher membered O-heterocycles. Synth. Commun., 2014, 44(19), 2739-2755.
[http://dx.doi.org/10.1080/00397911.2013.796382]
[17]
Nicolaou, K.C.; Vourloumis, D.; Winssinger, N.; Baran, P.S. The art and science of total synthesis at the dawn of the twenty-first century. Angew. Chem. Int. Ed. Engl., 2000, 39(1), 44-122.
[http://dx.doi.org/10.1002/(SICI)1521-3773(20000103)39:1<44:AID-ANIE44>3.0.CO;2-L] [PMID: 10649349]
[18]
(a) Kaur, N. Palladium catalysts: synthesis of five-membered N-heterocycles fused with other heterocycles. Catal. Rev., 2015, 57(1), 1-78.
[http://dx.doi.org/10.1080/01614940.2014.976118]
(b) Kaur, N.; Kishore, D. Microwave-assisted synthesis of six membered O,O-heterocycles. Synth. Commun., 2014, 44(21), 3082-3111.
[http://dx.doi.org/10.1080/00397911.2013.796384]
(c) Kaur, N.; Kishore, D. Microwave-assisted synthesis of six membered O-heterocycles. Synth. Commun., 2014, 44(21), 3047-3081.
[http://dx.doi.org/10.1080/00397911.2013.796383]
(d) Wender, P.A.; Croatt, M.P.; Witulski, B. New reactions and step economy: the total synthesis of (+/-)-salsolene oxide based on the type II transition metal-catalyzed intramolecular [4+4] cycloaddition. Tetrahedron, 2006, 62, 7505-7511.
[http://dx.doi.org/10.1016/j.tet.2006.02.085]
[19]
Wender, P.A.; Verma, V.A.; Paxton, T.J.; Pillow, T.H. Function-oriented synthesis, step economy, and drug design. Acc. Chem. Res., 2008, 41(1), 40-49.
[http://dx.doi.org/10.1021/ar700155p] [PMID: 18159936]
[20]
Burns, N.Z.; Baran, P.S.; Hoffmann, R.W. Redox economy in organic synthesis. Angew. Chem. Int. Ed. Engl., 2009, 48(16), 2854-2867.
[http://dx.doi.org/10.1002/anie.200806086] [PMID: 19294720]
[21]
Knowles, J.P.; Elliott, L.D.; Booker-Milburn, K.I. Flow photochemistry: Old light through new windows. Beilstein J. Org. Chem., 2012, 8, 2025-2052.
[http://dx.doi.org/10.3762/bjoc.8.229] [PMID: 23209538]
[22]
Aggarwal, V.K.; Fang, G.; Kokotos, C.G.; Richardson, J.; Unthank, M.G. A practical synthesis of a [2,2,1] bicyclic chiral sulfide for asymmetric transformations. Tetrahedron, 2006, 62, 11297-11303.
[http://dx.doi.org/10.1016/j.tet.2006.06.044]
[23]
Schuster, D.I.; Lem, G.; Kaprinidis, N.A. New insights into an old mechanism: [2 + 2] photocycloaddition of enones to alkenes. Chem. Rev., 1993, 93(1), 3-22.
[http://dx.doi.org/10.1021/cr00017a001]
[24]
Rau, H. Asymmetric photochemistry in solution. Chem. Rev., 1983, 83(5), 535-547.
[http://dx.doi.org/10.1021/cr00057a003]
[25]
Inoue, Y. Asymmetric photochemical reactions in solution. Chem. Rev., 1992, 92(5), 741-770.
[http://dx.doi.org/10.1021/cr00013a001]
[26]
Pete, J-P. Asymmetric photoreactions of conjugated Enones and Esters. In: Advances in photochemistry; Neckers, D.C.; Volman, D.H.; Von Bünau, G. Ed. Wiley Online Library. 1996, 21, 135-216.
[27]
Everitt, S.R.L.; Inoue, Y. Molecular and Supramolecular Photochemistry, 1999, 3, Organic Molecular Photochemistry, 71.
[28]
Inoue, Y.; Wada, T.; Asaoka, S.; Sato, H.; Pete, J-P. Photochirogenesis: multidimensional control of asymmetric photochemistry. Chem. Commun. (Camb.), 2000, 251-259.
[http://dx.doi.org/10.1039/a905409j]
[29]
Griesbeck, A.G.; Meierhenrich, U.J. Asymmetric photochemistry and photochirogenesis. Angew. Chem. Int. Ed. Engl., 2002, 41(17), 3147-3154.
[http://dx.doi.org/10.1002/1521-3773(20020902)41:17<3147:AID-ANIE3147>3.0.CO;2-V] [PMID: 12207376]
[30]
Hoffmann, N.; Pete, J-P. Molecular and Supramolecular Photochemistry, 2005, 11, 179. Chiral Photochemistry (Inoue, I., Ramamurthy, V., Eds.).
[31]
Ng, S.M.; Bader, S.J.; Snapper, M.L. Solvent-controlled intramolecular [2 + 2] photocycloadditions of α-substituted enones. J. Am. Chem. Soc., 2006, 128(22), 7315-7319.
[http://dx.doi.org/10.1021/ja060968g] [PMID: 16734486]
[32]
Saito, H.; Mori, T.; Wada, T.; Inoue, Y. Diastereoselective [2 + 2] photocycloaddition of stilbene to chiral fumarate. Direct versus charge-transfer excitation. J. Am. Chem. Soc., 2004, 126(6), 1900-1906.
[http://dx.doi.org/10.1021/ja0370140] [PMID: 14871123]
[33]
Faure, S.; Piva, O. Application of chiral tethers to intramolecular [2+2] photocycloadditions: synthetic approach to (-)-italicene and (+)-isoitalicene. Tetrahedron Lett., 2001, 42(2), 255-259.
[http://dx.doi.org/10.1016/S0040-4039(00)01933-X]
[34]
Faure, S.; Piva-Le-Blanc, S.; Bertrand, C.; Pete, J-P.; Faure, R.; Piva, O. Asymmetric intramolecular [2 + 2] photocycloadditions: α- and β-hydroxy acids as chiral tether groups. J. Org. Chem., 2002, 67(4), 1061-1070.
[http://dx.doi.org/10.1021/jo001631e] [PMID: 11846645]
[35]
Helmchen, G.; Schmierer, R. Functional groups at concave sites: asymmetric Diels-Alder synthesis with almost complete (Lewis-acid catalyzed) or high (uncatalyzed) stereoselectivity. Angew. Chem. Int. Ed. Engl., 1981, 20(2), 205-207.
[http://dx.doi.org/10.1002/anie.198102051]
[36]
Shimo, T.; Kawamura, M.; Fukushima, E.; Yasutake, M.; Shinmyozu, T.; Somekawa, K. One-pot synthesis of macrocyclic dioxatetralactones from the sequential inter- and intramolecular [2+2] photocycloaddition reactions. Heterocycles, 2003, 60(1), 23-27.
[http://dx.doi.org/10.3987/COM-02-9640]
[37]
Nielsen, L.B.; Wege, D. The enantioselective synthesis of elecanacin through an intramolecular naphthoquinone-vinyl ether photochemical cycloaddition. Org. Biomol. Chem., 2006, 4(5), 868-876.
[http://dx.doi.org/10.1039/b517008g] [PMID: 16493471]
[38]
Chen, C.; Chang, V.; Cai, X.; Duesler, E.; Mariano, P.S. A general strategy for absolute stereochemical control in enone-olefin [2+2] photocycloaddition reactions. J. Am. Chem. Soc., 2001, 123(26), 6433-6434.
[http://dx.doi.org/10.1021/ja010883+] [PMID: 11427077]
[39]
Redon, S.; Piva, O. Diastereoselective transannular [2+2] photocycloaddition of ascorbic acid derivatives. Tetrahedron Lett., 2006, 47(5), 733-736.
[http://dx.doi.org/10.1016/j.tetlet.2005.11.102]
[40]
Hoffmann, N. Photochemical reactions as key steps in organic synthesis. Chem. Rev., 2008, 108(3), 1052-1103.
[http://dx.doi.org/10.1021/cr0680336] [PMID: 18302419]
[41]
Coates, R.M.; Muskopf, J.W.; Senter, P.A. Synthesis of stereoisomeric 9a-methylhydrodicyclopenta[a,d]cyclooctan-1-ones related to the ophiobolins and ceroplastins via annelative ring expansion of hydrindene precursors. J. Org. Chem., 1985, 50, 3541-3557.
[http://dx.doi.org/10.1021/jo00219a022]
[42]
Gimenez-Arnau, E.; Mabic, S.; Lepoittevin, J-P. Synthesis and photocyclization of alpha-methylene-gamma-butyrolactone-thymine heterodimers. Chem. Res. Toxicol., 1995, 8(1), 22-26.
[http://dx.doi.org/10.1021/tx00043a002] [PMID: 7703361]
[43]
Gomez, A.M.; Mantecon, S.; Velazquez, S.; Valverde, S.; Herczegh, P.; Lopez, J.C. Carbohydrates to carbocycles: regio- and stereoselectivity in the intramolecular [2+2] photocycloaddition of dienic 2-enono-δ-lactones. Synlett, 1998, 1402-1404.
[http://dx.doi.org/10.1055/s-1998-1967]
[44]
Wrobel, M.N.; Margaretha, P. Diastereomer-differentiating photoisomerization of 5-(cyclopent-2-en-1-yl)-2,5-dihydro-1H-pyrrol-2-ones. Chem. Commun. (Camb.), 1998, 541-542.
[http://dx.doi.org/10.1039/a708365c]
[45]
Wrobel, M.N.; Margaretha, P. Photocycloisomerization of Boc‐protected 5‐alkenyl‐2,5‐dihydro‐1H‐pyrrol‐2‐ones. Helv. Chim. Acta, 2003, 86, 515-521.
[http://dx.doi.org/10.1002/hlca.200390051]
[46]
Kemmler, M.; Bach, T. [2+2] photocycloaddition of tetronates. Angew. Chem. Int. Ed. Engl., 2003, 42(39), 4824-4826.
[http://dx.doi.org/10.1002/anie.200352171] [PMID: 14562360]
[47]
Kemmler, M.; Herdtweck, E.; Bach, T. Inter‐ and intramolecular [2+2]‐photocycloaddition of tetronates - stereoselectivity, mechanism, scope and synthetic applications. Eur. J. Org. Chem., 2004, 22, 4582-4595.
[http://dx.doi.org/10.1002/ejoc.200400551]
[48]
Basler, B.; Schuster, O.; Bach, T. Conformationally constrained β-amino acid derivatives by intramolecular [2 + 2]-photocycloaddition of a tetronic acid amide and subsequent lactone ring opening. J. Org. Chem., 2005, 70(24), 9798-9808.
[http://dx.doi.org/10.1021/jo0515226] [PMID: 16292808]
[49]
Fleck, M.; Yang, C.; Wada, T.; Inoue, Y.; Bach, T. Regioselective [2 + 2]-photocycloaddition reactions of chiral tetronates-influence of temperature, pressure, and reaction medium. Chem. Commun. (Camb.), 2007, (8), 822-824.
[http://dx.doi.org/10.1039/B613985J] [PMID: 17308643]
[50]
Albrecht, D.; Basler, B.; Bach, T. Preparation and intramolecular [2+2]-photocycloaddition of 1,5-dihydropyrrol-2-ones and 5,6-dihydro-1H-pyridin-2-ones with C-, N-, and O-linked alkenyl side chains at the 4-position. J. Org. Chem., 2008, 73(6), 2345-2356.
[http://dx.doi.org/10.1021/jo7027129] [PMID: 18302416]
[51]
Wessig, P. Organocatalytic enantioselective photoreactions. Angew. Chem. Int. Ed. Engl., 2006, 45(14), 2168-2171.
[http://dx.doi.org/10.1002/anie.200503908] [PMID: 16498692]
[52]
Lowe, G.; Yeung, H.W. Synthesis of a β-lactam related to the cephalosporins. J. Chem. Soc., Perkin Trans. 1, 1973, 2907-2910.
[http://dx.doi.org/10.1039/P19730002907]
[53]
Nakagawa, S.; Naito, T.; Kawaguchi, H. Structures of Bu-2313 A and B, new anti-anaerobic antibiotics and syntheses of their analogs. Heterocycles, 1979, 13, 477-495.
[http://dx.doi.org/10.3987/S-1979-01-0477]
[54]
Carroll, W.A.; Agrios, K.A.; Altenbach, R.J.; Buckner, S.A.; Chen, Y.; Coghlan, M.J.; Daza, A.V.; Drizin, I.; Gopalakrishnan, M.; Henry, R.F.; Kort, M.E.; Kym, P.R.; Milicic, I.; Smith, J.C.; Tang, R.; Turner, S.C.; Whiteaker, K.L.; Zhang, H.; Sullivan, J.P. Synthesis and structure-activity relationships of a novel series of tricyclic dihydropyridine-based KATP openers that potently inhibit bladder contractions in vitro. J. Med. Chem., 2004, 47(12), 3180-3192.
[http://dx.doi.org/10.1021/jm030357o] [PMID: 15163197]
[55]
Vasudevan, A.; Villamil, C.; Trumbull, J.; Olson, J.; Sutherland, D.; Pan, J.; Djuric, S. LOPHTOR: a convenient flow-based photochemical reactor. Tetrahedron Lett., 2010, 51(31), 4007-4009.
[http://dx.doi.org/10.1016/j.tetlet.2010.05.119]
[56]
Oelgemöller, M.; Shvydkiv, O. Recent advances in microflow photochemistry. Molecules, 2011, 16(9), 7522-7550.
[http://dx.doi.org/10.3390/molecules16097522] [PMID: 21894087]
[57]
Ouchi, A.; Sakai, H.; Oishi, T.; Kaneda, M.; Suzuki, T.; Saruwatari, A.; Obata, T. Photochemical reduction of flavone with NaBH4 in batch and micro-channel reactors using excimer lasers. J. Photochem. Photobiol. Chem., 2008, 199, 261-266.
[http://dx.doi.org/10.1016/j.jphotochem.2008.05.024]
[58]
Müller, C.; Bauer, A.; Bach, T. Light-driven enantioselective organocatalysis. Angew. Chem. Int. Ed. Engl., 2009, 48(36), 6640-6642.
[http://dx.doi.org/10.1002/anie.200901603] [PMID: 19472260]
[59]
Müller, C.; Bauer, A.; Maturi, M.M.; Cuquerella, M.C.; Miranda, M.A.; Bach, T. Enantioselective intramolecular [2 + 2]-photocycloaddition reactions of 4-substituted quinolones catalyzed by a chiral sensitizer with a hydrogen-bonding motif. J. Am. Chem. Soc., 2011, 133(41), 16689-16697.
[http://dx.doi.org/10.1021/ja207480q] [PMID: 21955005]
[60]
Kaupp, G. Cyclobutane Synthesis (Liquid Phase). CRC Handbook of Organic Photochemistry and Photobiology, 1995, 29 [2+2].
[61]
Kalinowski, H-O.; Berger, S.; Braun, S. 13C NMR-Spektroskopie, 1984.
[62]
Pretsch, E.; Buehlmann, P.; Affolter, C. Structure Determination of Organic Compounds., 2000.
[http://dx.doi.org/10.1007/978-3-662-04201-4]
[63]
Skoric, I.; Marinic, N.; Sindler-Kulyk, M. Photochemical dimerization of styrylnaphthofurans-II. Heterocycles, 2000, 53, 55-68.
[http://dx.doi.org/10.3987/COM-99-8715]
[64]
Ziffer, H.; Bax, A.; Highet, R.J.; Green, B. Investigation by two-dimensional NMR of the structure and stereochemistry of a methyl p-nitrocinnamate photodimer. J. Org. Chem., 1988, 53, 895-896.
[http://dx.doi.org/10.1021/jo00239a046]
[65]
West, F.G.; Fisher, P.V.; Willoughby, C.A. The photochemistry of pyran-4-ones: intramolecular trapping of the zwitterionic intermediate with pendant hydroxyl groups. J. Org. Chem., 1990, 55, 5936-5938.
[http://dx.doi.org/10.1021/jo00311a008]
[66]
Nuss, J.M. The photochemistry of dienes and polyenes: application to the synthesis of complex molecules. Chemistry of Dienes and Polyenes., 1999, 1, 263-324.
[67]
Maeda, H.; Mukae, H.; Mizuno, K. Enhanced efficiency and regioselectivity of intramolecular (2π + 2π) photocycloaddition of 1-cyanonaphthalene derivative using microreactors. Chem. Lett., 2005, 34(1), 66-67.
[http://dx.doi.org/10.1246/cl.2005.66]
[68]
Mukae, H.; Maeda, H.; Nashihara, S.; Mizuno, K. Intramolecular photocycloaddition of 2-(2-alkenyloxymethyl)naphthalene-1-carbonitriles using glass-made microreactors. Bull. Chem. Soc. Jpn., 2007, 80, 1157-1161.
[http://dx.doi.org/10.1246/bcsj.80.1157]
[69]
Coyle, E.E.; Oelgemöller, M. Micro-photochemistry: photochemistry in microstructured reactors. The new photochemistry of the future? Photochem. Photobiol. Sci., 2008, 7(11), 1313-1322.
[http://dx.doi.org/10.1039/b808778d] [PMID: 18958317]
[70]
Matlin, A.R.; Kim, K. Photochemically induced reactions of cis,cis-cyclooctadienone. Tetrahedron Lett., 1989, 30, 637-640.
[http://dx.doi.org/10.1016/S0040-4039(01)80269-0]
[71]
Crandall, J.K.; Haseltine, R.P. The photochemistry of 2,7-cyclooctadienone. J. Am. Chem. Soc., 1968, 90, 6251-6253.
[http://dx.doi.org/10.1021/ja01024a074]
[72]
Kumar, C.V.; Murthy, B.A.R.C.; Lahiri, S.; Chakachery, E.; Scaiano, J.C.; George, M.V. Photochemical transformations and laser flash photolysis studies of dibenzobarrelenes containing 1,2-dibenzoylalkene moieties. J. Org. Chem., 1984, 49, 4923-4929.
[http://dx.doi.org/10.1021/jo00199a035]
[73]
Asokan, C.V.; Kumar, S.A.; Das, S.; Rath, N.P.; George, M.V. Novel phototransformations of bridgehead-dimethyl-substituted dibenzobarrelene. Structure of the photoproducts. J. Org. Chem., 1991, 56, 5890-5893.
[http://dx.doi.org/10.1021/jo00020a034]
[74]
Skubi, K.L.; Blum, T.R.; Yoon, T.P. Dual catalysis strategies in photochemical synthesis. Chem. Rev., 2016, 116(17), 10035-10074.
[http://dx.doi.org/10.1021/acs.chemrev.6b00018] [PMID: 27109441]
[75]
Lin, C-H.; Yang, D-Y. Synthesis of coumarin/pyrrole-fused heterocycles and their photochemical and redox-switching properties. Org. Lett., 2013, 15(11), 2802-2805.
[http://dx.doi.org/10.1021/ol401138q] [PMID: 23713968]
[76]
Skonieczny, K.; Gryko, D.T. Photochemical conversion of phenanthro[9,10-d]imidazoles into π-expanded heterocycles. J. Org. Chem., 2015, 80(11), 5753-5763.
[http://dx.doi.org/10.1021/acs.joc.5b00714] [PMID: 25938658]
[77]
Oksdath-Mansilla, G.; Heredia, A.A.; Argüello, J.E.; Peñéñory, A.B. Photochemistry of N-(selenoalkyl)-phthalimides. Formation of N, Se-heterocyclic systems. Photochem. Photobiol. Sci., 2015, 14(4), 726-736.
[http://dx.doi.org/10.1039/C4PP00452C] [PMID: 25597467]
[78]
Moon, G.M.; Lim, S.H.; Cho, D.W.; Kim, S.H.; Lee, I.O.; Yoon, U.C.; Mariano, P.S. Comparison of photochemical reactions of aromatic carbonyl compounds with a silyl ketene thioacetal and a silyl ketene acetal. Heterocycles, 2015, 90(2), 978-988.
[http://dx.doi.org/10.3987/COM-14-S(K)69]
[79]
Tan, H.; Xin, H.; Yan, H. Synthesis and photochemical properties of 2,4,6-triaryl-4H-1,4-oxazines. Heterocycles, 2014, 89(2), 359-373.
[http://dx.doi.org/10.3987/COM-13-12876]
[80]
Li, G.; He, Y.; Zhou, W.; Wang, P.; Zhang, Y.; Tong, W.; Wu, H.; Liu, M.; Ye, X.; Chen, Y. Identification, synthesis and photo-protection evaluation of arylthiazole derivatives as a novel series of sunscreens. Heterocycles, 2014, 89(2), 453-464.
[http://dx.doi.org/10.3987/COM-06-10945]
[81]
Ilhan, F.; Tyson, D.S.; Meador, M.A. Synthesis and chemosensory behavior of anthracene bisimide derivatives. Chem. Mater., 2004, 16, 2978-2980.
[http://dx.doi.org/10.1021/cm049508h]
[82]
Ilhan, F.; Tyson, D.S.; Meador, M.A. Phenacenes from Diels-Alder trapping of photogenerated o-xylylenols: phenanthrenes and benzo[e]pyrene bisimide. Org. Lett., 2006, 8(4), 577-580.
[http://dx.doi.org/10.1021/ol052711d] [PMID: 16468715]
[83]
Oda, K.; Haneda, M.; Nishizono, N.; Machida, M. Intermolecular photoreaction of benzenecarbothioamide with γ,δ-unsaturated ketones: application to synthesis of cycloalkane [c]-fused pyridines. Heterocycles, 2005, 66, 563-566.
[http://dx.doi.org/10.3987/COM-05-S(K)19]
[84]
Bauer, A.; Westkämper, F.; Grimme, S.; Bach, T. Catalytic enantioselective reactions driven by photoinduced electron transfer. Nature, 2005, 436(7054), 1139-1140.
[http://dx.doi.org/10.1038/nature03955] [PMID: 16121176]
[85]
Sakellariou, E.G.; Montalban, A.G.; Beall, S.L.; Henderson, D.; Meunier, H.G.; Phillips, D.; Suhling, K.; Barrett, A.G.M.; Hoffmann, B.M. Novel peripherally functionalized seco-porphyrazines: synthesis, characterization and spectroscopic evaluation. Tetrahedron, 2003, 59(46), 9083-9090.
[http://dx.doi.org/10.1016/j.tet.2003.09.060]
[86]
George, M.V. Contributions in organic functional group transformations and photochemical and photophysical studies of selective organic substrates. Proc. Indian Acad. Sci. Chem. Sci., 2003, 115, 225-239.
[http://dx.doi.org/10.1007/BF02704214]
[87]
Schultz, A.G. New photochemistry of 2,5-cyclohexadien-1-ones and related compounds. Pure Appl. Chem., 1988, 60, 981-988.
[http://dx.doi.org/10.1351/pac198860070981]
[88]
Grosch, B.; Orlebar, C.N.; Herdtweck, E.; Kaneda, M.; Wada, T.; Inoue, Y.; Bach, T. Enantioselective [4+2]-cycloaddition reaction of a photochemically generated o-quinodimethane: mechanistic details, association studies, and pressure effects. Chemistry, 2004, 10(9), 2179-2189.
[http://dx.doi.org/10.1002/chem.200306049] [PMID: 15112206]
[89]
Svoboda, J.; König, B. Templated photochemistry: toward catalysts enhancing the efficiency and selectivity of photoreactions in homogeneous solutions. Chem. Rev., 2006, 106(12), 5413-5430.
[http://dx.doi.org/10.1021/cr050568w] [PMID: 17165693]
[90]
Butković, K.; Marinić, Z.; Molčanov, K.; Kojić-Prodić, B.; Sindler-Kulyk, M. Photochemical and thermal intramolecular 1,3-dipolar cycloaddition reactions of new o-stilbene-methylene-3-sydnones and their synthesis. Beilstein J. Org. Chem., 2011, 7, 1663-1670.
[http://dx.doi.org/10.3762/bjoc.7.196] [PMID: 22238545]
[91]
Winkler, J.D.; Lee, E.C.Y.; Nevels, L.I. A Pauson-Khand approach to the synthesis of ingenol. Org. Lett., 2005, 7(8), 1489-1491.
[http://dx.doi.org/10.1021/ol050103s] [PMID: 15816734]
[92]
Alibés, R.; Alvárez-Larena, A.; de March, P.; Figueredo, M.; Font, J.; Parella, T.; Rustullet, A. Synthesis and conformational analysis of new cyclobutane-fused nucleosides. Org. Lett., 2006, 8(3), 491-494.
[http://dx.doi.org/10.1021/ol052794y] [PMID: 16435867]
[93]
Inoue, M.; Sato, T.; Hirama, M. Total synthesis of merrilactone A. J. Am. Chem. Soc., 2003, 125(36), 10772-10773.
[http://dx.doi.org/10.1021/ja036587+] [PMID: 12952441]
[94]
Metha, G.; Singh, S.R. Toward a total synthesis of the novel neurotrophic sesquiterpene merrilactone A: a RCM and [2+2]-photocycloaddition based approach to framework construction. Tetrahedron Lett., 2005, 46, 2079-2082.
[http://dx.doi.org/10.1016/j.tetlet.2005.01.133]
[95]
Austin, K.A.B.; Banwell, M.G.; Harfoot, G.J.; Willis, A.C. Chemoenzymatic syntheses of the linear triquinane-type sesquiterpenes (+)-hirsutic acid and (−)-complicatic acid. Tetrahedron Lett., 2006, 47, 7381-7384.
[http://dx.doi.org/10.1016/j.tetlet.2006.07.145]
[96]
Pihko, A.J.; Koskinen, A.M.P. Synthesis of propellane-containing natural products. Tetrahedron, 2005, 61, 8769-8808.
[http://dx.doi.org/10.1016/j.tet.2005.06.013]
[97]
Coxon, J.M.; Halton, B. Organic Photochemistry., (5th ed. ). 1987, 162.
[98]
Wagner, P.J. Photoinduced ortho [2 + 2] cycloaddition of double bonds to triplet benzenes. Acc. Chem. Res., 2001, 34(1), 1-8.
[http://dx.doi.org/10.1021/ar000113n] [PMID: 11170351]
[99]
Jindakun, C.; Hsieh, S-Y.; Bode, J.W. Iridium-catalyzed synthesis of saturated N-heterocycles from aldehydes and SnAP reagents with continuous flow photochemistry. Org. Lett., 2018, 20(7), 2071-2075.
[http://dx.doi.org/10.1021/acs.orglett.8b00611] [PMID: 29558148]
[100]
Xuan, J.; Cao, X.; Cheng, X. Advances in heterocycle synthesis via [3+m]-cycloaddition reactions involving an azaoxyallyl cation as the key intermediate. Chem. Commun. (Camb.), 2018, 54(41), 5154-5163.
[http://dx.doi.org/10.1039/C8CC00787J] [PMID: 29701223]
[101]
Shvydkiv, O.; Gallagher, S.; Nolan, K.; Oelgemöller, M. From conventional to microphotochemistry: photodecarboxylation reactions involving phthalimides. Org. Lett., 2010, 12(22), 5170-5173.
[http://dx.doi.org/10.1021/ol102184u] [PMID: 20945889]
[102]
Druzhenko, T.; Skalenko, Y.; Samoilenko, M.; Denisenko, A.; Zozulya, S.; Borysko, P.O.; Sokolenko, M.I.; Tarasov, A.; Mykhailiuk, P.K. Photochemical synthesis of 2-azabicyclo[3.2.0]heptanes: advanced building blocks for drug discovery. Synthesis of 2,3-ethanoproline. J. Org. Chem., 2018, 83(3), 1394-1401.
[http://dx.doi.org/10.1021/acs.joc.7b02910] [PMID: 29297689]
[103]
Streit, U.; Bochet, C.G. The arene-alkene photocycloaddition. Beilstein J. Org. Chem., 2011, 7, 525-542.
[http://dx.doi.org/10.3762/bjoc.7.61] [PMID: 21647263]
[104]
Keese, R. Carbon flatland: planar tetracoordinate carbon and fenestranes. Chem. Rev., 2006, 106(12), 4787-4808.
[http://dx.doi.org/10.1021/cr050545h] [PMID: 17165674]
[105]
Penkett, C.S.; Woolford, J.A.; Day, I.J.; Coles, M.P. The double [3 + 2] photocycloaddition reaction. J. Am. Chem. Soc., 2010, 132(1), 4-5.
[http://dx.doi.org/10.1021/ja906163s] [PMID: 20000565]
[106]
Wender, P.A.; Dore, T.M.; deLong, M.A. An arene-alkene photocycloaddition-radical cyclization cascade: the first syntheses of cis,cis,cis,trans-[5.5.5.5]-fenestranes. Tetrahedron Lett., 1996, 37, 7687-7690.
[http://dx.doi.org/10.1016/0040-4039(96)01740-6]
[107]
Gaich, T.; Mulzer, J. Total synthesis of (-)-Penifulvin A, an insecticide with a dioxafenestrane skeleton. J. Am. Chem. Soc., 2009, 131(2), 452-453.
[http://dx.doi.org/10.1021/ja8083048] [PMID: 19140787]
[108]
Gaich, T.; Mulzer, J. From silphinenes to penifulvins: a biomimetic approach to penifulvins B and C. Org. Lett., 2010, 12(2), 272-275.
[http://dx.doi.org/10.1021/ol902594b] [PMID: 20000335]
[109]
Bach, T.; Hehn, J.P. Photochemical reactions as key steps in natural product synthesis. Angew. Chem. Int. Ed. Engl., 2011, 50(5), 1000-1045.
[http://dx.doi.org/10.1002/anie.201002845] [PMID: 21246702]
[110]
Pérez-Ruiz, R.; Hinze, O.; Neudörfl, J-M.; Blunk, D.; Görner, H.; Griesbeck, A.G. Photochemistry of allyloxybenzophenones: a pseudo-Paternò-Büchi rearrangement accompanied by hydrogen transfer induced 1,5-cyclization. Photochem. Photobiol. Sci., 2008, 7(7), 782-788.
[http://dx.doi.org/10.1039/b807889k] [PMID: 18597025]
[111]
Lim, Y-H.; Li, T.; Chen, P.; Schreiber, P.; Kuznetsova, L.; Carroll, P.J.; Lauher, J.W.; Sieburth, S.M. Asymmetry by electrophilic rearrangement of symmetric 2-pyridone photodimers. Org. Lett., 2005, 7(24), 5413-5415.
[http://dx.doi.org/10.1021/ol052071e] [PMID: 16288519]
[112]
Iriondo-Alberdi, J.; Perea-Buceta, J.E.; Greaney, M.F. A Paterno-Büchi approach to the synthesis of merrilactone A. Org. Lett., 2005, 7(18), 3969-3971.
[http://dx.doi.org/10.1021/ol0514496] [PMID: 16119944]
[113]
Van Hijfte, L.; Vandewalle, M. The total synthesis of 1-oxygenated eudesmane sesquiterpenes: (±) dihydroreynosin and (±) 1-oxocostic acid. Tetrahedron Lett., 1982, 23, 2229-2232.
[http://dx.doi.org/10.1016/S0040-4039(00)87308-6]
[114]
Van Hijfte, L.; Vandewalle, M. The total synthesis of i-oxygenated eudesmanolides. Tetrahedron, 1984, 40, 4371-4382.
[http://dx.doi.org/10.1016/S0040-4020(01)98812-X]
[115]
Anglea, T.A.; Pinder, A.R. Total synthesis of (+)-balanitol and of (+)-selin-4-(15)-ene-1β,11-diol. Tetrahedron, 1987, 43, 5537-5543.
[http://dx.doi.org/10.1016/S0040-4020(01)87735-8]
[116]
Termont, D.; De Clercq, P.; Keukeleire, D.D.; Vandewalle, M. A novel entry to substituted hydroazulenes. Synthesis, 1977, 1, 46-48.
[http://dx.doi.org/10.1055/s-1977-24271]
[117]
De Clercq, P.; Vandewalle, M. Total synthesis of (+)-damsin. J. Org. Chem., 1977, 42, 3447-3450.
[http://dx.doi.org/10.1021/jo00441a032]
[118]
Denisenko, A.V.; Druzhenko, T.; Skalenko, Y.; Samoilenko, M.; Grygorenko, O.O.; Zozulya, S.; Mykhailiuk, P.K. Photochemical synthesis of 3-azabicyclo[3.2.0]heptanes: advanced building blocks for drug discovery. J. Org. Chem., 2017, 82(18), 9627-9636.
[http://dx.doi.org/10.1021/acs.joc.7b01678] [PMID: 28810741]
[119]
Capon, R.J.; Rooney, F.; Murray, L.M.; Collins, E.; Sim, A.T.R.; Rostas, J.A.P.; Butler, M.S.; Carrol, A.R. Dragmacidins: New protein phosphatase inhibitors from a southern australian deep-water marine sponge, Spongosorites sp. J. Nat. Prod., 1998, 61(5), 660-662.
[120]
Demuynck, M.; De Clercq, P.; Vandewalle, M. (+)-Hysterin: revised structure and total synthesis. J. Org. Chem., 1979, 44, 4863-4866.
[http://dx.doi.org/10.1021/jo00394a025]
[121]
Devreese, A.A.; De Clercq, P.J.; Vandewalle, M. A general entry to guaianolides. An illustrative synthesis of (±)-compressanolide. Tetrahedron Lett., 1980, 21, 4767-4770.
[http://dx.doi.org/10.1016/0040-4039(80)88117-2]
[122]
Devreese, A.A.; Demuynck, M.; De Clercq, P.J.; Vandewalle, M. Guaianolides. 2. Total synthesis of (±)-compressanolide and (±)-estafiatin. Tetrahedron, 1983, 39, 3049-3054.
[http://dx.doi.org/10.1016/S0040-4020(01)91544-3]
[123]
Demuynck, M.; Devreese, A.A.; De Clercq, P.J.; Vandewalle, M. Guaianolides: the total synthesis of (±)-estafiatin. Tetrahedron Lett., 1982, 23, 2501-2504.
[http://dx.doi.org/10.1016/S0040-4039(00)87380-3]
[124]
Lange, G.L.; Merica, A. An approach to the A/B substructure of 11(15→ 1)-abeotaxanes. A formal synthesis of compressanolide. Tetrahedron Lett., 1998, 39, 3639-3642.
[http://dx.doi.org/10.1016/S0040-4039(98)00637-6]
[125]
Wender, P.A.; Fisher, K. The total synthesis of (+/-)-rudmollin. 7-membered ring synthesis based on arene olefin cycloadditions. Tetrahedron Lett., 1986, 27, 1857-1860.
[http://dx.doi.org/10.1016/S0040-4039(00)84394-4]
[126]
Pirrung, M.C. Intramolecular arene-alkyne photocycloadditions. J. Org. Chem., 1987, 52, 1635-1637.
[http://dx.doi.org/10.1021/jo00384a057]
[127]
Hanzawa, Y.; Paquette, L. Photochemical preparation of 5-t-butyl-4-methoxycarbonyltetracyclo[3.3.0.02,4.03,6]oct-7-ene. Synthesis, 1982, 8, 661-662.
[http://dx.doi.org/10.1055/s-1982-29892]
[128]
West, F.G.; Hartke-Karger, C.; Koch, D.J.; Kuehn, C.E.; Arif, A.M. Intramolecular [4 + 3]-cycloadditions of photochemically generated oxyallyl zwitterions: a route to functionalized cyclooctanoid skeletons. J. Org. Chem., 1993, 58, 6795-6803.
[http://dx.doi.org/10.1021/jo00076a047]
[129]
Barltrop, J.A.; Day, A.C.; Samuel, C.J. Heterocyclic photochemistry. 4-Pyrones. A mechanistic study. J. Am. Chem. Soc., 1979, 101, 7521-7528.
[http://dx.doi.org/10.1021/ja00519a011]
[130]
Molander, G.A.; St Jean, D.J., Jr; Haas, J. Toward a general route to the eunicellin diterpenes: the asymmetric total synthesis of deacetoxyalcyonin acetate. J. Am. Chem. Soc., 2004, 126(6), 1642-1643.
[http://dx.doi.org/10.1021/ja0398464] [PMID: 14871089]
[131]
Suau, R.; de Inestrosa Villatoro, E.P. On the photochemical reactivity of phthalonimide. Terrohedron, 1994, 50(17), 4987-4994.
[http://dx.doi.org/10.1016/S0040-4020(01)90410-7]
[132]
Schreiber, S.L.; Satake, K. Application of the furan carbonyl photocycloaddition reaction to the synthesis of the bis(tetrahydrofuran) moiety of asteltoxin. J. Am. Chem. Soc., 1983, 105(22), 6723-6724.
[http://dx.doi.org/10.1021/ja00360a035]
[133]
Schreiber, S.L.; Satake, K. Total synthesis of (+)-asteltoxin. J. Am. Chem. Soc., 1984, 106(15), 4186-4188.
[http://dx.doi.org/10.1021/ja00327a020]
[134]
Schreiber, S.L.; Satake, K. Studies of the furan-carbonyl photocycloaddition reaction: the determination of the absolute stereostructure of asteltoxin. Tetrahedron Lett., 1986, 27(23), 2575-2578.
[http://dx.doi.org/10.1016/S0040-4039(00)84588-8]
[135]
Schreiber, S.L.; Desmaele, D.; Porco, J.A. On the use of unsymmetrically substituted furans in the furan-carbonyl photocycloaddition reaction: synthesis of a kadsurenone-ginkgolide hybrid. Tetrahedron Lett., 1988, 29, 6689-6692.
[http://dx.doi.org/10.1016/S0040-4039(00)82429-6]
[136]
Schreiber, S.L.; Porco, J.A. Studies of the furan-carbonyl photocycloaddition reaction: vinylic substitution reactions. J. Org. Chem., 1989, 54, 4721-4723.
[http://dx.doi.org/10.1021/jo00280a057]
[137]
Alonso, R.; Campos, P.J.; Caballero, A.; Rodriguez, M.A. Photochemistry of acyloximes: synthesis of heterocycles and natural products. Tetrahedron, 2010, 66, 8828-8831.
[http://dx.doi.org/10.1016/j.tet.2010.09.078]
[138]
Schreiber, S.L.; Hoveyda, A.H. Synthetic studies of the furan-carbonyl photocycloaddition reaction. A total synthesis of (±)-avenaciolide. J. Am. Chem. Soc., 1984, 106, 7200-7202.
[http://dx.doi.org/10.1021/ja00335a056]
[139]
Schreiber, S.L. [2 + 2] photocycloadditions in the synthesis of chiral molecules. Science, 1985, 227(4689), 857-863.
[http://dx.doi.org/10.1126/science.4038558] [PMID: 4038558]
[140]
Aungst, R.A., Jr; Funk, R.L. Synthesis of (Z)-2-acyl-2-enals via retrocycloadditions of 5-acyl-4-alkyl-4H-1,3-dioxins: application in the total synthesis of the cytotoxin (+/-)-euplotin A. J. Am. Chem. Soc., 2001, 123(38), 9455-9456.
[http://dx.doi.org/10.1021/ja011470b] [PMID: 11562234]
[141]
Schreiber, S.L.; Hulin, B. Diastereotopic group selectivity at a prostereogenic carbon center: Synthesis of (±)-syn-4,8-dimethyldecanal. Tetrahedron Lett., 1986, 27(38), 4561-4564.
[142]
Griesbeck, A.G.; Mauder, H.; Stadtmller, S. Intersystem crossing in triplet 1,4-biradicals: conformational memory effects on the stereoselectivity of photocycloaddition reactions. Acc. Chem. Res., 1994, 27, 70-75.
[http://dx.doi.org/10.1021/ar00039a002]
[143]
Miyazaki, H.; Ohkawa, N.; Nakamura, N.; Ito, T.; Sada, T.; Oshima, T.; Koike, H. Lactone and cyclic ether analogues of platelet-activating factor. Synthesis and biological activities. Chem. Pharm. Bull. (Tokyo), 1989, 37(9), 2379-2390.
[http://dx.doi.org/10.1248/cpb.37.2379] [PMID: 2605681]
[144]
Machiguchi, T.; Okamoto, J.; Takachi, J.; Hasegawa, T.; Yamabe, S.; Minato, T. Exclusive formation of α-methyleneoxetanes in ketene-alkene cycloadditions. Evidence for intervention of both an α-methyleneoxetane and the subsequent 1,4-zwitterion. J. Am. Chem. Soc., 2003, 125(47), 14446-14448.
[http://dx.doi.org/10.1021/ja030191g] [PMID: 14624592]
[145]
Jaffer, M.; Ebead, A.; Lee-Ruff, E. Photochemical synthesis of nucleoside analogues from cyclobutanones: bicyclic and isonucleosides. Molecules, 2010, 15(6), 3816-3828.
[http://dx.doi.org/10.3390/molecules15063816] [PMID: 20657410]
[146]
Nakatani, K.; Adachi, K.; Tanabe, K.; Saito, I. Tandem cyclizations involving carbene as an intermediate: photochemical reactions of substituted 1,2-diketones conjugated with ene-yne. J. Am. Chem. Soc., 1999, 121, 8221-8228.
[http://dx.doi.org/10.1021/ja990763q]
[147]
Huang, C.; Zheng, M.; Xu, J.; Zhang, Y. Photo-induced cycloaddition reactions of α-diketones and transformations of the photocycloadducts. Molecules, 2013, 18(3), 2942-2966.
[http://dx.doi.org/10.3390/molecules18032942] [PMID: 23459304]
[148]
Kraus, G.A.; Chen, L. A total synthesis of racemic paulownin using a type II photocyclization reaction. J. Am. Chem. Soc., 1990, 112, 3464-3466.
[http://dx.doi.org/10.1021/ja00165a033]
[149]
Ishibashi, F.; Hayashita, M.; Okazaki, M.; Shuto, Y. Improved procedure for the enantiometric synthesis of 1-hydroxy/acetoxy-2,6-diaryl-3,7-dioxabicycl. Biosci. Biotechnol. Biochem., 2001, 65(1), 29-34.
[http://dx.doi.org/10.1271/bbb.65.29] [PMID: 11272842]
[150]
Nehrings, A.; Scharf, H-D.; Runsink, J. Photochemische darstellung eines l‐erythrose‐bausteins und sein einsatz bei der synthese von methyl‐2,3‐O‐isopropyliden‐β‐L‐apio‐L‐furanosid. Angew. Chem., 1985, 97, 882-883. Angew. Chem. Int. Ed. Engl., 1985, 24, 877-878.
[http://dx.doi.org/10.1002/anie.198508771]
[151]
Buschmann, H.; Scharf, H-D.; Hoffmann, N.; Esser, P. The Isoinversion principle- a general model of chemical selectivity. Angew. Chem., 1991, 103, 480-518. Angew. Chem. Int. Ed. Engl., 1991, 30, 477-515.
[http://dx.doi.org/10.1002/anie.199104771]
[152]
Koch, H.; Runsink, J.; Scharf, H-D. Investigation of chiral induction in photochemical oxetane formation. Tetrahedron Lett., 1983, 24, 3217-3220.
[http://dx.doi.org/10.1016/S0040-4039(00)88139-3]
[153]
Crimmins, M.T.; Jung, D.K.; Gray, J.L. A total synthesis of (.+-.)-bilobalide. J. Am. Chem. Soc., 1992, 114, 5445-5447.
[http://dx.doi.org/10.1021/ja00039a077]
[154]
Crimmins, M.T.; Jung, D.K.; Gray, J.L. Synthetic studies on the ginkgolides: total synthesis of (+)-bilobalide. J. Am. Chem. Soc., 1993, 115, 3146-3155.
[http://dx.doi.org/10.1021/ja00061a014]
[155]
Crimmins, M.T.; Pace, J.M.; Nantermet, P.G.; Kim-Meade, A.S.; Thomas, J.B.; Watterson, S.H.; Wagman, A.S. Total synthesis of (±)-ginkgolide B. J. Am. Chem. Soc., 1999, 121, 10249-10250.
[http://dx.doi.org/10.1021/ja993013p]
[156]
Crimmins, M.T.; Pace, J.M.; Nantermet, P.G.; Kim-Meade, A.S.; Tomas, J.B.; Watterson, S.H.; Wagman, A.S. The total synthesis of (±)-ginkgolide B. J. Am. Chem. Soc., 2000, 122, 8453-8463.
[http://dx.doi.org/10.1021/ja001747s]
[157]
Mangion, I.K.; MacMillan, D.W.C. Total synthesis of brasoside and littoralisone. J. Am. Chem. Soc., 2005, 127(11), 3696-3697.
[http://dx.doi.org/10.1021/ja050064f] [PMID: 15771494]
[158]
Li, Y-S.; Matsunaga, K.; Ishibashi, M.; Ohizumi, Y. Littoralisone, a novel neuritogenic iridolactone having an unprecedented heptacyclic skeleton including four- and nine-membered rings consisting of glucose from Verbena littoralis. J. Org. Chem., 2001, 66(6), 2165-2167.
[http://dx.doi.org/10.1021/jo001460d] [PMID: 11300918]
[159]
Doroh, B.; Sulikowski, G.A. Progress toward the total synthesis of Bielschowskysin: a stereoselective [2+2] photocycloaddition. Org. Lett., 2006, 8(5), 903-906.
[http://dx.doi.org/10.1021/ol0530225] [PMID: 16494470]
[160]
Basarić, N.; Došlić, N.; Ivković, J.; Wang, Y-H.; Veljković, J.; Mlinarić-Majerski, K.; Wan, P. Excited state intramolecular proton transfer (ESIPT) from phenol to carbon in selected phenylnaphthols and naphthylphenols. J. Org. Chem., 2013, 78(5), 1811-1823.
[http://dx.doi.org/10.1021/jo301456y] [PMID: 22954380]
[161]
Cindro, N.; Halasz, I.; Mlinarić-Majerski, K.; Basarić, N. Photoinduced H-abstraction in homo- and protoadamantylphthalimide derivatives in solution and in organized and constrained media. Eur. J. Org. Chem., 2013, 929-938.
[http://dx.doi.org/10.1002/ejoc.201201332]
[162]
Veljković, J.; Antol, I.; Basarić, N.; Smrečki, V.; Molčanov, K.; Müller, N.; Mlinarić-Majerski, K. Atropisomerism in 1-(2-adamantyl)naphthalene derivatives. J. Mol. Struct., 2013, 1046, 101-109.
[http://dx.doi.org/10.1016/j.molstruc.2013.04.027]
[163]
West, F.G.; Koch, D.J. Novel bicyclic oxazolines via nitrile capture of photochemically generated oxyallyl zwitterions. J. Chem. Soc. Chem. Commun., 1993, 1681-1682.
[http://dx.doi.org/10.1039/c39930001681]
[164]
Portillo, M.; Maxwell, M.A.; Frederich, J.H. Synthesis of nitrogen heterocycles via photochemical ring opening of pyridazine N-oxides. Org. Lett., 2016, 18(19), 5142-5145.
[http://dx.doi.org/10.1021/acs.orglett.6b02562] [PMID: 27676586]
[165]
Feringa, B.L.; de Lange, B.; Jansen, J.F.G.A.; de Jong, C.; Lubben, M.; Faber, W.; Schudde, E.P. New approaches in asymmetric synthesis using alkoxybutenolides. Pure Appl. Chem., 1992, 64, 1865-1871.
[http://dx.doi.org/10.1351/pac199264121865]
[166]
Hashem, A.; Kleinpeter, E. The chemistry of 2(5H)-furanones. Adv. Heterocycl. Chem., 2001, 81, 107.
[http://dx.doi.org/10.1016/S0065-2725(01)81011-4]
[167]
Aydogan, F.; Demir, A.S. Synthesis and photooxygenation of homochiral 2-methylpyrrole derivatives of chiral amino alcohols: simple, selective access to chiral bicyclic lactams. Tetrahedron Asymmetry, 2004, 15, 259-265.
[http://dx.doi.org/10.1016/j.tetasy.2003.11.011]
[168]
Poon, T.; Sivaguru, J.; Franz, R.; Jockusch, S.; Martinez, C.; Washington, I.; Adam, W.; Inoue, Y.; Turro, N.J. Temperature and solvent control of the stereoselectivity in the reactions of singlet oxygen with oxazolidinone-substituted enecarbamates. J. Am. Chem. Soc., 2004, 126(34), 10498-10499.
[http://dx.doi.org/10.1021/ja048438c] [PMID: 15327281]
[169]
Sivaguru, J.; Poon, T.; Franz, R.; Jockusch, S.; Adam, W.; Turro, N.J. Stereocontrol within confined spaces: enantioselective photooxidation of enecarbamates inside zeolite supercages. J. Am. Chem. Soc., 2004, 126(35), 10816-10817.
[http://dx.doi.org/10.1021/ja046115a] [PMID: 15339146]
[170]
Sivaguru, J.; Saito, H.; Poon, T.; Omonuwa, T.; Franz, R.; Jockusch, S.; Hooper, C.; Inoue, Y.; Adam, W.; Turro, N.J. Stereoselective photooxidation of enecarbamates: reactivity of ozone vs singlet oxygen. Org. Lett., 2005, 7(11), 2089-2092.
[http://dx.doi.org/10.1021/ol0502230] [PMID: 15901141]
[171]
Pastor, A.; Adam, W.; Wirth, T.; Toth, G. Diastereoselective reactions of the tiglic acid functionality mediated by oxazolidine chiral auxiliaries: a mechanistic comparison of DMD and m‐CPBA epoxidations versus singlet oxygen and PTAD ene reactions. Eur. J. Org. Chem., 2005, 14, 3075-3084.
[http://dx.doi.org/10.1002/ejoc.200500077]
[172]
Marinković, S.; Brulé, C.; Hoffmann, N.; Prost, E.; Nuzillard, J.M.; Bulach, V. Origin of chiral induction in radical reactions with the diastereoisomers (5R)- and (5S)-5-l-menthyloxyfuran-2[5H]-one. J. Org. Chem., 2004, 69(5), 1646-1651.
[http://dx.doi.org/10.1021/jo030292x] [PMID: 14987024]
[173]
Hatanaka, Y.; Sato, Y.; Nakai, H.; Wada, M.; Mizoguchi, T.; Kanaoka, Y. Photochemistry of the phthalimide system. Photoinduced reactions. Regioselective remote photocyclization - examples of a photochemical macrocyclic synthesis with sulfide-containing phthalimides. Liebigs Ann. Chem., 1992, 1992, 1113-1123.
[http://dx.doi.org/10.1002/jlac.1992199201184]
[174]
Griesbeck, A.G.; Mauder, H.; Muller, I.; Peters, K.; Peters, E-M.; von Schnering, H.G. Photochemistry of N-phthaloyl derivatives of methionine. Tetrahedron Lett., 1993, 34, 453-456.
[http://dx.doi.org/10.1016/0040-4039(93)85100-B]
[175]
Griesbeck, A.G.; Hoffmann, N.; Warzecha, K-D. Photoinduced-electron-transfer chemistry: from studies on PET processes to applications in natural product synthesis. Acc. Chem. Res., 2007, 40(2), 128-140.
[http://dx.doi.org/10.1021/ar068148w] [PMID: 17256976]
[176]
Yella, R.; Patel, B.K. One-pot synthesis of five and six membered N, O, S-heterocycles using a ditribromide reagent. J. Comb. Chem., 2010, 12(5), 754-763.
[http://dx.doi.org/10.1021/cc100124q] [PMID: 20718465]
[177]
Chiusoli, G.P.; Pallini, L.; Terenhi, G. Cobalt catalyzed cyclo-codimerization of dipropargylamines and nitriles to dihydropyrrolopyridines. Transition Met. Chem., 1983, 8(4), 250-252.
[http://dx.doi.org/10.1007/BF00620704]
[178]
Chiusoli, G.P.; Pallini, L.; Terenghi, G. Different chemoselectivities in cobalt(0)- and cobalt(I)-catalyzed cyclocotrimerization of C≡C and C≡N triple bonds. Transition Met. Chem., 1984, 9(9), 360-362.
[http://dx.doi.org/10.1007/BF00618559]
[179]
Schore, N.E. Transition-metal-mediated cycloaddition reactions of alkynes in organic synthesis. Chem. Rev., 1988, 88, 1081-1119.
[http://dx.doi.org/10.1021/cr00089a006]
[180]
Du, W.; Curran, D.P. Synthesis of carbocyclic and heterocyclic fused quinolines by cascade radical annulations of unsaturated N-aryl thiocarbamates, thioamides, and thioureas. Org. Lett., 2003, 5(10), 1765-1768.
[http://dx.doi.org/10.1021/ol0344319] [PMID: 12735772]
[181]
Padwa, A.; Bur, S.K. The Domino way to heterocycles. Tetrahedron, 2007, 63(25), 5341-5378.
[http://dx.doi.org/10.1016/j.tet.2007.03.158] [PMID: 17940591]
[182]
Griesbeck, A.G.; Oelgemoller, M.; Lex, J. Photochemistry of MTM- and MTE-esters of ω-phthalimido carboxylic acids: macrocyclization versus deprotection(1). J. Org. Chem., 2000, 65(26), 9028-9032.
[http://dx.doi.org/10.1021/jo001089u] [PMID: 11149847]
[183]
Thiering, S.; Sund, C.; Thiem, J.; Giesler, A.; Kopf, J. Syntheses of imido-substituted glycosans and their photocyclisation towards highly functionalised heterotricycles. Carbohydr. Res., 2001, 336(4), 271-282.
[http://dx.doi.org/10.1016/S0008-6215(01)00250-6] [PMID: 11728395]
[184]
Dittami, J.P.; Nie, X.Y.; Nie, H.; Mamanathan, H.; Breining, S.; Bordner, J.; Decosta, D.L.; Kiplinger, J.; Reiche, P.; Ware, R. Intramolecular addition reactions of carbonyl ylides formed during photocyclization of aryl vinyl ethers. J. Org. Chem., 1991, 56, 5572-5578.
[http://dx.doi.org/10.1021/jo00019a020]
[185]
Dittami, J.P.; Nie, X.Y.; Nie, H.; Ramanathan, H.; Buntel, C.; Rigatti, S.; Bordner, J.; Decosta, D.; Williard, P. Tandem photocyclization-intramolecular addition reactions of aryl vinyl sulfides. Observation of a novel [2 + 2] cycloaddition-allylic sulfide rearrangement. J. Org. Chem., 1992, 57, 1151-1158.
[http://dx.doi.org/10.1021/jo00030a022]
[186]
Marciniec, B.; Witkowska, D. Photodecomposition of vitamin K4 in solid state. Acta Pol. Pharm., 1988, 45, 528-534.
[187]
Yamano, Y.; Ikenoya, S.; Ohmae, M.; Kawabe, K. High-performance liquid chromatography of isoprenoidquinones. III. Photo-isomerization of phylloquinone and menaquinone-4. Yakugaku Zasshi, 1979, 99, 1102-1110.
[http://dx.doi.org/10.1248/yakushi1947.99.11_1102]
[188]
Snyder, C.; Rapoport, H. Photooxygenation of phylloquinone and menaquinones. J. Am. Chem. Soc., 1969, 91, 731-731.
[http://dx.doi.org/10.1021/ja01031a039]
[189]
Ohmae, M.; Katsui, G. Photolysis of vitamin K1. IV. Degradation of the oil and the alcoholic solution. Vitamins, 1969, 39, 190-194.
[190]
Bremus-Köbberling, E.; Gillner, A.; Avemaria, F.; Réthoré, C.; Bräse, S. Photochemistry with laser radiation in condensed phase using miniaturized photoreactors. Beilstein J. Org. Chem., 2012, 8, 1213-1218.
[http://dx.doi.org/10.3762/bjoc.8.135] [PMID: 23019450]
[191]
Yamano, Y.; Ikenoya, S.; Anze, M.; Ohmae, M.; Kawabe, K. [High-speed liquid chromatography of isoprenoidquinones. II. Determination and photo-stability of phylloquinone, menaquinone-4 in injection (author’s transl) Yakugaku Zasshi, 1978, 98(6), 774-781.
[http://dx.doi.org/10.1248/yakushi1947.98.6_774] [PMID: 690814]
[192]
Teraoka, R.; Matsuda, Y. Stabilization-oriented preformulation study of photolabile menatetrenone (vitamin K2). Int. J. Pharm., 1993, 93(1-3), 85-90.
[http://dx.doi.org/10.1016/0378-5173(93)90166-D]
[193]
Wilson, R.M.; Walsh, T.F.; Gee, S.K. Laser photochemistry: the wavelength dependent oxidative photodegradation of vitamin K analogs. Tetrahedron Lett., 1980, 21, 3459-3463.
[http://dx.doi.org/10.1016/S0040-4039(00)78714-4]
[194]
Wender, P.A.; McDonald, F.E. Studies on tumor promoters. A second-generation synthesis of phorbol. J. Am. Chem. Soc., 1990, 112, 4956-4958.
[http://dx.doi.org/10.1021/ja00168a050]
[195]
West, F.G.; Chase, C.E.; Arif, A.M. Intramolecular [4 + 4]-photocycloadditions of 2-pyrones: an efficient approach to cyclooctanoid construction. J. Org. Chem., 1993, 58, 3794-3795.
[http://dx.doi.org/10.1021/jo00067a006]
[196]
Hernandez-Perez, A.C.; Caron, A.; Collins, S.K. Photochemical synthesis of complex carbazoles: evaluation of electronic effects in both UV‐ and visible‐light methods in continuous flow. Chemistry, 2015, 21(46), 16673-16678.
[http://dx.doi.org/10.1002/chem.201502661] [PMID: 26395034]
[197]
de Mayo, P.; McIntosh, C.L.; Yip, R.W. in Organic Photochemical Synthesis, Srinivasan, R. 1971, 1, 99.
[198]
Rieke, R.; Copenhafer, R.A. Solid state organic photochemistry II. Photolysis of 4,6-diphenyl-α-pyrone. Tetrahedron Lett., 1971, 12, 879-882.
[http://dx.doi.org/10.1016/S0040-4039(01)96579-7]
[199]
Chen, J.R.; Hu, X.Q.; Lu, L.Q.; Xiao, W.J. Exploration of visible-light photocatalysis in heterocycle synthesis and functionalization: reaction design and beyond. Acc. Chem. Res., 2016, 49(9), 1911-1923.
[http://dx.doi.org/10.1021/acs.accounts.6b00254] [PMID: 27551740]
[200]
Sieburth, S.M.; Lin, C-H. Stereocontrol of the 2-pyridone 4+4 photocycloaddition: a thermal-photochemical cycle to produce exclusively trans cycloadducts. J. Org. Chem., 1994, 59, 3597-3599.
[http://dx.doi.org/10.1021/jo00092a018]
[201]
Pong, R.G.S.; Shirk, J.S. Photochemistry of alpha-pyrone in solid argon. J. Am. Chem. Soc., 1973, 95, 248-249.
[http://dx.doi.org/10.1021/ja00782a049]
[202]
Huang, B-S.; Pong, R.G.S.; Laureni, J.; Krantz, A. A degenerate process in the photoirradiation of matrix-isolated alpha-pyrone. J. Am. Chem. Soc., 1977, 99(12), 4154-4156.
[http://dx.doi.org/10.1021/ja00454a044]
[203]
Chase, C.E.; Jarstfer, M.B.; Arif, A.M.; West, F.G. Unexpected and efficient photochemical rearrangement of 6-hydroxyethylpyran-2-ones to 4-aikylidene-5,6-dihydropyrans. Tetrahedron Lett., 1995, 36(47), 8531-8534.
[http://dx.doi.org/10.1016/0040-4039(95)01828-6]
[204]
Chapman, O.L.; McIntosh, C.L.; Pacansky, J. Photochemical transformations. XLVII. Photochemistry of α-pyrone in argon at 8 oK. J. Am. Chem. Soc., 1973, 95(1), 244-246.
[http://dx.doi.org/10.1021/ja00782a047]
[205]
Arnold, B.R.; Brown, C.E.; Lusztyk, J. Solution photochemistry of 2H-pyran-2-one: laser flash photolysis with infrared detection of transients. J. Am. Chem. Soc., 1993, 115, 1576-1577.
[http://dx.doi.org/10.1021/ja00057a053]
[206]
Corey, E.J.; Streith, J. Internal photoaddtion reactions of 2-pyrone and n-methyl-2-pyridone: a new synthetic approach to cyclobutadiene. J. Am. Chem. Soc., 1964, 86(5), 950-951.
[http://dx.doi.org/10.1021/ja01059a059]
[207]
Pirkle, W.H.; McKendry, L.H. Photochemical reactions of 2-pyrone and thermal reactions of the 2-pyrone photoproducts. J. Am. Chem. Soc., 1969, 91(5), 1179-1186.
[http://dx.doi.org/10.1021/ja01033a025]
[208]
Guthrie, J.P.; McIntosh, C.L.; de Mayo, P. On the mechanism of ring opening in 2-pyrone irradiations. Can. J. Chem., 1970, 48(2), 237-242.
[http://dx.doi.org/10.1139/v70-038]
[209]
McIntosh, C.L.; Chapman, O.L. Photochemical transformations. XLVI. Photochemistry of 4,6-dimethyl-2-pyrone in methanol. J. Am. Chem. Soc., 1973, 95(1), 247-248.
[http://dx.doi.org/10.1021/ja00782a048]
[210]
Feldman, K.S.; Come, J.H.; Freyer, A.J.; Kosminder, B.J.; Smith, C.M. Synthesis of eight-membered carbocycles via intramolecular [6.pi. + 2.pi.] photocycloaddition of alkenyl tropones. J. Am. Chem. Soc., 1986, 108(6), 1327-1328.
[http://dx.doi.org/10.1021/ja00266a050]
[211]
Parisien-Collette, S.; Cruché, C.; Abel-Snape, X.; Collins, S.K. Photochemical intramolecular amination for the synthesis of heterocycles. Green Chem., 2017, 19, 4798-4803.
[http://dx.doi.org/10.1039/C7GC02261A]
[212]
Nishio, T.; Sakurai, N.; Iba, K.; Hamano, Y-I.; Sakamoto, M. Intramolecular photocyclization of 2‐acylphenyl methacrylates: a convenient access to 4,5‐dihydro‐1,4‐epoxy‐2-benzoxepin-3(1H)-ones (= benzo[c]-6,8-dioxabicyclo[3.2.1]octan-7-ones. Helv. Chim. Acta, 2005, 88, 2603-2609.
[http://dx.doi.org/10.1002/hlca.200590200]
[213]
Brinson, R.G.; Hubbard, S.C.; Zuidema, D.R.; Jones, P.B. Two new anthraquinone photoreactions. J. Photochem. Photobiol. Chem., 2005, 175, 118-128.
[http://dx.doi.org/10.1016/j.jphotochem.2005.03.027]
[214]
Birbaum, F.; Neels, A.; Bochet, C.G. Photochemistry of allenyl salicylaldehydes. Org. Lett., 2008, 10(15), 3175-3178.
[http://dx.doi.org/10.1021/ol800806a] [PMID: 18597474]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 6
ISSUE: 3
Year: 2019
Page: [155 - 183]
Pages: 29
DOI: 10.2174/2213346106666190904145200

Article Metrics

PDF: 12
HTML: 1

Special-new-year-discount