Strategies for Conjugation of Biomolecules to Nanoparticles as Tumor Targeting Agents

Author(s): Sajjad Molavipordanjani, Seyed Jalal Hosseinimehr*.

Journal Name: Current Pharmaceutical Design

Volume 25 , Issue 37 , 2019

Become EABM
Become Reviewer

Abstract:

Combination of nanotechnology, biochemistry, chemistry and biotechnology provides the opportunity to design unique nanoparticles for tumor targeting, drug delivery, medical imaging and biosensing. Nanoparticles conjugated with biomolecules such as antibodies, peptides, vitamins and aptamer can resolve current challenges including low accumulation, internalization and retention at the target site in cancer diagnosis and therapy through active targeting. In this review, we focus on different strategies for conjugation of biomolecules to nanoparticles such as inorganic nanoparticles (iron oxide, gold, silica and carbon nanoparticles), liposomes, lipid and polymeric nanoparticles and their application in tumor targeting.

Keywords: Nanoparticles, biofunctionalization, active targeting, click chemistry, nanotechnology, tumor targeting.

[1]
Koo KM, Mainwaring PN, Tomlins SA, Trau M. Merging new-age biomarkers and nanodiagnostics for precision prostate cancer management. Nat Rev Urol 2019; 16(5): 302-17.
[http://dx.doi.org/10.1038/s41585-019-0178-2] [PMID: 30962568]
[2]
Mauter MS, Zucker I, Perreault F, Werber JR, Kim J-H, Elimelech M. The role of nanotechnology in tackling global water challenges. Nature Sustainability 2018; 1(4): 166-75.
[http://dx.doi.org/10.1038/s41893-018-0046-8]
[3]
Zhang RX, Li J, Zhang T, et al. Importance of integrating nanotechnology with pharmacology and physiology for innovative drug delivery and therapy - an illustration with firsthand examples. Acta Pharmacol Sin 2018; 39(5): 825-44.
[http://dx.doi.org/10.1038/aps.2018.33] [PMID: 29698389]
[4]
Adiseshaiah PP, Crist RM, Hook SS, McNeil SE. Nanomedicine strategies to overcome the pathophysiological barriers of pancreatic cancer. Nat Rev Clin Oncol 2016; 13(12): 750-65.
[http://dx.doi.org/10.1038/nrclinonc.2016.119] [PMID: 27531700]
[5]
Senapati S, Mahanta AK, Kumar S, Maiti P. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct Target Ther 2018; 3(1): 7.
[http://dx.doi.org/10.1038/s41392-017-0004-3] [PMID: 29560283]
[6]
Shi J, Kantoff PW, Wooster R, Farokhzad OC. Cancer nanomedicine: progress, challenges and opportunities. Nat Rev Cancer 2017; 17(1): 20-37.
[http://dx.doi.org/10.1038/nrc.2016.108] [PMID: 27834398]
[7]
Davis ME, Chen ZG, Shin DM. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov 2008; 7(9): 771-82.
[http://dx.doi.org/10.1038/nrd2614] [PMID: 18758474]
[8]
Schroeder A, Heller DA, Winslow MM, et al. Treating metastatic cancer with nanotechnology. Nat Rev Cancer 2011; 12(1): 39-50.
[http://dx.doi.org/10.1038/nrc3180] [PMID: 22193407]
[9]
Mangal S, Gao W, Li T, Zhou QT. Pulmonary delivery of nanoparticle chemotherapy for the treatment of lung cancers: challenges and opportunities. Acta Pharmacol Sin 2017; 38(6): 782-97.
[http://dx.doi.org/10.1038/aps.2017.34] [PMID: 28504252]
[10]
Bazak R, Houri M, El Achy S, Kamel S, Refaat T. Cancer active targeting by nanoparticles: a comprehensive review of literature. J Cancer Res Clin Oncol 2015; 141(5): 769-84.
[http://dx.doi.org/10.1007/s00432-014-1767-3] [PMID: 25005786]
[11]
Sakurai Y, Kajimoto K, Hatakeyama H, Harashima H. Advances in an active and passive targeting to tumor and adipose tissues. Expert Opin Drug Deliv 2015; 12(1): 41-52.
[http://dx.doi.org/10.1517/17425247.2015.955847] [PMID: 25376864]
[12]
Kaklotar D, Agrawal P, Abdulla A, et al. Transition from passive to active targeting of oral insulin nanomedicines: enhancement in bioavailability and glycemic control in diabetes. Nanomedicine (Lond) 2016; 11(11): 1465-86.
[http://dx.doi.org/10.2217/nnm.16.43] [PMID: 27171572]
[13]
Swain S, Sahu PK, Beg S, Babu SM. Nanoparticles for cancer targeting: current and future directions. Curr Drug Deliv 2016; 13(8): 1290-302.
[http://dx.doi.org/10.2174/1567201813666160713121122] [PMID: 27411485]
[14]
Nakamura H, Fang J, Maeda H. Development of next-generation macromolecular drugs based on the EPR effect: challenges and pitfalls. Expert Opin Drug Deliv 2015; 12(1): 53-64.
[http://dx.doi.org/10.1517/17425247.2014.955011] [PMID: 25425260]
[15]
Kalyane D, Raval N, Maheshwari R, Tambe V, Kalia K, Tekade RK. Employment of enhanced permeability and retention effect (EPR): nanoparticle-based precision tools for targeting of therapeutic and diagnostic agent in cancer. Mater Sci Eng C 2019; 98: 1252-76.
[http://dx.doi.org/10.1016/j.msec.2019.01.066] [PMID: 30813007]
[16]
Jiang W, von Roemeling C A, Chen Y, et al. Designing nanomedicine for immuno-oncology Nat Biomed Eng 2017; 1: 0029.
[http://dx.doi.org/10.1038/s41551-017-0029]
[17]
Muhamad N, Plengsuriyakarn T, Na-Bangchang K. Application of active targeting nanoparticle delivery system for chemotherapeutic drugs and traditional/herbal medicines in cancer therapy: a systematic review. Int J Nanomedicine 2018; 13: 3921-35.
[http://dx.doi.org/10.2147/IJN.S165210] [PMID: 30013345]
[18]
Alavi M, Hamidi M. Passive and active targeting in cancer therapy by liposomes and lipid nanoparticles. Drug Metab Pers Ther 2019; 34(1)
[http://dx.doi.org/10.1515/dmpt-2018-0032] [PMID: 30707682]
[19]
Satpathy M, Zielinski R, Lyakhov I, Yang L. Optical imaging of ovarian cancer using HER-2 affibody conjugated nanoparticles. Methods Mol Biol 2015; 1219: 171-85.
[http://dx.doi.org/10.1007/978-1-4939-1661-0_13] [PMID: 25308269]
[20]
Zhang Y, Jiang S, Zhang D, Bai X, Hecht SM, Chen S. DNA-affibody nanoparticles for inhibiting breast cancer cells overexpressing HER2. Chem Commun (Camb) 2017; 53(3): 573-6.
[http://dx.doi.org/10.1039/C6CC08495H] [PMID: 27975087]
[21]
Tan H, Huang Y, Xu J, et al. Spider toxin peptide lycosin-I functionalized gold nanoparticles for in vivo tumor targeting and therapy. Theranostics 2017; 7(12): 3168-78.
[http://dx.doi.org/10.7150/thno.19780] [PMID: 28839471]
[22]
Xiong H, Du S, Zhang P, Jiang Z, Zhou J, Yao J. Primary tumor and pre-metastatic niches co-targeting “peptides-lego” hybrid hydroxyapatite nanoparticles for metastatic breast cancer treatment. Biomater Sci 2018; 6(10): 2591-604.
[http://dx.doi.org/10.1039/C8BM00706C] [PMID: 30187035]
[23]
Li H, Guo L, Huang A, et al. Nanoparticle-conjugated aptamer targeting hnRNP A2/B1 can recognize multiple tumor cells and inhibit their proliferation. Biomaterials 2015; 63: 168-76.
[http://dx.doi.org/10.1016/j.biomaterials.2015.06.013] [PMID: 26107993]
[24]
Harris MA, Pearce TR, Pengo T, Kuang H, Forster C, Kokkoli E. Aptamer micelles targeting fractalkine-expressing cancer cells in vitro and in vivo. Nanomedicine (Lond) 2018; 14(1): 85-96.
[http://dx.doi.org/10.1016/j.nano.2017.08.020] [PMID: 28912042]
[25]
Wang X, Wei B, Cheng X, Wang J, Tang R. 3-Carboxyphenylboronic acid-modified carboxymethyl chitosan nanoparticles for improved tumor targeting and inhibitory. Eur J Pharm Biopharm 2017; 113: 168-77.
[http://dx.doi.org/10.1016/j.ejpb.2016.12.034] [PMID: 28089786]
[26]
Ravindran A, Chandran P, Khan SS. Biofunctionalized silver nanoparticles: advances and prospects. Colloids Surf B Biointerfaces 2013; 105: 342-52.
[http://dx.doi.org/10.1016/j.colsurfb.2012.07.036] [PMID: 23411404]
[27]
Tugarova AV, Kamnev AA. Proteins in microbial synthesis of selenium nanoparticles. Talanta 2017; 174: 539-47.
[http://dx.doi.org/10.1016/j.talanta.2017.06.013] [PMID: 28738620]
[28]
Miao Z, Gao Z, Chen R, Yu X, Su Z, Wei G. Surface-bioengineered gold nanoparticles for biomedical applications. Curr Med Chem 2018; 25(16): 1920-44.
[http://dx.doi.org/10.2174/0929867325666180117111404] [PMID: 29345568]
[29]
Gulsuner HU, Ceylan H, Guler MO, Tekinay AB. Multi-domain short peptide molecules for in situ synthesis and biofunctionalization of gold nanoparticles for integrin-targeted cell uptake. ACS Appl Mater Interfaces 2015; 7(20): 10677-83.
[http://dx.doi.org/10.1021/acsami.5b00093] [PMID: 25942540]
[30]
Ermini ML, Chadtová Song X, Špringer T, Homola J. Peptide functionalization of gold nanoparticles for the detection of carcinoembryonic antigen in blood plasma via SPR-Based biosensor. Front Chem 2019; 7: 40.
[http://dx.doi.org/10.3389/fchem.2019.00040] [PMID: 30778384]
[31]
Chen Y, Xianyu Y, Jiang X. Surface modification of gold nanoparticles with small molecules for biochemical analysis. Acc Chem Res 2017; 50(2): 310-9.
[http://dx.doi.org/10.1021/acs.accounts.6b00506] [PMID: 28068053]
[32]
Nel AE, Mädler L, Velegol D, et al. Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 2009; 8(7): 543-57.
[http://dx.doi.org/10.1038/nmat2442] [PMID: 19525947]
[33]
Conde J, Dias JT, Grazú V, Moros M, Baptista PV, de la Fuente JM. Revisiting 30 years of biofunctionalization and surface chemistry of inorganic nanoparticles for nanomedicine. Front Chem 2014; 2: 48.
[http://dx.doi.org/10.3389/fchem.2014.00048] [PMID: 25077142]
[34]
Bose RJ, Lee SH, Park H. Biofunctionalized nanoparticles: an emerging drug delivery platform for various disease treatments. Drug Discov Today 2016; 21(8): 1303-12.
[http://dx.doi.org/10.1016/j.drudis.2016.06.005] [PMID: 27297732]
[35]
Kwon KC, Ko HK, Lee J, Lee EJ, Kim K, Lee J. Enhanced in vivo tumor detection by active tumor cell targeting using multiple tumor receptor-binding peptides presented on genetically engineered human ferritin nanoparticles. Small 2016; 12(31): 4241-53.
[http://dx.doi.org/10.1002/smll.201600917] [PMID: 27356892]
[36]
Chen F, Hong H, Shi S, et al. Engineering of hollow mesoporous silica nanoparticles for remarkably enhanced tumor active targeting efficacy. Sci Rep 2014; 4: 5080.
[http://dx.doi.org/10.1038/srep05080] [PMID: 24875656]
[37]
Yu DH, Lu Q, Xie J, Fang C, Chen HZ. Peptide-conjugated biodegradable nanoparticles as a carrier to target paclitaxel to tumor neovasculature. Biomaterials 2010; 31(8): 2278-92.
[http://dx.doi.org/10.1016/j.biomaterials.2009.11.047] [PMID: 20053444]
[38]
Kumar S, Aaron J, Sokolov K. Directional conjugation of antibodies to nanoparticles for synthesis of multiplexed optical contrast agents with both delivery and targeting moieties. Nat Protoc 2008; 3(2): 314-20.
[http://dx.doi.org/10.1038/nprot.2008.1] [PMID: 18274533]
[39]
Manjappa AS, Chaudhari KR, Venkataraju MP, et al. Antibody derivatization and conjugation strategies: application in preparation of stealth immunoliposome to target chemotherapeutics to tumor. J Control Release 2011; 150(1): 2-22.
[http://dx.doi.org/10.1016/j.jconrel.2010.11.002] [PMID: 21095210]
[40]
Su CW, Yen CS, Chiang CS, Hsu CH, Chen SY. Multistage continuous targeting with quantitatively controlled peptides on chitosan-lipid nanoparticles with multicore-shell nanoarchitecture for enhanced orally administrated anticancer in vitro and in vivo. Macromol Biosci 2017; 17(2)
[http://dx.doi.org/10.1002/mabi.201600260] [PMID: 27634372]
[41]
Okur AC, Erkoc P, Kizilel S. Targeting cancer cells via tumor-homing peptide CREKA functional PEG nanoparticles. Colloids Surf B Biointerfaces 2016; 147: 191-200.
[http://dx.doi.org/10.1016/j.colsurfb.2016.08.005] [PMID: 27513587]
[42]
Gao H, Zhang Q, Yang Y, Jiang X, He Q. Tumor homing cell penetrating peptide decorated nanoparticles used for enhancing tumor targeting delivery and therapy. Int J Pharm 2015; 478(1): 240-50.
[http://dx.doi.org/10.1016/j.ijpharm.2014.11.029] [PMID: 25448586]
[43]
Jiang Y, Yang N, Zhang H, et al. Enhanced in vivo antitumor efficacy of dual-functional peptide-modified docetaxel nanoparticles through tumor targeting and Hsp90 inhibition. J Control Release 2016; 221: 26-36.
[http://dx.doi.org/10.1016/j.jconrel.2015.11.029] [PMID: 26643616]
[44]
Feng X, Yao J, Gao X, et al. Multi-targeting peptide-functionalized nanoparticles recognized vasculogenic mimicry, tumor neovasculature, and glioma cells for enhanced anti-glioma therapy. ACS Appl Mater Interfaces 2015; 7(50): 27885-99.
[http://dx.doi.org/10.1021/acsami.5b09934] [PMID: 26619329]
[45]
Cheng YJ, Zhang AQ, Hu JJ, He F, Zeng X, Zhang XZ. Multifunctional peptide-amphiphile end-capped mesoporous silica nanoparticles for tumor targeting drug delivery. ACS Appl Mater Interfaces 2017; 9(3): 2093-103.
[http://dx.doi.org/10.1021/acsami.6b12647] [PMID: 28032742]
[46]
Iyer G, Pinaud F, Xu J, et al. Aromatic aldehyde and hydrazine activated peptide coated quantum dots for easy bioconjugation and live cell imaging. Bioconjug Chem 2011; 22(6): 1006-11.
[http://dx.doi.org/10.1021/bc100593m] [PMID: 21553893]
[47]
Joshi PP, Yoon SJ, Hardin WG, Emelianov S, Sokolov KV. Conjugation of antibodies to gold nanorods through Fc portion: synthesis and molecular specific imaging. Bioconjug Chem 2013; 24(6): 878-88.
[http://dx.doi.org/10.1021/bc3004815] [PMID: 23631707]
[48]
Kolb HC, Finn MG, Sharpless KB. Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed Engl 2001; 40(11): 2004-21.
[http://dx.doi.org/10.1002/1521-3773(20010601)40:11<2004:AID-ANIE2004>3.0.CO;2-5] [PMID: 11433435]
[49]
Hoyle CE, Bowman CN. Thiol-ene click chemistry. Angew Chem Int Ed Engl 2010; 49(9): 1540-73.
[http://dx.doi.org/10.1002/anie.200903924] [PMID: 20166107]
[50]
Rubio N, Mei KC, Klippstein R, et al. Solvent-free click-mechanochemistry for the preparation of cancer cell targeting graphene oxide. ACS Appl Mater Interfaces 2015; 7(34): 18920-3.
[http://dx.doi.org/10.1021/acsami.5b06250] [PMID: 26278410]
[51]
Paka GD, Ramassamy C. Optimization of curcumin-loaded PEG-PLGA nanoparticles by GSH functionalization: investigation of the internalization pathway in neuronal cells. Mol Pharm 2017; 14(1): 93-106.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b00738] [PMID: 27744707]
[52]
Wang L, Neoh KG, Kang ET, Shuter B. Multifunctional polyglycerol-grafted Fe3O4@SiO2 nanoparticles for targeting ovarian cancer cells. Biomaterials 2011; 32(8): 2166-73.
[http://dx.doi.org/10.1016/j.biomaterials.2010.11.042] [PMID: 21146869]
[53]
Hou Y, Qiao R, Fang F, et al. NaGdF4 nanoparticle-based molecular probes for magnetic resonance imaging of intraperitoneal tumor xenografts in vivo. ACS Nano 2013; 7(1): 330-8.
[http://dx.doi.org/10.1021/nn304837c] [PMID: 23199030]
[54]
Liu Y, Hou W, Sun H, et al. Thiol-ene click chemistry: a biocompatible way for orthogonal bioconjugation of colloidal nanoparticles. Chem Sci (Camb) 2017; 8(9): 6182-7.
[http://dx.doi.org/10.1039/C7SC01447C] [PMID: 28989650]
[55]
Choi J, Rustique E, Henry M, et al. Targeting tumors with cyclic RGD-conjugated lipid nanoparticles loaded with an IR780 NIR dye: in vitro and in vivo evaluation. Int J Pharm 2017; 532(2): 677-85.
[http://dx.doi.org/10.1016/j.ijpharm.2017.03.007] [PMID: 28279737]
[56]
Kuang Y, Jiang X, Zhang Y, et al. Dual functional peptide-driven nanoparticles for highly efficient glioma-targeting and drug codelivery. Mol Pharm 2016; 13(5): 1599-607.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b00051] [PMID: 27058780]
[57]
Moses JE, Moorhouse AD. The growing applications of click chemistry. Chem Soc Rev 2007; 36(8): 1249-62.
[http://dx.doi.org/10.1039/B613014N] [PMID: 17619685]
[58]
Noureddine A, Gary-Bobo M, Lichon L, et al. Bis-clickable mesoporous silica nanoparticles: straightforward preparation of light-actuated nanomachines for controlled drug delivery with active targeting. Chemistry 2016; 22(28): 9624-30.
[http://dx.doi.org/10.1002/chem.201600870] [PMID: 27258427]
[59]
Hou J, Zhang Q, Li X, et al. Synthesis of novel folate conjugated fluorescent nanoparticles for tumor imaging. J Biomed Mater Res A 2011; 99(4): 684-9.
[http://dx.doi.org/10.1002/jbm.a.33187] [PMID: 21913319]
[60]
Guldris N, Gallo J. García-Hevia L, Rivas J, Bañobre-López M, Salonen LM. Orthogonal clickable iron oxide nanoparticle platform for targeting, imaging, and on-demand release. Chemistry 2018; 24(34): 8624-31.
[http://dx.doi.org/10.1002/chem.201800389] [PMID: 29645299]
[61]
Lai CH, Chang TC, Chuang YJ, Tzou DL, Lin CC. Stepwise orthogonal click chemistry toward fabrication of paclitaxel/galactose functionalized fluorescent nanoparticles for HepG2 cell targeting and delivery. Bioconjug Chem 2013; 24(10): 1698-709.
[http://dx.doi.org/10.1021/bc400219t] [PMID: 23987828]
[62]
Liu R, Zhao J, Han G, et al. Click-functionalized SERS nanoprobes with improved labeling efficiency and capability for cancer cell imaging. ACS Appl Mater Interfaces 2017; 9(44): 38222-9.
[http://dx.doi.org/10.1021/acsami.7b10409] [PMID: 28920430]
[63]
Deshayes S, Maurizot V, Clochard MC, et al. “Click” conjugation of peptide on the surface of polymeric nanoparticles for targeting tumor angiogenesis. Pharm Res 2011; 28(7): 1631-42.
[http://dx.doi.org/10.1007/s11095-011-0398-5] [PMID: 21374102]
[64]
Zhang C, Pan D, Li J, et al. Enzyme-responsive peptide dendrimer-gemcitabine conjugate as a controlled-release drug delivery vehicle with enhanced antitumor efficacy. Acta Biomater 2017; 55: 153-62.
[http://dx.doi.org/10.1016/j.actbio.2017.02.047] [PMID: 28259838]
[65]
Wang CF, Mäkilä EM, Kaasalainen MH, et al. Copper-free azide-alkyne cycloaddition of targeting peptides to porous silicon nanoparticles for intracellular drug uptake. Biomaterials 2014; 35(4): 1257-66.
[http://dx.doi.org/10.1016/j.biomaterials.2013.10.065] [PMID: 24211082]
[66]
Kakwere H, Ingham ES, Allen R, et al. Toward personalized peptide-based cancer nanovaccines: a facile and versatile synthetic approach. Bioconjug Chem 2017; 28(11): 2756-71.
[http://dx.doi.org/10.1021/acs.bioconjchem.7b00502] [PMID: 28956907]
[67]
Sun P, Yuan P, Wang G, et al. High density glycopolymers functionalized perylene diimide nanoparticles for tumor-targeted photoacoustic imaging and enhanced photothermal therapy. Biomacromolecules 2017; 18(10): 3375-86.
[http://dx.doi.org/10.1021/acs.biomac.7b01029] [PMID: 28850778]
[68]
Chan DP, Deleavey GF, Owen SC, Damha MJ, Shoichet MS. Click conjugated polymeric immuno-nanoparticles for targeted siRNA and antisense oligonucleotide delivery. Biomaterials 2013; 34(33): 8408-15.
[http://dx.doi.org/10.1016/j.biomaterials.2013.07.019] [PMID: 23932248]
[69]
Klein PM, Kern S, Lee DJ, et al. Folate receptor-directed orthogonal click-functionalization of siRNA lipopolyplexes for tumor cell killing in vivo. Biomaterials 2018; 178: 630-42.
[http://dx.doi.org/10.1016/j.biomaterials.2018.03.031] [PMID: 29580727]
[70]
Yoon HY, Shin ML, Shim MK, et al. Artificial chemical reporter targeting strategy using bioorthogonal click reaction for improving active-targeting efficiency of tumor. Mol Pharm 2017; 14(5): 1558-70.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b01083] [PMID: 28191852]
[71]
Logie J, Ganesh AN, Aman AM, Al-Awar RS, Shoichet MS. Preclinical evaluation of taxane-binding peptide-modified polymeric micelles loaded with docetaxel in an orthotopic breast cancer mouse model. Biomaterials 2017; 123: 39-47.
[http://dx.doi.org/10.1016/j.biomaterials.2017.01.026] [PMID: 28161682]
[72]
Wang LL, Balakrishnan A, Bigall NC, et al. A bio-chemosynthetic approach to superparamagnetic iron oxide-ansamitocin conjugates for use in magnetic drug targeting. Chemistry 2017; 23(10): 2265-70.
[http://dx.doi.org/10.1002/chem.201604903] [PMID: 27935144]
[73]
Brand C, Iacono P, Pérez-Medina C, Mulder WJM, Kircher MF, Reiner T. Specific binding of liposomal nanoparticles through inverse electron-demand diels-alder click chemistry. ChemistryOpen 2017; 6(5): 615-9.
[http://dx.doi.org/10.1002/open.201700105] [PMID: 29046855]
[74]
von Maltzahn G, Ren Y, Park JH, et al. In vivo tumor cell targeting with “click” nanoparticles. Bioconjug Chem 2008; 19(8): 1570-8.
[http://dx.doi.org/10.1021/bc800077y] [PMID: 18611045]
[75]
Zuo H, Chen W, Cooper HM, Xu ZP. A facile way of modifying layered double hydroxide nanoparticles with targeting ligand-conjugated albumin for enhanced delivery to brain tumour cells. ACS Appl Mater Interfaces 2017; 9(24): 20444-53.
[http://dx.doi.org/10.1021/acsami.7b06421] [PMID: 28574700]
[76]
Yu X, Song Y, Di Y, He H, Fu D, Jin C. Enhanced tumor targeting of cRGD peptide-conjugated albumin nanoparticles in the BxPC-3 cell line. Sci Rep 2016; 6: 31539.
[http://dx.doi.org/10.1038/srep31539] [PMID: 27515795]
[77]
Cui W, Li J, Decher G. Self-assembled smart nanocarriers for targeted drug delivery. Adv Mater 2016; 28(6): 1302-11.
[http://dx.doi.org/10.1002/adma.201502479] [PMID: 26436442]
[78]
Ruiz-Hitzky E, Darder M, Aranda P, Ariga K. Advances in biomimetic and nanostructured biohybrid materials. Adv Mater 2010; 22(3): 323-36.
[http://dx.doi.org/10.1002/adma.200901134] [PMID: 20217713]
[79]
Ko S, Liu H, Chen Y, Mao C. DNA nanotubes as combinatorial vehicles for cellular delivery. Biomacromolecules 2008; 9(11): 3039-43.
[http://dx.doi.org/10.1021/bm800479e] [PMID: 18821795]
[80]
Li J, Pei H, Zhu B, et al. Self-assembled multivalent DNA nanostructures for noninvasive intracellular delivery of immunostimulatory CpG oligonucleotides. ACS Nano 2011; 5(11): 8783-9.
[http://dx.doi.org/10.1021/nn202774x] [PMID: 21988181]
[81]
Hamblin GD, Carneiro KM, Fakhoury JF, Bujold KE, Sleiman HF. Rolling circle amplification-templated DNA nanotubes show increased stability and cell penetration ability. J Am Chem Soc 2012; 134(6): 2888-91.
[http://dx.doi.org/10.1021/ja2107492] [PMID: 22283197]
[82]
Lee H, Lytton-Jean AK, Chen Y, et al. Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery. Nat Nanotechnol 2012; 7(6): 389-93.
[http://dx.doi.org/10.1038/nnano.2012.73] [PMID: 22659608]
[83]
Qi W, Wang A, Yang Y, et al. The lectin binding and targetable cellular uptake of lipid-coated polysaccharide microcapsules. J Mater Chem 2010; 20(11): 2121-7.
[http://dx.doi.org/10.1039/b920469p]
[84]
Du C, Zhao J, Fei J, et al. Alginate-based microcapsules with a molecule recognition linker and photosensitizer for the combined cancer treatment. Chem Asian J 2013; 8(4): 736-42.
[http://dx.doi.org/10.1002/asia.201201088] [PMID: 23401337]
[85]
Cui W, Cui Y, Zhao J, Li J. Fabrication of tumor necrosis factor-related apoptosis inducing ligand (TRAIL)/ALG modified CaCO3 as drug carriers with the function of tumor selective recognition. J Mater Chem B Mater Biol Med 2013; 1(9): 1326-32.
[http://dx.doi.org/10.1039/c2tb00293k]
[86]
Ke R, Vishnoi K, Viswakarma N, et al. Involvement of AMP-activated protein kinase and death receptor 5 in TRAIL-Berberine-induced apoptosis of cancer cells. Sci Rep 2018; 8(1): 5521.
[http://dx.doi.org/10.1038/s41598-018-23780-x] [PMID: 29615720]
[87]
Wuttke S, Lismont M, Escudero A, Rungtaweevoranit B, Parak WJ. Positioning metal-organic framework nanoparticles within the context of drug delivery - A comparison with mesoporous silica nanoparticles and dendrimers. Biomaterials 2017; 123: 172-83.
[http://dx.doi.org/10.1016/j.biomaterials.2017.01.025] [PMID: 28182958]
[88]
Li W, Liu Z, Fontana F, et al. Tailoring porous silicon for biomedical applications: from drug delivery to cancer immunotherapy. Adv Mater 2018; 30(24)e1703740
[http://dx.doi.org/10.1002/adma.201703740] [PMID: 29534311]
[89]
Serda RE, Godin B, Blanco E, Chiappini C, Ferrari M. Multi-stage delivery nano-particle systems for therapeutic applications. Biochim Biophys Acta 2011; 1810(3): 317-29.
[http://dx.doi.org/10.1016/j.bbagen.2010.05.004] [PMID: 20493927]
[90]
Tasciotti E, Liu X, Bhavane R, et al. Mesoporous silicon particles as a multistage delivery system for imaging and therapeutic applications. Nat Nanotechnol 2008; 3(3): 151-7.
[http://dx.doi.org/10.1038/nnano.2008.34] [PMID: 18654487]
[91]
Santos HA, Bimbo LM, Lehto VP, Airaksinen AJ, Salonen J, Hirvonen J. Multifunctional porous silicon for therapeutic drug delivery and imaging. Curr Drug Discov Technol 2011; 8(3): 228-49.
[http://dx.doi.org/10.2174/157016311796799053] [PMID: 21291407]
[92]
Almeida PV, Shahbazi MA, Mäkilä E, et al. Amine-modified hyaluronic acid-functionalized porous silicon nanoparticles for targeting breast cancer tumors. Nanoscale 2014; 6(17): 10377-87.
[http://dx.doi.org/10.1039/C4NR02187H] [PMID: 25074521]
[93]
Li Z, Zhang H, Han J, Chen Y, Lin H, Yang T. Surface nanopore engineering of 2D MXenes for targeted and synergistic multitherapies of hepatocellular carcinoma. Adv Mater 2018; 30(25)e1706981
[http://dx.doi.org/10.1002/adma.201706981] [PMID: 29663543]
[94]
Lee SW, Hosokawa K, Kim S, et al. A Highly sensitive porous silicon (P-Si)-based human kallikrein 2 (hK2) immunoassay platform toward accurate diagnosis of prostate cancer. Sensors (Basel) 2015; 15(5): 11972-87.
[http://dx.doi.org/10.3390/s150511972] [PMID: 26007739]
[95]
Lei C, Liu P, Chen B, et al. Local release of highly loaded antibodies from functionalized nanoporous support for cancer immunotherapy. J Am Chem Soc 2010; 132(20): 6906-7.
[http://dx.doi.org/10.1021/ja102414t] [PMID: 20433206]
[96]
Song J, Yang X, Yang Z, et al. Rational design of branched nanoporous gold nanoshells with enhanced physico-optical properties for optical imaging and cancer therapy. ACS Nano 2017; 11(6): 6102-13.
[http://dx.doi.org/10.1021/acsnano.7b02048] [PMID: 28605594]
[97]
Feng K-J, Yang Y-H, Wang Z-J, Jiang J-H, Shen G-L, Yu R-Q. A nano-porous CeO(2)/Chitosan composite film as the immobilization matrix for colorectal cancer DNA sequence-selective electrochemical biosensor. Talanta 2006; 70(3): 561-5.
[http://dx.doi.org/10.1016/j.talanta.2006.01.009] [PMID: 18970808]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 25
ISSUE: 37
Year: 2019
Page: [3917 - 3926]
Pages: 10
DOI: 10.2174/1381612825666190903154847
Price: $65

Article Metrics

PDF: 20
HTML: 5