Long Non-Coding RNAs As Epigenetic Regulators in Cancer

Author(s): Asma Vafadar, Zahra Shabaninejad, Ahmad Movahedpour, Soheila Mohammadi, Sima Fathullahzadeh, Hamid R. Mirzaei, Afshin Namdar, Amir Savardashtaki*, Hamed Mirzaei*.

Journal Name: Current Pharmaceutical Design

Volume 25 , Issue 33 , 2019


Abstract:

Long noncoding RNAs (lncRNAs) constitute large portions of the mammalian transcriptome which appeared as a fundamental player, regulating various cellular mechanisms. LncRNAs do not encode proteins, have mRNA-like transcripts and frequently processed similar to the mRNAs. Many investigations have determined that lncRNAs interact with DNA, RNA molecules or proteins and play a significant regulatory function in several biological processes, such as genomic imprinting, epigenetic regulation, cell cycle regulation, apoptosis, and differentiation. LncRNAs can modulate gene expression on three levels: chromatin remodeling, transcription, and post-transcriptional processing. The majority of the identified lncRNAs seem to be transcribed by the RNA polymerase II. Recent evidence has illustrated that dysregulation of lncRNAs can lead to many human diseases, in particular, cancer. The aberrant expression of lncRNAs in malignancies contributes to the dysregulation of proliferation and differentiation process. Consequently, lncRNAs can be useful to the diagnosis, treatment, and prognosis, and have been characterized as potential cancer markers as well. In this review, we highlighted the role and molecular mechanisms of lncRNAs and their correlation with some of the cancers.

Keywords: Long non-coding RNAs, cancer, epigenetics, mammalian transcriptome, cell cycle regulation, genomic imprinting.

[1]
Djebali S, Davis CA, Merkel A, et al. Landscape of transcription in human cells. Nature 2012; 489(7414): 101-8.
[http://dx.doi.org/10.1038/nature11233] [PMID: 22955620]
[2]
Forrest AR, Kawaji H, Rehli M, et al. FANTOM Consortium and the RIKEN PMI and CLST (DGT). A promoter-level mammalian expression atlas. Nature 2014; 507(7493): 462-70.
[http://dx.doi.org/10.1038/nature13182] [PMID: 24670764]
[3]
Diamantopoulos MA, Tsiakanikas P, Scorilas A. Non-coding RNAs: the riddle of the transcriptome and their perspectives in cancer. Ann Transl Med 2018; 6(12): 241.
[http://dx.doi.org/10.21037/atm.2018.06.10] [PMID: 30069443]
[4]
Iyer MK, Niknafs YS, Malik R, et al. The landscape of long noncoding RNAs in the human transcriptome. Nat Genet 2015; 47(3): 199-208.
[http://dx.doi.org/10.1038/ng.3192] [PMID: 25599403]
[5]
Gibb EA, Brown CJ, Lam WL. The functional role of long non-coding RNA in human carcinomas. Mol Cancer 2011; 10: 38.
[http://dx.doi.org/10.1186/1476-4598-10-38] [PMID: 21489289]
[6]
Carninci P, Hayashizaki Y. Noncoding RNA transcription beyond annotated genes. Curr Opin Genet Dev 2007; 17(2): 139-44.
[http://dx.doi.org/10.1016/j.gde.2007.02.008] [PMID: 17317145]
[7]
Kung JT, Colognori D, Lee JT. Long noncoding RNAs: past, present, and future. Genetics 2013; 193(3): 651-69.
[http://dx.doi.org/10.1534/genetics.112.146704] [PMID: 23463798]
[8]
Agirre X, Meydan C, Jiang Y, et al. Long non-coding RNAs discriminate the stages and gene regulatory states of human humoral immune response. Nat Commun 2019; 10(1): 821.
[http://dx.doi.org/10.1038/s41467-019-08679-z] [PMID: 30778059]
[9]
Kopp F, Mendell JT. Functional classification and experimental dissection of long noncoding RNAs. Cell 2018; 172(3): 393-407.
[http://dx.doi.org/10.1016/j.cell.2018.01.011] [PMID: 29373828]
[10]
Rashid F, Shah A, Shan G. Long non-coding RNAs in the cytoplasm. Genomics Proteomics Bioinformatics 2016; 14(2): 73-80.
[http://dx.doi.org/10.1016/j.gpb.2016.03.005] [PMID: 27163185]
[11]
Hutchinson JN, Ensminger AW, Clemson CM, Lynch CR, Lawrence JB, Chess A. A screen for nuclear transcripts identifies two linked noncoding RNAs associated with SC35 splicing domains. BMC Genomics 2007; 8: 39.
[http://dx.doi.org/10.1186/1471-2164-8-39] [PMID: 17270048]
[12]
Wang KC, Yang YW, Liu B, et al. A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature 2011; 472(7341): 120-4.
[http://dx.doi.org/10.1038/nature09819] [PMID: 21423168]
[13]
Santosh B, Varshney A, Yadava PK. Non-coding RNAs: biological functions and applications. Cell Biochem Funct 2015; 33(1): 14-22.
[http://dx.doi.org/10.1002/cbf.3079] [PMID: 25475931]
[14]
Wu N, Yang BB. The biological functions of non-coding RNAs: From a line to a circle. Discover 2015; 3: e48-63.
[http://dx.doi.org/10.15190/d.2015.40]
[15]
Bonnici V, Caro G, Constantino G, et al. Arena-Idb: a platform to build human non-coding RNA interaction networks. BMC Bioinformatics 2018; 19(Suppl. 10): 350.
[http://dx.doi.org/10.1186/s12859-018-2298-8] [PMID: 30367585]
[16]
Quinn JJ, Chang HY. Unique features of long non-coding RNA biogenesis and function. Nat Rev Genet 2016; 17(1): 47-62.
[http://dx.doi.org/10.1038/nrg.2015.10] [PMID: 26666209]
[17]
Fernandes JCR, Acuna SM, Aoki JI, Floeter-Winter LM, Muxel SM. Long non-coding RNAs in the regulation of gene expression: physiology and disease. Noncoding RNA 2019; 5(1)E17
[18]
Zhao Y, Yuan J, Chen R. NONCODEv4: annotation of noncoding RNAs with emphasis on long noncoding RNAs Long Non-Coding RNAs. Springer 2016; pp. 243-54.
[http://dx.doi.org/10.1007/978-1-4939-3378-5_19]
[19]
Renganathan A, Felley-Bosco E. Long noncoding RNAs in cancer and therapeutic potential Long Non Coding RNA Biology. Springer 2017.
[http://dx.doi.org/10.1007/978-981-10-5203-3_7]
[20]
Sun H, Huang Z, Sheng W, Xu MD. Emerging roles of long non-coding RNAs in tumor metabolism. J Hematol Oncol 2018; 11(1): 106.
[http://dx.doi.org/10.1186/s13045-018-0648-7] [PMID: 30134946]
[21]
Salehi S, Taheri MN, Azarpira N, Zare A, Behzad-Behbahani A. State of the art technologies to explore long non-coding RNAs in cancer. J Cell Mol Med 2017; 21(12): 3120-40.
[http://dx.doi.org/10.1111/jcmm.13238]
[22]
Alvarez-Dominguez JR, Lodish HF. Emerging mechanisms of long noncoding RNA function during normal and malignant hematopoiesis. Blood 2017; 130(18): 1965-75.
[http://dx.doi.org/10.1182/blood-2017-06-788695] [PMID: 28928124]
[23]
Derrien T, Johnson R, Bussotti G, et al. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res 2012; 22(9): 1775-89.
[http://dx.doi.org/10.1101/gr.132159.111] [PMID: 22955988]
[24]
Cabili MN, Trapnell C, Goff L, et al. Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev 2011; 25(18): 1915-27.
[http://dx.doi.org/10.1101/gad.17446611] [PMID: 21890647]
[25]
Guttman M, Amit I, Garber M, et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 2009; 458(7235): 223-7.
[http://dx.doi.org/10.1038/nature07672] [PMID: 19182780]
[26]
Ulitsky I, Shkumatava A, Jan CH, Sive H, Bartel DP. Conserved function of lincRNAs in vertebrate embryonic development despite rapid sequence evolution. Cell 2011; 147(7): 1537-50.
[http://dx.doi.org/10.1016/j.cell.2011.11.055] [PMID: 22196729]
[27]
Pauli A, Valen E, Lin MF, et al. Systematic identification of long noncoding RNAs expressed during zebrafish embryogenesis. Genome Res 2012; 22(3): 577-91.
[http://dx.doi.org/10.1101/gr.133009.111] [PMID: 22110045]
[28]
Ghafouri-Fard S, Taheri M. Nuclear Enriched Abundant Transcript 1 (NEAT1): a long non-coding RNA with diverse functions in tumorigenesis. Biomed Pharmacother 2019; 111: 51-9.
[http://dx.doi.org/10.1016/j.biopha.2018.12.070] [PMID: 30576934]
[29]
Zhao M, Wang S, Li Q, Ji Q, Guo P, Liu X. MALAT1: A long non-coding RNA highly associated with human cancers. Oncol Lett 2018; 16(1): 19-26.
[http://dx.doi.org/10.3892/ol.2018.8613] [PMID: 29928382]
[30]
Peschansky VJ, Wahlestedt C. Non-coding RNAs as direct and indirect modulators of epigenetic regulation. Epigenetics 2014; 9(1): 3-12.
[http://dx.doi.org/10.4161/epi.27473] [PMID: 24739571]
[31]
Mattick JS, Rinn JL. Discovery and annotation of long noncoding RNAs. Nat Struct Mol Biol 2015; 22(1): 5-7.
[http://dx.doi.org/10.1038/nsmb.2942] [PMID: 25565026]
[32]
Richard JLC, Eichhorn PJA. Deciphering the roles of lncRNAs in breast development and disease. Oncotarget 2018; 9(28): 20179.
[33]
Richard JLC, Eichhorn PJA. Deciphering the roles of lncRNAs in breast development and disease. Oncotarget 2018; 9(28): 20179-212.
[http://dx.doi.org/10.18632/oncotarget.24591] [PMID: 29732012]
[34]
Rodríguez Bautista R, Ortega Gómez A, Hidalgo Miranda A, et al. Long non-coding RNAs: implications in targeted diagnoses, prognosis, and improved therapeutic strategies in human non- and triple-negative breast cancer. Clin Epigenetics 2018; 10: 88.
[http://dx.doi.org/10.1186/s13148-018-0514-z] [PMID: 29983835]
[35]
Vafadar A, Mokaram P, Erfani M, et al. The effect of decitabine on the expression and methylation of the PPP1CA, BTG2, and PTEN in association with changes in miR-125b, miR-17, and miR-181b in NALM6 cell line. J Cell Biochem 2019; 120(8): 13156-67.
[http://dx.doi.org/10.1002/jcb.28590] [PMID: 30912184]
[36]
Morlando M, Fatica A. Alteration of epigenetic regulation by long noncoding RNAs in cancer. Int J Mol Sci 2018; 19(2): 570.
[http://dx.doi.org/10.3390/ijms19020570] [PMID: 29443889]
[37]
Yang Z, Jiang X, Jiang X, Zhao H. X-inactive-specific transcript: A long noncoding RNA with complex roles in human cancers. Gene 2018; 679: 28-35.
[http://dx.doi.org/10.1016/j.gene.2018.08.071] [PMID: 30171939]
[38]
Lou H, Le F, Hu M, et al. Aberrant DNA methylation of IGF2-H19 locus in human fetus and in spermatozoa from assisted reproductive technologies. Reprod Sci 2019; 26(7): 997-1004.
[PMID: 30270743]
[39]
Lee JT, Bartolomei MS. X-inactivation, imprinting, and long noncoding RNAs in health and disease. Cell 2013; 152(6): 1308-23.
[http://dx.doi.org/10.1016/j.cell.2013.02.016] [PMID: 23498939]
[40]
Wutz A, Rasmussen TP, Jaenisch R. Chromosomal silencing and localization are mediated by different domains of Xist RNA. Nat Genet 2002; 30(2): 167-74.
[http://dx.doi.org/10.1038/ng820] [PMID: 11780141]
[41]
Chu C, et al. Systematic discovery of Xist RNA binding proteins. Cell 2015; 161(2): 404-16.
[42]
Kalantry S, Magnuson T. The Polycomb group protein EED is dispensable for the initiation of random X-chromosome inactivation. PLoS Genet 2006; 2(5)e66
[http://dx.doi.org/10.1371/journal.pgen.0020066] [PMID: 16680199]
[43]
Chu C, Zhang QC, da Rocha ST, et al. Systematic discovery of Xist RNA binding proteins. Cell 2015; 161(2): 404-16.
[http://dx.doi.org/10.1016/j.cell.2015.03.025] [PMID: 25843628]
[44]
McHugh CA, Chen CK, Chow A, et al. The Xist lncRNA interacts directly with SHARP to silence transcription through HDAC3. Nature 2015; 521(7551): 232-6.
[http://dx.doi.org/10.1038/nature14443] [PMID: 25915022]
[45]
Spatz A, Borg C, Feunteun J. X-chromosome genetics and human cancer. Nat Rev Cancer 2004; 4(8): 617-29.
[http://dx.doi.org/10.1038/nrc1413] [PMID: 15286741]
[46]
Sasaki H, Ishihara K, Kato R. Mechanisms of Igf2/H19 imprinting: DNA methylation, chromatin and long-distance gene regulation. J Biochem 2000; 127(5): 711-5.
[http://dx.doi.org/10.1093/oxfordjournals.jbchem.a022661] [PMID: 10788777]
[47]
Yoshimizu T, Miroglio A, Ripoche MA, et al. The H19 locus acts in vivo as a tumor suppressor. Proc Natl Acad Sci USA 2008; 105(34): 12417-22.
[http://dx.doi.org/10.1073/pnas.0801540105] [PMID: 18719115]
[48]
Lottin S, Adriaenssens E, Dupressoir T, et al. Overexpression of an ectopic H19 gene enhances the tumorigenic properties of breast cancer cells. Carcinogenesis 2002; 23(11): 1885-95.
[http://dx.doi.org/10.1093/carcin/23.11.1885] [PMID: 12419837]
[49]
Berteaux N, Lottin S, Monté D, et al. H19 mRNA-like noncoding RNA promotes breast cancer cell proliferation through positive control by E2F1. J Biol Chem 2005; 280(33): 29625-36.
[http://dx.doi.org/10.1074/jbc.M504033200] [PMID: 15985428]
[50]
Zhou J, Yang L, Zhong T, et al. H19 lncRNA alters DNA methylation genome wide by regulating S-adenosylhomocysteine hydrolase. Nat Commun 2015; 6: 10221.
[http://dx.doi.org/10.1038/ncomms10221] [PMID: 26687445]
[51]
Barsyte-Lovejoy D, Lau SK, Boutros PC, et al. The c-Myc oncogene directly induces the H19 noncoding RNA by allele-specific binding to potentiate tumorigenesis. Cancer Res 2006; 66(10): 5330-7.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-0037] [PMID: 16707459]
[52]
Matouk IJ, Mezan S, Mizrahi A, et al. The oncofetal H19 RNA connection: hypoxia, p53 and cancer. Biochimica et Biophysica Acta 2010; 1803: 443-51.
[53]
Kapranov P, St Laurent G, Raz T, et al. The majority of total nuclear-encoded non-ribosomal RNA in a human cell is ‘dark matter’ un-annotated RNA. BMC Biol 2010; 8: 149.
[http://dx.doi.org/10.1186/1741-7007-8-149] [PMID: 21176148]
[54]
Lee JT. Gracefully ageing at 50, X-chromosome inactivation becomes a paradigm for RNA and chromatin control. Nat Rev Mol Cell Biol 2011; 12(12): 815-26.
[http://dx.doi.org/10.1038/nrm3231] [PMID: 22108600]
[55]
Mak W, Nesterova TB, de Napoles M, et al. Reactivation of the paternal X chromosome in early mouse embryos. Science 2004; 303(5658): 666-9.
[http://dx.doi.org/10.1126/science.1092674] [PMID: 14752160]
[56]
Tsai M-C, Manor O, Wan Y, et al. Long noncoding RNA as modular scaffold of histone modification complexes. Science 2010; 329(5992): 689-93.
[http://dx.doi.org/10.1126/science.1192002] [PMID: 20616235]
[57]
Ruthenburg AJ, Wang W, Graybosch DM, et al. Histone H3 recognition and presentation by the WDR5 module of the MLL1 complex. Nat Struct Mol Biol 2006; 13(8): 704-12.
[http://dx.doi.org/10.1038/nsmb1119] [PMID: 16829959]
[58]
Sado T, Hoki Y, Sasaki H. Tsix silences Xist through modification of chromatin structure. Dev Cell 2005; 9(1): 159-65.
[59]
Clemson CM, McNeil JA, Willard HF, Lawrence JB. XIST RNA paints the inactive X chromosome at interphase: evidence for a novel RNA involved in nuclear/chromosome structure. J Cell Biol 1996; 132(3): 259-75.
[http://dx.doi.org/10.1083/jcb.132.3.259] [PMID: 8636206]
[60]
Sado T, Hoki Y, Sasaki H. Tsix silences Xist through modification of chromatin structure. Dev Cell 2005; 9(1): 159-65.
[http://dx.doi.org/10.1016/j.devcel.2005.05.015] [PMID: 15992549]
[61]
Bhat SA, Ahmad SM, Mumtaz PT, et al. Long non-coding RNAs: Mechanism of action and functional utility. Noncoding RNA Res 2016; 1(1): 43-50.
[http://dx.doi.org/10.1016/j.ncrna.2016.11.002] [PMID: 30159410]
[62]
He Y, Meng X-M, Huang C, et al. Long noncoding RNAs: Novel insights into hepatocelluar carcinoma. Cancer Lett 2014; 344(1): 20-7.
[http://dx.doi.org/10.1016/j.canlet.2013.10.021] [PMID: 24183851]
[63]
Pandey RR, Mondal T, Mohammad F, et al. Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Mol Cell 2008; 32(2): 232-46.
[http://dx.doi.org/10.1016/j.molcel.2008.08.022] [PMID: 18951091]
[64]
Wanowska E, Kubiak MR, Rosikiewicz W, Makałowska I, Szcześniak MW. Natural antisense transcripts in diseases: From modes of action to targeted therapies. Wiley Interdiscip Rev RNA 2018; 9(2)e1461
[http://dx.doi.org/10.1002/wrna.1461] [PMID: 29341438]
[65]
Goossens S, Janzen V, Bartunkova S, et al. The EMT regulator Zeb2/Sip1 is essential for murine embryonic hematopoietic stem/progenitor cell differentiation and mobilization. Blood 2011; 117(21): 5620-30.
[http://dx.doi.org/10.1182/blood-2010-08-300236] [PMID: 21355089]
[66]
Hung T, Wang Y, Lin MF, et al. Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters. Nat Genet 2011; 43(7): 621-9.
[http://dx.doi.org/10.1038/ng.848] [PMID: 21642992]
[67]
Davies AH, Barrett I, Pambid MR, et al. YB-1 evokes susceptibility to cancer through cytokinesis failure, mitotic dysfunction and HER2 amplification. Oncogene 2011; 30(34): 3649-60.
[http://dx.doi.org/10.1038/onc.2011.82] [PMID: 21423216]
[68]
Baldassarre A, Masotti A. Long non-coding RNAs and p53 regulation. Int J Mol Sci 2012; 13(12): 16708-17.
[http://dx.doi.org/10.3390/ijms131216708] [PMID: 23222637]
[69]
Yoon J-H, et al. LincRNA-p21 suppresses target mRNA translation. Mol Cell 2012; 47(4): 648-55.
[70]
Ransohoff JD, Wei Y, Khavari PA. The functions and unique features of long intergenic non-coding RNA. Nat Rev Mol Cell Biol 2018; 19(3): 143-57.
[http://dx.doi.org/10.1038/nrm.2017.104] [PMID: 29138516]
[71]
Yoon J-H, Abdelmohsen K, Srikantan S, et al. LincRNA-p21 suppresses target mRNA translation. Mol Cell 2012; 47(4): 648-55.
[http://dx.doi.org/10.1016/j.molcel.2012.06.027] [PMID: 22841487]
[72]
Yang T, Zhang W, Wang L, et al. Long intergenic noncoding RNA-p21 inhibits apoptosis by decreasing PUMA expression in non-small cell lung cancer. J Int Med Res 2019; 47: 481-93.
[http://dx.doi.org/10.1177/0300060518816592]
[73]
Kotake Y, Kitagawa K, Ohhata T, et al. Long non-coding RNA, PANDA, contributes to the stabilization of p53 tumor suppressor protein. Anticancer Res 2016; 36(4): 1605-11.
[PMID: 27069137]
[74]
Zou Y, Zhong Y, Wu J, et al. Long non-coding PANDAR as a novel biomarker in human cancer: A systematic review. Cell Prolif 2018; 51(1)e12422
[http://dx.doi.org/10.1111/cpr.12422] [PMID: 29226461]
[75]
Shi X, Sun M, Liu H, et al. A critical role for the long non-coding RNA GAS5 in proliferation and apoptosis in non-small-cell lung cancer. Mol Carcinog 2015; 54(Suppl. 1): E1-E12.
[http://dx.doi.org/10.1002/mc.22120] [PMID: 24357161]
[76]
Atianand MK, Hu W, Satpathy AT, et al. A long noncoding RNA lincRNA-EPS acts as a transcriptional brake to restrain inflammation. Cell 2016; 165(7): 1672-85.
[http://dx.doi.org/10.1016/j.cell.2016.05.075] [PMID: 27315481]
[77]
Hu W, Yuan B, Flygare J, Lodish HF. Long noncoding RNA-mediated anti-apoptotic activity in murine erythroid terminal differentiation. Genes Dev 2011; 25(24): 2573-8.
[http://dx.doi.org/10.1101/gad.178780.111] [PMID: 22155924]
[78]
Huang H, Sun J, Sun Y, et al. Long noncoding RNAs and their epigenetic function in hematological diseases. Hematol Oncol 2019; 37(1): 15-21.
[http://dx.doi.org/10.1002/hon.2534] [PMID: 30052285]
[79]
Rossi MN, Antonangeli F. LncRNAs: new players in apoptosis control. Int J Cell Biol 2014; 2014473857
[http://dx.doi.org/10.1155/2014/473857]
[80]
Yoon J-H, Abdelmohsen K, Gorospe M. Functional interactions among microRNAs and long noncoding RNAs. In: Seminars in cell & developmental biology. 2014 Elsevier .
[81]
You J, et al. MicroRNA-449a inhibits cell growth in lung cancer and regulates long noncoding RNA nuclear enriched abundant transcript 1. Indian J Cancer 2014; 51(7): 77.
[82]
Yoon J-H, Abdelmohsen K, Gorospe M. Functional interactions among microRNAs and long noncoding RNAsSeminars in cell & developmental biology. Elsevier 2014; pp. 9-14.
[http://dx.doi.org/10.1016/j.semcdb.2014.05.015]
[83]
You J, Zhang Y, Liu B, et al. MicroRNA-449a inhibits cell growth in lung cancer and regulates long noncoding RNA nuclear enriched abundant transcript 1. Indian J Cancer 2014; 51(Suppl. 3): e77-81.
[http://dx.doi.org/10.4103/0019-509X.154055] [PMID: 25818739]
[84]
Wang X, Li M, Wang Z, et al. Silencing of long noncoding RNA MALAT1 by miR-101 and miR-217 inhibits proliferation, migration, and invasion of esophageal squamous cell carcinoma cells. J Biol Chem 2015; 290(7): 3925-35.
[http://dx.doi.org/10.1074/jbc.M114.596866] [PMID: 25538231]
[85]
Cesana M, Cacchiarelli D, Legnini I, et al. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell 2011; 147(2): 358-69.
[http://dx.doi.org/10.1016/j.cell.2011.09.028] [PMID: 22000014]
[86]
Wang Y, Xu Z, Jiang J, et al. Endogenous miRNA sponge lincRNA-RoR regulates Oct4, Nanog, and Sox2 in human embryonic stem cell self-renewal. Dev Cell 2013; 25(1): 69-80.
[http://dx.doi.org/10.1016/j.devcel.2013.03.002] [PMID: 23541921]
[87]
Dey BK, Pfeifer K, Dutta A. The H19 long noncoding RNA gives rise to microRNAs miR-675-3p and miR-675-5p to promote skeletal muscle differentiation and regeneration. Genes Dev 2014; 28(5): 491-501.
[http://dx.doi.org/10.1101/gad.234419.113] [PMID: 24532688]
[88]
Rogler LE, Kosmyna B, Moskowitz D, et al. Small RNAs derived from lncRNA RNase MRP have gene-silencing activity relevant to human cartilage-hair hypoplasia. Hum Mol Genet 2014; 23(2): 368-82.
[http://dx.doi.org/10.1093/hmg/ddt427] [PMID: 24009312]
[89]
Gutschner T, Diederichs S. The hallmarks of cancer: a long non-coding RNA point of view. RNA Biol 2012; 9(6): 703-19.
[http://dx.doi.org/10.4161/rna.20481] [PMID: 22664915]
[90]
Spizzo R, Almeida MI, Colombatti A, Calin GA. Long non-coding RNAs and cancer: a new frontier of translational research? Oncogene 2012; 31(43): 4577-87.
[http://dx.doi.org/10.1038/onc.2011.621] [PMID: 22266873]
[91]
Rossi MN, Antonangeli F. LncRNAs. Int J Cell Biol 2014; 2014473857
[http://dx.doi.org/10.1155/2014/473857] [PMID: 24627686]
[92]
Zhao W, Geng D, Li S, Chen Z, Sun M. LncRNA hotair influences cell growth, migration, invasion, and apoptosis via the miR-20a-5p/HMGA2 axis in breast cancer. Cancer Med 2018; 7(3): 842-55.
[http://dx.doi.org/10.1002/cam4.1353] [PMID: 29473328]
[93]
Jia Y, Feng Y, Shen Y, et al. Deregulated Expression of Long Non- Coding RNA AC092580. 4 in Acute Myeloid Leukemia In: Am Soc Hematology. 2018.
[94]
Liu J, Song Z, Feng C, et al. The long non-coding RNA SUMO1P3 facilitates breast cancer progression by negatively regulating miR-320a. Am J Transl Res 2017; 9(12): 5594-602.
[PMID: 29312511]
[95]
Yu J, Han Q, Cui Y. Decreased long non-coding RNA SPRY4-IT1 contributes to ovarian cancer cell metastasis partly via affecting epithelial-mesenchymal transition. Tumour Biol 2017; 39(7)1010428317709129
[http://dx.doi.org/10.1177/1010428317709129] [PMID: 28691641]
[96]
He S, Zhao Y, Wang X, et al. Up-regulation of long non-coding RNA SNHG20 promotes ovarian cancer progression via Wnt/β-catenin signaling. Biosci Rep 2018; 38(1)BSR20170681
[http://dx.doi.org/10.1042/BSR20170681] [PMID: 29101241]
[97]
Zhang Q, Wang WW, Xu TH, Xu ZF. Highly expressed long non-coding RNA DUXAP10 promotes proliferation of ovarian cancer. Eur Rev Med Pharmacol Sci 2018; 22(2): 314-21.
[PMID: 29424918]
[98]
Li J, Li Y, Meng F, Fu L, Kong C. Knockdown of long non-coding RNA linc00511 suppresses proliferation and promotes apoptosis of bladder cancer cells via suppressing Wnt/β-catenin signaling pathway. Biosci Rep 2018; 38(4)BSR20171701
[http://dx.doi.org/10.1042/BSR20171701] [PMID: 30042171]
[99]
Su F, He W, Chen C, et al. The long non-coding RNA FOXD2-AS1 promotes bladder cancer progression and recurrence through a positive feedback loop with Akt and E2F1. Cell Death Dis 2018; 9(2): 233.
[http://dx.doi.org/10.1038/s41419-018-0275-9] [PMID: 29445134]
[100]
Pan J, Li X, Wu W, et al. Long non-coding RNA UCA1 promotes cisplatin/gemcitabine resistance through CREB modulating miR-196a-5p in bladder cancer cells. Cancer Lett 2016; 382(1): 64-76.
[http://dx.doi.org/10.1016/j.canlet.2016.08.015] [PMID: 27591936]
[101]
Wang F, Li X, Xie X, Zhao L, Chen W. UCA1, a non-protein-coding RNA up-regulated in bladder carcinoma and embryo, influencing cell growth and promoting invasion. FEBS Lett 2008; 582(13): 1919-27.
[http://dx.doi.org/10.1016/j.febslet.2008.05.012] [PMID: 18501714]
[102]
Pouyanrad S, Rahgozar S, Ghodousi ES. Dysregulation of miR-335-3p, targeted by NEAT1 and MALAT1 long non-coding RNAs, is associated with poor prognosis in childhood acute lymphoblastic leukemia. Gene 2019; 692: 35-43.
[http://dx.doi.org/10.1016/j.gene.2019.01.003] [PMID: 30639603]
[103]
Lyu Y, Lou J, Yang Y, et al. Dysfunction of the WT1-MEG3 signaling promotes AML leukemogenesis via p53-dependent and -independent pathways. Leukemia 2017; 31(12): 2543-51.
[http://dx.doi.org/10.1038/leu.2017.116] [PMID: 28400619]
[104]
Al Aameri RFH, Sheth S, Alanisi EMA, et al. Tonic suppression of PCAT29 by the IL-6 signaling pathway in prostate cancer: reversal by resveratrol. PLoS One 2017; 12e0177198
[105]
Lingadahalli S, Jadhao S, Sung YY, et al. A novel long noncoding RNA LINC00844 regulates prostate cancer cell migration and invasion through androgen receptor signaling. bioRxiv 2018.244459
[106]
Bawa PS, Ravi S, Paul S, Chaudhary B, Srinivasan S. A novel molecular mechanism for a long non-coding RNA PCAT92 implicated in prostate cancer. Oncotarget 2018; 9(65): 32419-34.
[http://dx.doi.org/10.18632/oncotarget.25940] [PMID: 30197753]
[107]
Bawa P, Zackaria S, Verma M, et al. Integrative analysis of normal long intergenic non-coding RNAs in prostate cancer. PLoS One 2015; 10(5)e0122143
[http://dx.doi.org/10.1371/journal.pone.0122143] [PMID: 25933431]
[108]
Zou Z, Ma T, He X, et al. Long intergenic non-coding RNA 00324 promotes gastric cancer cell proliferation via binding with HuR and stabilizing FAM83B expression. Cell Death Dis 2018; 9(7): 717.
[http://dx.doi.org/10.1038/s41419-018-0758-8] [PMID: 29915327]
[109]
Luo C, Tao Y, Zhang Y, et al. Regulatory network analysis of high expressed long non-coding RNA LINC00941 in gastric cancer. Gene 2018; 662: 103-9.
[http://dx.doi.org/10.1016/j.gene.2018.04.023] [PMID: 29653230]
[110]
Liu H, Wu N, Zhang Z, et al. Long noncoding RNA LINC00941 as a potential biomarker promotes the proliferation and metastasis of gastric cancer. Front Genet 2019; 10: 5.
[http://dx.doi.org/10.3389/fgene.2019.00005] [PMID: 30723491]
[111]
Zhang E, He X, Zhang C, et al. A novel long noncoding RNA HOXC-AS3 mediates tumorigenesis of gastric cancer by binding to YBX1. Genome Biol 2018; 19(1): 154.
[http://dx.doi.org/10.1186/s13059-018-1523-0] [PMID: 30286788]
[112]
Tian Y, Zhang N, Chen S, Ma Y, Liu Y. The long non-coding RNA LSINCT5 promotes malignancy in non-small cell lung cancer by stabilizing HMGA2. Cell Cycle 2018; 17(10): 1188-98.
[http://dx.doi.org/10.1080/15384101.2018.1467675] [PMID: 29883241]
[113]
Gao L, Zhang H, Zhang B, Wang C. A novel long non-coding RNATCONS_00001798 is downregulated and predicts survival in patients with non-small cell lung cancer. Oncol Lett 2018; 15(4): 6015-21.
[http://dx.doi.org/10.3892/ol.2018.8080] [PMID: 29564001]
[114]
Yin D, Lu X, Su J, et al. Long noncoding RNA AFAP1-AS1 predicts a poor prognosis and regulates non-small cell lung cancer cell proliferation by epigenetically repressing p21 expression. Mol Cancer 2018; 17(1): 92.
[http://dx.doi.org/10.1186/s12943-018-0836-7] [PMID: 29793547]
[115]
Yochum GS, Cleland R, McWeeney S, Goodman RH. An antisense transcript induced by Wnt/β-catenin signaling decreases E2F4. J Biol Chem 2007; 282(2): 871-8.
[http://dx.doi.org/10.1074/jbc.M609391200] [PMID: 17121828]
[116]
Zhou Y, Zhong Y, Wang Y, et al. Activation of p53 by MEG3 non-coding RNA. J Biol Chem 2007; 282(34): 24731-42.
[http://dx.doi.org/10.1074/jbc.M702029200] [PMID: 17569660]
[117]
Graham LD, Pedersen SK, Brown GS, et al. Colorectal neoplasia differentially expressed (CRNDE), a novel gene with elevated expression in colorectal adenomas and adenocarcinomas. Genes Cancer 2011; 2(8): 829-40.
[http://dx.doi.org/10.1177/1947601911431081] [PMID: 22393467]
[118]
Ellis BC, Molloy PL, Graham LD. CRNDE: a long non-coding RNA involved in cancer, neurobiology, and development. Front Genet 2012; 3: 270.
[http://dx.doi.org/10.3389/fgene.2012.00270] [PMID: 23226159]
[119]
Zhen L, Yun-Hui L, Hong-Yu D, Jun M, Yi-Long Y. Long noncoding RNA NEAT1 promotes glioma pathogenesis by regulating miR-449b-5p/c-Met axis. Tumour Biol 2016; 37(1): 673-83.
[http://dx.doi.org/10.1007/s13277-015-3843-y] [PMID: 26242266]
[120]
Chen Q, Cai J, Wang Q, et al. Long noncoding RNA NEAT1, regulated by the EGFR pathway, contributes to glioblastoma progression through the WNT/β-catenin pathway by scaffolding EZH2. Clin Cancer Res 2018; 24(3): 684-95.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-0605] [PMID: 29138341]
[121]
Wang R, Li Y, Zhu G, et al. Long noncoding RNA CASC2 predicts the prognosis of glioma patients and functions as a suppressor for gliomas by suppressing Wnt/β-catenin signaling pathway. Neuropsychiatr Dis Treat 2017; 13: 1805-13.
[http://dx.doi.org/10.2147/NDT.S137171] [PMID: 28744130]
[122]
Liao Y, Shen L, Zhao H, et al. LncRNA CASC2 interacts with miR-181a to modulate glioma growth and resistance to TMZ through PTEN pathway. J Cell Biochem 2017; 118(7): 1889-99.
[http://dx.doi.org/10.1002/jcb.25910] [PMID: 28121023]
[123]
Jiang C, Shen F, Du J, et al. Upregulation of CASC2 sensitized glioma to temozolomide cytotoxicity through autophagy inhibition by sponging miR-193a-5p and regulating mTOR expression. Biomed Pharmacother 2018; 97: 844-50.
[http://dx.doi.org/10.1016/j.biopha.2017.10.146] [PMID: 29136760]
[124]
Shang C, Guo Y, Hong Y, Xue YX. Long non-coding RNA TUSC7, a target of miR-23b, plays tumor-suppressing roles in human gliomas. Front Cell Neurosci 2016; 10: 235.
[http://dx.doi.org/10.3389/fncel.2016.00235] [PMID: 27766072]
[125]
Shang C, Tang W, Pan C, Hu X, Hong Y. Long non-coding RNA TUSC7 inhibits temozolomide resistance by targeting miR-10a in glioblastoma. Cancer Chemother Pharmacol 2018; 81(4): 671-8.
[http://dx.doi.org/10.1007/s00280-018-3522-y] [PMID: 29397407]
[126]
Zhou H, Sun Z, Li S, Wang X, Zhou X. LncRNA SPRY4-IT was concerned with the poor prognosis and contributed to the progression of thyroid cancer. Cancer Gene Ther 2018; 25(1-2): 39-46.
[http://dx.doi.org/10.1038/s41417-017-0003-0] [PMID: 29234152]
[127]
Di W, Li Q, Shen W, Guo H, Zhao S. The long non-coding RNA HOTAIR promotes thyroid cancer cell growth, invasion and migration through the miR-1-CCND2 axis. Am J Cancer Res 2017; 7(6): 1298-309.
[PMID: 28670492]
[128]
Liu K, Huang W, Yan D-Q, Luo Q, Min X. Overexpression of long intergenic noncoding RNA LINC00312 inhibits the invasion and migration of thyroid cancer cells by down-regulating microRNA-197-3p. Biosci Rep 2017; 37(4)BSR20170109
[http://dx.doi.org/10.1042/BSR20170109] [PMID: 28539331]
[129]
Chen S, Wu DD, Sang XB, et al. The lncRNA HULC functions as an oncogene by targeting ATG7 and ITGB1 in epithelial ovarian carcinoma. Cell Death Dis 2017; 8(10)e3118
[http://dx.doi.org/10.1038/cddis.2017.486] [PMID: 29022892]
[130]
Xu X, Lou Y, Tang J, et al. The long non-coding RNA Linc-GALH promotes hepatocellular carcinoma metastasis via epigenetically regulating Gankyrin. Cell Death Dis 2019; 10(2): 86.
[http://dx.doi.org/10.1038/s41419-019-1348-0] [PMID: 30692513]
[131]
Lv J, Fan HX, Zhao XP, et al. Long non-coding RNA Unigene56159 promotes epithelial-mesenchymal transition by acting as a ceRNA of miR-140-5p in hepatocellular carcinoma cells. Cancer Lett 2016; 382(2): 166-75.
[http://dx.doi.org/10.1016/j.canlet.2016.08.029] [PMID: 27597739]
[132]
Hu H, Wang Y, Ding X, et al. Long non-coding RNA XLOC_000647 suppresses progression of pancreatic cancer and decreases epithelial-mesenchymal transition-induced cell invasion by down-regulating NLRP3. Mol Cancer 2018; 17(18)
[133]
Guo W, Zhong K, Wei H, Nie C, Yuan Z. Long non-coding RNA SPRY4-IT1 promotes cell proliferation and invasion by regulation of Cdc20 in pancreatic cancer cells. PLoS One 2018; 13(2)e0193483
[http://dx.doi.org/10.1371/journal.pone.0193483] [PMID: 29489909]
[134]
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin 2018; 68(1): 7-30.
[http://dx.doi.org/10.3322/caac.21442] [PMID: 29313949]
[135]
Zhang K, Chen J, Song H, Chen L-B. SNHG16/miR-140-5p axis promotes esophagus cancer cell proliferation, migration and EMT formation through regulating ZEB1. Oncotarget 2017; 9(1): 1028-40.
[PMID: 29416674]
[136]
Chen X, Han H, Li Y, Zhang Q, Mo K, Chen S. Upregulation of long noncoding RNA HOTTIP promotes metastasis of esophageal squamous cell carcinoma via induction of EMT. Oncotarget 2016; 7(51): 84480-5.
[http://dx.doi.org/10.18632/oncotarget.12995] [PMID: 27806322]
[137]
Lin C, Wang Y, Wang Y, et al. Transcriptional and posttranscriptional regulation of HOXA13 by lncRNA HOTTIP facilitates tumorigenesis and metastasis in esophageal squamous carcinoma cells. Oncogene 2017; 36(38): 5392-406.
[http://dx.doi.org/10.1038/onc.2017.133] [PMID: 28534516]
[138]
Gao GD, Liu XY, Lin Y, Liu HF, Zhang GJ. LncRNA CASC9 promotes tumorigenesis by affecting EMT and predicts poor prognosis in esophageal squamous cell cancer. Eur Rev Med Pharmacol Sci 2018; 22(2): 422-9.
[PMID: 29424900]
[139]
Zhang CZ. Long non-coding RNA FTH1P3 facilitates oral squamous cell carcinoma progression by acting as a molecular sponge of miR-224-5p to modulate fizzled 5 expression. Gene 2017; 607: 47-55.
[http://dx.doi.org/10.1016/j.gene.2017.01.009] [PMID: 28093311]
[140]
Zhang C-Z. Long intergenic non-coding RNA 668 regulates VEGFA signaling through inhibition of miR-297 in oral squamous cell carcinoma. Biochem Biophys Res Commun 2017; 489(4): 404-12.
[http://dx.doi.org/10.1016/j.bbrc.2017.05.155] [PMID: 28564590]
[141]
Liang S, Zhang S, Wang P, et al. LncRNA, TUG1 regulates the oral squamous cell carcinoma progression possibly via interacting with Wnt/β-catenin signaling. Gene 2017; 608: 49-57.
[http://dx.doi.org/10.1016/j.gene.2017.01.024] [PMID: 28119088]
[142]
Li R, Zhang L, Jia L, et al. Long non-coding RNA BANCR promotes proliferation in malignant melanoma by regulating MAPK pathway activation. PLoS One 2014; 9(6)e100893
[http://dx.doi.org/10.1371/journal.pone.0100893] [PMID: 24967732]
[143]
Flockhart RJ, Webster DE, Qu K, et al. BRAFV600E remodels the melanocyte transcriptome and induces BANCR to regulate melanoma cell migration. Genome Res 2012; 22(6): 1006-14.
[http://dx.doi.org/10.1101/gr.140061.112] [PMID: 22581800]
[144]
Lessard L, Liu M, Marzese DM, et al. The CASC15 Long Intergenic Noncoding RNA Locus Is Involved in Melanoma Progression and Phenotype Switching. J Invest Dermatol 2015; 135(10): 2464-74.
[http://dx.doi.org/10.1038/jid.2015.200] [PMID: 26016895]
[145]
Leucci E, Vendramin R, Spinazzi M, et al. Melanoma addiction to the long non-coding RNA SAMMSON. Nature 2016; 531(7595): 518-22.
[http://dx.doi.org/10.1038/nature17161] [PMID: 27008969]
[146]
Zhang J, Sui S, Wu H, et al. The transcriptional landscape of lncRNAs reveals the oncogenic function of LINC00511 in ER-negative breast cancer. Cell Death Dis 2019; 10(8): 599.
[http://dx.doi.org/10.1038/s41419-019-1835-3] [PMID: 31395854]
[147]
Zheng S, Li M, Miao K, Xu H. SNHG1 contributes to proliferation and invasion by regulating miR-382 in breast cancer. Cancer Manag Res 2019; 11: 5589-98.
[http://dx.doi.org/10.2147/CMAR.S198624] [PMID: 31354360]
[148]
Guo LL, Wang SF. Downregulated Long Noncoding RNA GAS5 fails to function as decoy of CEBPB, resulting in increased GDF15 expression and rapid ovarian cancer cell proliferation. Cancer Biother Radiopharm 2019; 34(8): 537-46.
[http://dx.doi.org/10.1089/cbr.2019.2889] [PMID: 31314588]
[149]
Lin X, Spindler TJ, de Souza Fonseca MA, et al. Super-Enhancer- Associated LncRNA UCA1 interacts directly with AMOT to activate YAP target genes in epithelial ovarian cancer. iScience 2019; 17: 242-55.
[150]
You Q, Shi HY, Gong CF, Tian XY, Li S. Long non-coding RNA DLX6-AS1 acts as an oncogene by targeting miR-613 in ovarian cancer. Eur Rev Med Pharmacol Sci 2019; 23(15): 6429-35.
[PMID: 31378881]
[151]
Jiang D, Zhang Y, Yang L, et al. Long noncoding RNA HCG22 suppresses proliferation and metastasis of bladder cancer cells by regulation of PTBP1. J Cell Physiol 2019.
[http://dx.doi.org/10.1002/jcp.29090] [PMID: 31304601]
[152]
Salazar M, Lorente M, García-Taboada E, et al. Loss of Tribbles pseudokinase-3 promotes Akt-driven tumorigenesis via FOXO inactivation. Cell Death Differ 2015; 22(1): 131-44.
[http://dx.doi.org/10.1038/cdd.2014.133] [PMID: 25168244]
[153]
Li H-L, Xie S-P, Yang Y-L, et al. Clinical significance of upregulation of mir-196a-5p in gastric cancer and enriched KEGG pathway analysis of target genes. Asian Pac J Cancer Prev 2015; 16(5): 1781-7.
[http://dx.doi.org/10.7314/APJCP.2015.16.5.1781] [PMID: 25773825]
[154]
Cheng P, Lu P, Guan J, et al. LncRNA KCNQ1OT1 controls cell proliferation, differentiation and apoptosis by sponging miR-326 to regulate c-Myc expression in acute myeloid leukemia. Neoplasma 2019; 181215N972.
[http://dx.doi.org/10.4149/neo_2018_181215N972] [PMID: 31390869]
[155]
Wang Y. Comprehensive long non-coding RNA expression profiling by RNA sequencing reveals potential biomarkers for acute myeloid leukemia risk. Cancer Biomark 2019; 26(1): 93-108.
[http://dx.doi.org/10.3233/CBM-190215] [PMID: 31356197]
[156]
Shi J, Dai R, Chen Y, Guo H, Han Y, Zhang Y. LncRNA LINP1 regulates acute myeloid leukemia progression via HNF4α/AMPK/WNT5A signaling pathway. Hematol Oncol 2019.
[http://dx.doi.org/10.1002/hon.2651] [PMID: 31325181]
[157]
Alvarez-Dominguez JR, Hu W, Gromatzky AA, Lodish HF. Long noncoding RNAs during normal and malignant hematopoiesis. Int J Hematol 2014; 99(5): 531-41.
[http://dx.doi.org/10.1007/s12185-014-1552-8] [PMID: 24609766]
[158]
Lou W, Ni Z, Dyer K, Tweardy DJ, Gao AC. Interleukin-6 induces prostate cancer cell growth accompanied by activation of stat3 signaling pathway. Prostate 2000; 42(3): 239-42.
[http://dx.doi.org/10.1002/(SICI)1097-0045(20000215)42:3<239:AID-PROS10>3.0.CO;2-G] [PMID: 10639195]
[159]
Siegsmund MJ, Yamazaki H, Pastan I. Interleukin 6 receptor mRNA in prostate carcinomas and benign prostate hyperplasia. J Urol 1994; 151(5): 1396-9.
[http://dx.doi.org/10.1016/S0022-5347(17)35267-9] [PMID: 7512667]
[160]
Ou H, Li Y, Kang M. Activation of miR-21 by STAT3 induces proliferation and suppresses apoptosis in nasopharyngeal carcinoma by targeting PTEN gene. PLoS One 2014; 9(11)e109929
[http://dx.doi.org/10.1371/journal.pone.0109929] [PMID: 25365510]
[161]
Nie ML, Han J, Huang HC, et al. The novel lncRNA p4516 acts as a prognostic biomarker promoting gastric cancer cell proliferation and metastasis. Cancer Manag Res 2019; 11: 5375-91.
[http://dx.doi.org/10.2147/CMAR.S201793] [PMID: 31354346]
[162]
Jakstaite A, Maziukiene A, Silkuniene G, Kmieliute K, Gulbinas A, Dambrauskas Z. HuR mediated post-transcriptional regulation as a new potential adjuvant therapeutic target in chemotherapy for pancreatic cancer. World J Gastroenterol 2015; 21(46): 13004-19.
[http://dx.doi.org/10.3748/wjg.v21.i46.13004] [PMID: 26675757]
[163]
Sun Z, He C, Xiao M, et al. LncRNA FOXC2 antisense transcript accelerates non-small-cell lung cancer tumorigenesis via silencing p15. Am J Transl Res 2019; 11(7): 4552-60.
[PMID: 31396359]
[164]
Yang J, Lin X, Jiang W, Wu J, Lin L. lncRNA LEF1-AS1 Promotes Malignancy in Non-Small-Cell Lung Cancer by Modulating the miR-489/SOX4 Axis. DNA Cell Biol 2019; 38(9): 1013-21.
[http://dx.doi.org/10.1089/dna.2019.4717] [PMID: 31386568]
[165]
Zou A, Liu X, Mai Z, et al. LINC00472 Acts as a Tumor Suppressor in NSCLC through KLLN-Mediated p53-Signaling Pathway via MicroRNA-149-3p and MicroRNA-4270. Mol Ther Nucleic Acids 2019; 17: 563-77.
[http://dx.doi.org/10.1016/j.omtn.2019.06.003] [PMID: 31382188]
[166]
Zhong M, Wang WL, Yu DJ. Long non-coding RNA OR3A4 is associated with poor prognosis of human non-small cell lung cancer and regulates cell proliferation via up-regulating SOX4. Eur Rev Med Pharmacol Sci 2019; 23(15): 6524-30.
[PMID: 31378892]
[167]
Abbas T, Dutta A. p21 in cancer: intricate networks and multiple activities. Nat Rev Cancer 2009; 9(6): 400-14.
[http://dx.doi.org/10.1038/nrc2657] [PMID: 19440234]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 25
ISSUE: 33
Year: 2019
Page: [3563 - 3577]
Pages: 15
DOI: 10.2174/1381612825666190830161528
Price: $58

Article Metrics

PDF: 20
HTML: 2

Special-new-year-discount