New Progress of Adipose-derived Stem Cells in the Therapy of Hypertrophic Scars

Author(s): Xiang He, Julei Zhang, Liang Luo, Jihong Shi*, Dahai Hu*.

Journal Name: Current Stem Cell Research & Therapy

Volume 15 , Issue 1 , 2020

Become EABM
Become Reviewer

Abstract:

Burns are a global public health issue of great concern. The formation of scars after burns and physical dysfunction of patients remain major challenges in the treatment of scars. Regenerative medicine based on cell therapy has become a hot topic in this century. Adipose-derived stem cells (ADSCs) play an important role in cellular therapy and have become a promising source of regenerative medicine and wound repair transplantation. However, the anti-scarring mechanism of ADSCs is still unclear yet. With the widespread application of ADSCs in medical, we firmly believe that it will bring great benefits to patients with hypertrophic scars.

Keywords: Stem cells, adipose-derived stem cells, ADSCs, scars, hypertrophic scars, treatment.

[1]
Peck MD. Epidemiology of burns throughout the World. Part II: intentional burns in adults. Burns 2012; 38(5): 630-7.
[http://dx.doi.org/10.1016/j.burns.2011.12.028] [PMID: 22325849]
[2]
Chiang RS, Borovikova AA, King K, et al. Current concepts related to hypertrophic scarring in burn injuries. Wound Repair Regen 2016; 24(3): 466-77.
[http://dx.doi.org/10.1111/wrr.12432] [PMID: 27027596]
[3]
Lawrence JW, Mason ST, Schomer K, Klein MB. Epidemiology and impact of scarring after burn injury: A systematic review of the literature. J Burn Care Res 2012; 33(1): 136-46.
[http://dx.doi.org/10.1097/BCR.0b013e3182374452] [PMID: 22138807]
[4]
Steinstraesser L, Flak E, Witte B, et al. Pressure garment therapy alone and in combination with silicone for the prevention of hypertrophic scarring: randomized controlled trial with intraindividual comparison. Plast Reconstr Surg 2011; 128(4): 306e-13e.
[http://dx.doi.org/10.1097/PRS.0b013e3182268c69] [PMID: 21921743]
[5]
Jackson WM, Nesti LJ, Tuan RS. Mesenchymal stem cell therapy for attenuation of scar formation during wound healing. Stem Cell Res Ther 2012; 3(3): 20.
[http://dx.doi.org/10.1186/scrt111] [PMID: 22668751]
[6]
Negenborn VL, Groen JW, Smit JM, Niessen FB, Mullender MG. The use of autologous fat grafting for treatment of scar tissue and scar-related conditions: A systematic review. Plast Reconstr Surg 2016; 137(1): 31e-43e.
[http://dx.doi.org/10.1097/PRS.0000000000001850] [PMID: 26710059]
[7]
Kim YJ, Jeong JH. Clinical application of adipose stem cells in plastic surgery. J Korean Med Sci 2014; 29(4): 462-7.
[http://dx.doi.org/10.3346/jkms.2014.29.4.462] [PMID: 24753692]
[8]
Lee BJ, Wang SG, Lee JC, et al. The prevention of vocal fold scarring using autologous adipose tissue-derived stromal cells. Cells Tissues Organs (Print) 2006; 184(3-4): 198-204.
[http://dx.doi.org/10.1159/000099627] [PMID: 17409746]
[9]
Castiglione F, Hedlund P, Van der Aa F, et al. Intratunical injection of human adipose tissue-derived stem cells prevents fibrosis and is associated with improved erectile function in a rat model of Peyronie’s disease. Eur Urol 2013; 63(3): 551-60.
[http://dx.doi.org/10.1016/j.eururo.2012.09.034] [PMID: 23040209]
[10]
Yu LH, Kim MH, Park TH, et al. Improvement of cardiac function and remodeling by transplanting adipose tissue-derived stromal cells into a mouse model of acute myocardial infarction. Int J Cardiol 2010; 139(2): 166-72.
[http://dx.doi.org/10.1016/j.ijcard.2008.10.024] [PMID: 19046785]
[11]
Deng J, Shi Y, Gao Z, et al. Inhibition of pathological phenotype of hypertrophic scar fibroblasts via coculture with adipose-derived stem cells. Tissue Eng Part A 2018; 24(5-6): 382-93.
[http://dx.doi.org/10.1089/ten.tea.2016.0550] [PMID: 28562226]
[12]
Arezoumand KS, Alizadeh E, Esmaeillou M, et al. The emu oil emulsified in egg lecithin and butylated hydroxytoluene enhanced the proliferation, stemness gene expression, and in vitro wound healing of adipose-derived stem cells. In Vitro Cell Dev Biol Anim 2018; 54(3): 205-16.
[http://dx.doi.org/10.1007/s11626-018-0228-8] [PMID: 29380193]
[13]
M S, E P, JA P, S G, B vdL, MC H. - Adipose tissue-derived stromal cells inhibit TGF-beta1-induced differentiation of. - Plast Reconstr Surg 2014 Oct; 134(4): 699-712. doi: 101097/PRS0000000000000504. (- 1529-4242 (Electronic)): - 699-712.
[14]
Zuk PA, Zhu M, Mizuno H, et al. Multilineage cells from human adipose tissue: Implications for cell-based therapies. Tissue Eng 2001; 7(2): 211-28.
[http://dx.doi.org/10.1089/107632701300062859] [PMID: 11304456]
[15]
Crisan M, Yap S, Casteilla L, et al. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 2008; 3(3): 301-13.
[http://dx.doi.org/10.1016/j.stem.2008.07.003] [PMID: 18786417]
[16]
Lin G, Garcia M, Ning H, et al. Defining stem and progenitor cells within adipose tissue. Stem Cells Dev 2008; 17(6): 1053-63.
[http://dx.doi.org/10.1089/scd.2008.0117] [PMID: 18597617]
[17]
Tang W, Zeve D, Suh JM, et al. White fat progenitor cells reside in the adipose vasculature. Science 2008; 322(5901): 583-6.
[http://dx.doi.org/10.1126/science.1156232] [PMID: 18801968]
[18]
Traktuev DO, Merfeld-Clauss S, Li J, et al. A population of multipotent CD34-positive adipose stromal cells share pericyte and mesenchymal surface markers, reside in a periendothelial location, and stabilize endothelial networks. Circ Res 2008; 102(1): 77-85.
[http://dx.doi.org/10.1161/CIRCRESAHA.107.159475] [PMID: 17967785]
[19]
Flynn L, Woodhouse KA. Adipose tissue engineering with cells in engineered matrices. Organogenesis 2008; 4(4): 228-35.
[http://dx.doi.org/10.4161/org.4.4.7082] [PMID: 19337402]
[20]
S Z, C B, D Z, Y G, Y F, L L. Identification and characterization of pig adipose-derived progenitor cells. D - 8607793 (- 1928-9022 (Electronic) 309-17.
[21]
Tabit CJ, Slack GC, Fan K, Wan DC, Bradley JP. Fat grafting versus adipose-derived stem cell therapy: Distinguishing indications, techniques, and outcomes. Aesthetic Plast Surg 2012; 36(3): 704-13.
[http://dx.doi.org/10.1007/s00266-011-9835-4] [PMID: 22069062]
[22]
Shen JF, Sugawara A, Yamashita J, Ogura H, Sato S. Dedifferentiated fat cells: An alternative source of adult multipotent cells from the adipose tissues. Int J Oral Sci 2011; 3(3): 117-24.
[http://dx.doi.org/10.4248/IJOS11044] [PMID: 21789960]
[23]
Gu LH, Zhang TT, Li Y, Yan HJ, Qi H, Li FR. Immunogenicity of allogeneic mesenchymal stem cells transplanted via different routes in diabetic rats. Cell Mol Immunol 2015; 12(4): 444-55.
[http://dx.doi.org/10.1038/cmi.2014.70] [PMID: 25242276]
[24]
Kim I, Bang SI, Lee SK, Park SY, Kim M, Ha H. Clinical implication of allogenic implantation of adipogenic differentiated adipose-derived stem cells. Stem Cells Transl Med 2014; 3(11): 1312-21.
[http://dx.doi.org/10.5966/sctm.2014-0109] [PMID: 25273542]
[25]
Lohan P, Coleman CM, Murphy JM, Griffin MD, Ritter T, Ryan AE. Changes in immunological profile of allogeneic mesenchymal stem cells after differentiation: should we be concerned? Stem Cell Res Ther 2014; 5(4): 99.
[http://dx.doi.org/10.1186/scrt488] [PMID: 25158057]
[26]
Strem BM, Hicok KC, Zhu M, et al. Multipotential differentiation of adipose tissue-derived stem cells. Keio J Med 2005; 54(3): 132-41.
[http://dx.doi.org/10.2302/kjm.54.132] [PMID: 16237275]
[27]
Tapp H, Hanley EN Jr, Patt JC, Gruber HE. Adipose-derived stem cells: characterization and current application in orthopaedic tissue repair. Exp Biol Med (Maywood) 2009; 234(1): 1-9.
[http://dx.doi.org/10.3181/0805-MR-170] [PMID: 19109553]
[28]
García-Castro J, Trigueros C, Madrenas J, Pérez-Simón JA, Rodriguez R, Menendez P. Mesenchymal stem cells and their use as cell replacement therapy and disease modelling tool. J Cell Mol Med 2008; 12(6B): 2552-65.
[http://dx.doi.org/10.1111/j.1582-4934.2008.00516.x] [PMID: 19210755]
[29]
De Ugarte DA, Alfonso Z, Zuk PA, et al. Differential expression of stem cell mobilization-associated molecules on multi-lineage cells from adipose tissue and bone marrow. Immunol Lett 2003; 89(2-3): 267-70.
[http://dx.doi.org/10.1016/S0165-2478(03)00108-1] [PMID: 14556988]
[30]
McIntosh K, Zvonic S, Garrett S, et al. The immunogenicity of human adipose-derived cells: Temporal changes in vitro. Stem Cells 2006; 24(5): 1246-53.
[http://dx.doi.org/10.1634/stemcells.2005-0235] [PMID: 16410391]
[31]
Mitchell JB, McIntosh K, Zvonic S, et al. Immunophenotype of human adipose-derived cells: Temporal changes in stromal-associated and stem cell-associated markers. Stem Cells 2006; 24(2): 376-85.
[http://dx.doi.org/10.1634/stemcells.2005-0234] [PMID: 16322640]
[32]
Lindroos B, Suuronen R, Miettinen S. The potential of adipose stem cells in regenerative medicine. Stem Cell Rev 2011; 7(2): 269-91.
[http://dx.doi.org/10.1007/s12015-010-9193-7] [PMID: 20853072]
[33]
Eto H, Suga H, Matsumoto D, et al. Characterization of structure and cellular components of aspirated and excised adipose tissue. Plast Reconstr Surg 2009; 124(4): 1087-97.
[http://dx.doi.org/10.1097/PRS.0b013e3181b5a3f1] [PMID: 19935292]
[34]
Traktuev DO, Prater DN, Merfeld-Clauss S, et al. Robust functional vascular network formation in vivo by cooperation of adipose progenitor and endothelial cells. Circ Res 2009; 104(12): 1410-20.
[http://dx.doi.org/10.1161/CIRCRESAHA.108.190926] [PMID: 19443841]
[35]
Bunnell BA, Flaat M, Gagliardi C, Patel B, Ripoll C. Adipose-derived stem cells: Isolation, expansion and differentiation. Methods 2008; 45(2): 115-20.
[http://dx.doi.org/10.1016/j.ymeth.2008.03.006] [PMID: 18593609]
[36]
Bai X, Yan Y, Song YH, et al. Both cultured and freshly isolated adipose tissue-derived stem cells enhance cardiac function after acute myocardial infarction. Eur Heart J 2010; 31(4): 489-501.
[http://dx.doi.org/10.1093/eurheartj/ehp568] [PMID: 20037143]
[37]
Jack GS, Zhang R, Lee M, Xu Y, Wu BM, Rodríguez LV. Urinary bladder smooth muscle engineered from adipose stem cells and a three dimensional synthetic composite. Biomaterials 2009; 30(19): 3259-70.
[http://dx.doi.org/10.1016/j.biomaterials.2009.02.035] [PMID: 19345408]
[38]
Harris LJ, Abdollahi H, Zhang P, McIlhenny S, Tulenko TN, DiMuzio PJ. Differentiation of adult stem cells into smooth muscle for vascular tissue engineering. J Surg Res 2011; 168(2): 306-14.
[http://dx.doi.org/10.1016/j.jss.2009.08.001] [PMID: 19959190]
[39]
Scherberich A, Müller AM, Schäfer DJ, Banfi A, Martin I. Adipose tissue-derived progenitors for engineering osteogenic and vasculogenic grafts. J Cell Physiol 2010; 225(2): 348-53.
[http://dx.doi.org/10.1002/jcp.22313] [PMID: 20626000]
[40]
Tiwari VK. Burn wound: How it differs from other wounds? Indian J Plast Surg 2012; 45(2): 364-73.
[http://dx.doi.org/10.4103/0970-0358.101319] [PMID: 23162236]
[41]
Mace JE, Park MS, Mora AG, et al. Differential expression of the immunoinflammatory response in trauma patients: Burn vs. non-burn. Burns 2012; 38(4): 599-606.
[http://dx.doi.org/10.1016/j.burns.2011.10.013] [PMID: 22103986]
[42]
Thannickal VJ, Lee DY, White ES, et al. Myofibroblast differentiation by transforming growth factor-beta1 is dependent on cell adhesion and integrin signaling via focal adhesion kinase. J Biol Chem 2003; 278(14): 12384-9.
[http://dx.doi.org/10.1074/jbc.M208544200] [PMID: 12531888]
[43]
Jun JI, Lau LF. The matricellular protein CCN1 induces fibroblast senescence and restricts fibrosis in cutaneous wound healing. Nat Cell Biol 2010; 12(7): 676-85.
[http://dx.doi.org/10.1038/ncb2070] [PMID: 20526329]
[44]
Borovikova AA, Ziegler ME, Banyard DA, et al. Adipose-derived tissue in the treatment of dermal fibrosis: Antifibrotic effects of adipose-derived stem cells. Ann Plast Surg 2018; 80(3): 297-307.
[http://dx.doi.org/10.1097/SAP.0000000000001278] [PMID: 29309331]
[45]
Imhof BA, Jemelin S, Ballet R, et al. CCN1/CYR61-mediated meticulous patrolling by Ly6Clow monocytes fuels vascular inflammation. Proc Natl Acad Sci USA 2016; 113(33): E4847-56.
[http://dx.doi.org/10.1073/pnas.1607710113] [PMID: 27482114]
[46]
Wynn TA, Vannella KM. Macrophages in tissue repair, regeneration, and fibrosis. Immunity 2016; 44(3): 450-62.
[http://dx.doi.org/10.1016/j.immuni.2016.02.015] [PMID: 26982353]
[47]
Mahdavian Delavary B, van der Veer WM, van Egmond M, Niessen FB, Beelen RH. Macrophages in skin injury and repair. Immunobiology 2011; 216(7): 753-62.
[http://dx.doi.org/10.1016/j.imbio.2011.01.001] [PMID: 21281986]
[48]
Sica A, Erreni M, Allavena P, Porta C. Macrophage polarization in pathology. Cell Mol Life Sci 2015; 72(21): 4111-26.
[http://dx.doi.org/10.1007/s00018-015-1995-y] [PMID: 26210152]
[49]
Amini-Nik S, Cambridge E, Yu W, et al. β-Catenin-regulated myeloid cell adhesion and migration determine wound healing. J Clin Invest 2014; 124(6): 2599-610.
[http://dx.doi.org/10.1172/JCI62059] [PMID: 24837430]
[50]
van den Broek LJ, van der Veer WM, de Jong EH, Gibbs S, Niessen FB. Suppressed inflammatory gene expression during human hypertrophic scar compared to normotrophic scar formation. Exp Dermatol 2015; 24(8): 623-9.
[http://dx.doi.org/10.1111/exd.12739] [PMID: 25939875]
[51]
Butzelaar L, Schooneman DP, Soykan EA, et al. Inhibited early immunologic response is associated with hypertrophic scarring. Exp Dermatol 2016; 25(10): 797-804.
[http://dx.doi.org/10.1111/exd.13100] [PMID: 27249786]
[52]
Zhao H, Shang Q, Pan Z, et al. Exosomes from adipose-derived stem cells attenuate adipose inflammation and obesity through polarizing M2 macrophages and beiging in white adipose tissue. Diabetes 2018; 67(2): 235-47.
[http://dx.doi.org/10.2337/db17-0356] [PMID: 29133512]
[53]
Zhu Z, Ding J, Ma Z, Iwashina T, Tredget EE. Systemic depletion of macrophages in the subacute phase of wound healing reduces hypertrophic scar formation. Wound Repair Regen 2016; 24(4): 644-56.
[http://dx.doi.org/10.1111/wrr.12442] [PMID: 27169512]
[54]
Zhang J, Li Y, Bai X, Li Y, Shi J, Hu D. Recent advances in hypertrophic scar. Histol Histopathol 2018; 33(1): 27-39.
[PMID: 28560711]
[55]
Kotani T, Masutani R, Suzuka T, Oda K, Makino S, Ii M. Anti-inflammatory and anti-fibrotic effects of intravenous adipose-derived stem cell transplantation in a mouse model of bleomycin-induced interstitial pneumonia. Sci Rep 2017; 7(1): 14608.
[http://dx.doi.org/10.1038/s41598-017-15022-3] [PMID: 29097816]
[56]
van Beurden HE, Von den Hoff JW, Torensma R, Maltha JC, Kuijpers-Jagtman AM. Myofibroblasts in palatal wound healing: Prospects for the reduction of wound contraction after cleft palate repair. J Dent Res 2005; 84(10): 871-80.
[http://dx.doi.org/10.1177/154405910508401002] [PMID: 16183784]
[57]
Chaponnier C, Gabbiani G. Pathological situations characterized by altered actin isoform expression. J Pathol 2004; 204(4): 386-95.
[http://dx.doi.org/10.1002/path.1635] [PMID: 15495226]
[58]
Spiekman M, Przybyt E, Plantinga JA, Gibbs S, van der Lei B, Harmsen MC. Adipose tissue-derived stromal cells inhibit TGF-β1-induced differentiation of human dermal fibroblasts and keloid scar-derived fibroblasts in a paracrine fashion. Plast Reconstr Surg 2014; 134(4): 699-712.
[http://dx.doi.org/10.1097/PRS.0000000000000504] [PMID: 25357030]
[59]
Castro NE, Kato M, Park JT, Natarajan R. Transforming growth factor β1 (TGF-β1) enhances expression of profibrotic genes through a novel signaling cascade and microRNAs in renal mesangial cells. J Biol Chem 2014; 289(42): 29001-13.
[http://dx.doi.org/10.1074/jbc.M114.600783] [PMID: 25204661]
[60]
Zhang Q, Liu LN, Yong Q, Deng JC, Cao WG. Intralesional injection of adipose-derived stem cells reduces hypertrophic scarring in a rabbit ear model. Stem Cell Res Ther 2015; 6: 145.
[http://dx.doi.org/10.1186/s13287-015-0133-y] [PMID: 26282394]
[61]
Zhu KQ, Carrougher GJ, Couture OP, Tuggle CK, Gibran NS, Engrav LH. Expression of collagen genes in the cones of skin in the Duroc/Yorkshire porcine model of fibroproliferative scarring. J Burn Care Res 2008; 29(5): 815-27.
[http://dx.doi.org/10.1097/BCR.0b013e3181848141] [PMID: 18695616]
[62]
Li ZY, Su HT, Lu SL, et al. [Clinical study on the relationship among the dermis, fat dome and postburn hyperplastic scar formation Zhonghua Shao Shang Za Zhi 2004; 20(6): 343-6.
[PMID: 15730682]
[63]
Liu YL, Liu WH, Sun J, et al. Mesenchymal stem cell-mediated suppression of hypertrophic scarring is p53 dependent in a rabbit ear model. Stem Cell Res Ther 2014; 5(6): 136.
[http://dx.doi.org/10.1186/scrt526] [PMID: 25510921]
[64]
Gaur M, Dobke M, Lunyak VV. Mesenchymal stem cells from adipose tissue in clinical applications for dermatological indications and skin aging. Int J Mol Sci 2017; 18(1)E208
[http://dx.doi.org/10.3390/ijms18010208] [PMID: 28117680]
[65]
Yun IS, Jeon YR, Lee WJ, et al. Effect of human adipose derived stem cells on scar formation and remodeling in a pig model: A pilot study. Dermatol Surg 2012; 38(10): 1678-88.
[http://dx.doi.org/10.1111/j.1524-4725.2012.02495.x] [PMID: 22804839]
[66]
Madlener M, Parks WC, Werner S. Matrix metalloproteinases (MMPs) and their physiological inhibitors (TIMPs) are differentially expressed during excisional skin wound repair. Exp Cell Res 1998; 242(1): 201-10.
[http://dx.doi.org/10.1006/excr.1998.4049] [PMID: 9665817]
[67]
Chin GS, Liu W, Peled Z, et al. Differential expression of transforming growth factor-beta receptors I and II and activation of Smad 3 in keloid fibroblasts. Plast Reconstr Surg 2001; 108(2): 423-9.
[http://dx.doi.org/10.1097/00006534-200108000-00022] [PMID: 11496185]
[68]
Pakyari M, Farrokhi A, Maharlooei MK, Ghahary A. Critical role of transforming growth factor beta in different phases of wound healing. Adv Wound Care (New Rochelle) 2013; 2(5): 215-24.
[http://dx.doi.org/10.1089/wound.2012.0406] [PMID: 24527344]
[69]
Li L, Zhang S, Zhang Y, Yu B, Xu Y, Guan Z. Paracrine action mediate the antifibrotic effect of transplanted mesenchymal stem cells in a rat model of global heart failure. Mol Biol Rep 2009; 36(4): 725-31.
[http://dx.doi.org/10.1007/s11033-008-9235-2] [PMID: 18368514]
[70]
Li L, Zhang Y, Li Y, et al. Mesenchymal stem cell transplantation attenuates cardiac fibrosis associated with isoproterenol-induced global heart failure. Transpl Int 2008; 21(12): 1181-9.
[http://dx.doi.org/10.1111/j.1432-2277.2008.00742.x] [PMID: 18783386]
[71]
Chen L, Tredget EE, Wu PY, Wu Y. Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing. PLoS One 2008; 3(4)e1886
[http://dx.doi.org/10.1371/journal.pone.0001886] [PMID: 18382669]
[72]
Moore KW, de Waal Malefyt R, Coffman RL, O’Garra A. Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol 2001; 19: 683-765.
[http://dx.doi.org/10.1146/annurev.immunol.19.1.683] [PMID: 11244051]
[73]
Reitamo S, Remitz A, Tamai K, Uitto J. Interleukin-10 modulates type I collagen and matrix metalloprotease gene expression in cultured human skin fibroblasts. J Clin Invest 1994; 94(6): 2489-92.
[http://dx.doi.org/10.1172/JCI117618] [PMID: 7989607]
[74]
Kanemura H, Iimuro Y, Takeuchi M, et al. Hepatocyte growth factor gene transfer with naked plasmid DNA ameliorates dimethylnitrosamine-induced liver fibrosis in rats. Hepatol Res 2008; 38(9): 930-9.
[http://dx.doi.org/10.1111/j.1872-034X.2008.00340.x] [PMID: 18637143]
[75]
Mou S, Wang Q, Shi B, Gu L, Ni Z. Hepatocyte growth factor suppresses transforming growth factor-beta-1 and type III collagen in human primary renal fibroblasts. Kaohsiung J Med Sci 2009; 25(11): 577-87.
[http://dx.doi.org/10.1016/S1607-551X(09)70560-1] [PMID: 19858036]
[76]
Shukla MN, Rose JL, Ray R, Lathrop KL, Ray A, Ray P. Hepatocyte growth factor inhibits epithelial to myofibroblast transition in lung cells via Smad7. Am J Respir Cell Mol Biol 2009; 40(6): 643-53.
[http://dx.doi.org/10.1165/rcmb.2008-0217OC] [PMID: 18988920]
[77]
Widgerow AD. Cellular/extracellular matrix cross-talk in scar evolution and control. Wound Repair Regen 2011; 19(2): 117-33.
[http://dx.doi.org/10.1111/j.1524-475X.2010.00662.x] [PMID: 21362079]
[78]
Huang SH, Wu SH, Lee SS, et al. Fat grafting in burn scar alleviates neuropathic pain via anti-inflammation effect in scar and spinal cord. PLoS One 2015; 10(9)e0137563
[http://dx.doi.org/10.1371/journal.pone.0137563] [PMID: 26368011]
[79]
Bijlard E, Uiterwaal L, Kouwenberg CA, Mureau MA, Hovius SE, Huygen FJ. A systematic review on the prevalence, etiology, and pathophysiology of intrinsic pain in dermal scar tissue. Pain Physician 2017; 20(2): 1-13.
[PMID: 28158149]
[80]
Lin CH, Wu SH, Lee SS, et al. Autologous adipose-derived stem cells reduce burn-induced neuropathic pain in a rat model. Int J Mol Sci 2017; 19(1)E34
[http://dx.doi.org/10.3390/ijms19010034] [PMID: 29271925]
[81]
Gimble JM, Guilak F, Bunnell BA. Clinical and preclinical translation of cell-based therapies using adipose tissue-derived cells. Stem Cell Res Ther 2010; 1(2): 19.
[http://dx.doi.org/10.1186/scrt19] [PMID: 20587076]
[82]
Kim M, Kim DI, Kim EK, Kim CW. CXCR4 overexpression in human adipose tissue-derived stem cells improves homing and engraftment in an animal limb ischemia model. Cell Transplant 2017; 26(2): 191-204.
[http://dx.doi.org/10.3727/096368916X692708] [PMID: 27501830]
[83]
Zhao Y, Zhang H. Update on the mechanisms of homing of adipose tissue-derived stem cells. Cytotherapy 2016; 18(7): 816-27.
[http://dx.doi.org/10.1016/j.jcyt.2016.04.008] [PMID: 27260205]
[84]
Mizuno H, Tobita M, Uysal AC. Concise review: Adipose-derived stem cells as a novel tool for future regenerative medicine. Stem Cells 2012; 30(5): 804-10.
[http://dx.doi.org/10.1002/stem.1076] [PMID: 22415904]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 15
ISSUE: 1
Year: 2020
Page: [77 - 85]
Pages: 9
DOI: 10.2174/1574888X14666190904125800
Price: $65

Article Metrics

PDF: 16
HTML: 4