Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Macrophage: A Key Therapeutic Target in Atherosclerosis?

Author(s): Eskandar Taghizadeh, Forough Taheri, Pedram G. Renani, Željko Reiner, Jamshid G. Navashenaq and Amirhossein Sahebkar*

Volume 25, Issue 29, 2019

Page: [3165 - 3174] Pages: 10

DOI: 10.2174/1381612825666190830153056

Price: $65

Abstract

Background: Atherosclerosis is a chronic inflammatory disease and a leading cause of coronary artery disease, peripheral vascular disease and stroke. Lipid-laden macrophages are derived from circulating monocytes and form fatty streaks as the first step of atherogenesis.

Methods: An electronic search in major databases was performed to review new therapeutic opportunities for influencing the inflammatory component of atherosclerosis based on monocytes/macrophages targeting.

Results: In the past two decades, macrophages have been recognized as the main players in atherogenesis but also in its thrombotic complications. There is a growing interest in immunometabolism and recent studies on metabolism of macrophages have created new therapeutic options to treat atherosclerosis. Targeting recruitment, polarization, cytokine profile extracellular matrix remodeling, cholesterol metabolism, oxidative stress, inflammatory activity and non-coding RNAs of monocyte/macrophage have been proposed as potential therapeutic approaches against atherosclerosis.

Conclusion: Monocytes/macrophages have a crucial role in progression and pathogenesis of atherosclerosis. Therefore, targeting monocyte/macrophage therapy in order to achieve anti-inflammatory effects might be a good option for prevention of atherosclerosis.

Keywords: Leukocyte, atherosclerosis, vascular inflammation, immune system, anti-inflammatory, monocyte/macrophage.

[1]
Soehnlein O. Multiple roles for neutrophils in atherosclerosis. Circ Res 2012; 110(6): 875-88.
[http://dx.doi.org/10.1161/CIRCRESAHA.111.257535] [PMID: 22427325]
[2]
Ross R. Atherosclerosis-an inflammatory disease. N Engl J Med 1999; 340: 115-26.
[3]
Libby P. Inflammation in atherosclerosis. Arterioscler Thromb Vasc Biol 2012; 32(9): 2045-51.
[http://dx.doi.org/10.1161/ATVBAHA.108.179705] [PMID: 22895665]
[4]
Libby P, Ridker PM, Hansson GK. Leducq transatlantic network on atherothrombosis. Inflammation in atherosclerosis: from pathophysiology to practice. J Am Coll Cardiol 2009; 54(23): 2129-38.
[http://dx.doi.org/10.1016/j.jacc.2009.09.009] [PMID: 19942084]
[5]
Charo IF, Taub R. Anti-inflammatory therapeutics for the treatment of atherosclerosis. Nat Rev Drug Discov 2011; 10(5): 365-76.
[http://dx.doi.org/10.1038/nrd3444] [PMID: 21532566]
[6]
Catapano AL, Graham I, De Backer G, et al. 2016 ESC/EAS guidelines for the management of dyslipidaemias. Eur Heart J 2016; 37(39): 2999-3058.
[http://dx.doi.org/10.1093/eurheartj/ehw272] [PMID: 27567407]
[7]
Drechsler M, Megens RT, van Zandvoort M, Weber C, Soehnlein O. Hyperlipidemia-triggered neutrophilia promotes early atherosclerosis. Circulation 2010; 122(18): 1837-45.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.110.961714] [PMID: 20956207]
[8]
Williams HJ, Fisher EA, Greaves DR. Macrophage differentiation and function in atherosclerosis: opportunities for therapeutic intervention? J Innate Immun 2012; 4(5-6): 498-508.
[http://dx.doi.org/10.1159/000336618] [PMID: 22572544]
[9]
Mallat Z, Taleb S, Ait-Oufella H, Tedgui A. The role of adaptive T cell immunity in atherosclerosis. J Lipid Res 2009; 50(Suppl.): S364-9.
[http://dx.doi.org/10.1194/jlr.R800092-JLR200] [PMID: 19050311]
[10]
Moore KJ, Tabas I. Macrophages in the pathogenesis of atherosclerosis. Cell 2011; 145(3): 341-55.
[http://dx.doi.org/10.1016/j.cell.2011.04.005] [PMID: 21529710]
[11]
Moore KJ, Sheedy FJ, Fisher EA. Macrophages in atherosclerosis: a dynamic balance. Nat Rev Immunol 2013; 13(10): 709-21.
[http://dx.doi.org/10.1038/nri3520] [PMID: 23995626]
[12]
Groh L, Keating ST, Joosten LA, Netea MG, Riksen NP. Monocyte and macrophage immunometabolism in atherosclerosis. Semin Immunopathol 2018; 40(2): 203-14.
[http://dx.doi.org/10.1007/s00281-017-0656-7]
[13]
Boring L, Gosling J, Cleary M, Charo IF. Decreased lesion formation in CCR2-/- mice reveals a role for chemokines in the initiation of atherosclerosis. Nature 1998; 394(6696): 894-7.
[http://dx.doi.org/10.1038/29788] [PMID: 9732872]
[14]
Zimmer S, Grebe A, Latz E. Danger signaling in atherosclerosis. Circ Res 2015; 116(2): 323-40.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.301135] [PMID: 25593277]
[15]
Ross R. Atherosclerosis is an inflammatory disease. Am Heart J 1999; 138(5 Pt 2): S419-20.
[http://dx.doi.org/10.1016/S0002-8703(99)70266-8] [PMID: 10539839]
[16]
Choudhury RP, Lee JM, Greaves DR. Mechanisms of disease: macrophage-derived foam cells emerging as therapeutic targets in atherosclerosis. Nat Clin Pract Cardiovasc Med 2005; 2(6): 309-15.
[http://dx.doi.org/10.1038/ncpcardio0195] [PMID: 16265535]
[17]
Tiwari RL, Singh V, Barthwal MK. Macrophages: an elusive yet emerging therapeutic target of atherosclerosis. Med Res Rev 2008; 28(4): 483-544.
[http://dx.doi.org/10.1002/med.20118] [PMID: 18000963]
[18]
McLaren JE, Michael DR, Ashlin TG, Ramji DP. Cytokines, macrophage lipid metabolism and foam cells: implications for cardiovascular disease therapy. Prog Lipid Res 2011; 50(4): 331-47.
[http://dx.doi.org/10.1016/j.plipres.2011.04.002] [PMID: 21601592]
[19]
Rigamonti E, Chinetti-Gbaguidi G, Staels B. Regulation of macrophage functions by PPAR-α, PPAR-γ, and LXRs in mice and men. Arterioscler Thromb Vasc Biol 2008; 28(6): 1050-9.
[http://dx.doi.org/10.1161/ATVBAHA.107.158998] [PMID: 18323516]
[20]
Szanto A, Rőszer T. Nuclear receptors in macrophages: a link between metabolism and inflammation. FEBS Lett 2008; 582(1): 106-16.
[http://dx.doi.org/10.1016/j.febslet.2007.11.020] [PMID: 18022390]
[21]
Bouhlel MA, Staels B, Chinetti-Gbaguidi G. Peroxisome proliferator-activated receptors--from active regulators of macrophage biology to pharmacological targets in the treatment of cardiovascular disease. J Intern Med 2008; 263(1): 28-42.
[PMID: 18042221]
[22]
Trelle S, Reichenbach S, Wandel S, et al. Cardiovascular safety of non-steroidal anti-inflammatory drugs: network meta-analysis. BMJ 2011; 342: C7086.
[http://dx.doi.org/10.1136/bmj.c7086] [PMID: 21224324]
[23]
Fava C, Montagnana M. Atherosclerosis is an inflammatory disease which lacks a common anti-inflammatory therapy: how human genetics can help to this issue. A narrative review. Front Pharmacol 2018; 9: 55.
[http://dx.doi.org/10.3389/fphar.2018.00055] [PMID: 29467655]
[24]
Shen J, Shang Q, Tam L-S. Targeting inflammation in the prevention of cardiovascular disease in patients with inflammatory arthritis. Transl Res 2016; 167(1): 138-51.
[http://dx.doi.org/10.1016/j.trsl.2015.05.006] [PMID: 26051628]
[25]
Micha R, Imamura F, Wyler von Ballmoos M, et al. Systematic review and meta-analysis of methotrexate use and risk of cardiovascular disease. Am J Cardiol 2011; 108(9): 1362-70.
[http://dx.doi.org/10.1016/j.amjcard.2011.06.054] [PMID: 21855836]
[26]
Roubille C, Richer V, Starnino T, et al. The effects of tumour necrosis factor inhibitors, methotrexate, non-steroidal anti-inflammatory drugs and corticosteroids on cardiovascular events in rheumatoid arthritis, psoriasis and psoriatic arthritis: a systematic review and meta-analysis. Ann Rheum Dis 2015; 74(3): 480-9.
[http://dx.doi.org/10.1136/annrheumdis-2014-206624]
[27]
Ridker PM, Everett BM, Pradhan A, et al. CIRT Investigators. Low-dose methotrexate for the prevention of atherosclerotic events. N Engl J Med 2019; 380(8): 752-62.
[http://dx.doi.org/10.1056/NEJMoa1809798] [PMID: 30415610]
[28]
Ridker PM, Everett BM, Thuren T, et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med 2017; 377(12): 1119-31.
[http://dx.doi.org/10.1056/NEJMoa1707914] [PMID: 28845751]
[29]
Spartalis M, Spartalis E, Tzatzaki E, et al. The beneficial therapy with colchicine for atherosclerosis via anti-inflammation and decrease in hypertriglyceridemia. Cardiovasc Hematol Agents Med Chem 2018; 16(2): 74-80.
[30]
Bhala N, Emberson J, Merhi A, et al. Vascular and upper gastrointestinal effects of non-steroidal anti-inflammatory drugs: meta-analyses of individual participant data from randomised trials. Lancet 2013; 382(9894): 769-79.
[http://dx.doi.org/10.1016/S0140-6736(13)60900-9] [PMID: 23726390]
[31]
Barnabe C, Martin BJ, Ghali WA. Systematic review and meta-analysis: anti-tumor necrosis factor α therapy and cardiovascular events in rheumatoid arthritis. Arthritis Care Res (Hoboken) 2011; 63(4): 522-9.
[http://dx.doi.org/10.1002/acr.20371] [PMID: 20957658]
[32]
Westlake SL, Colebatch AN, Baird J, et al. Tumour necrosis factor antagonists and the risk of cardiovascular disease in patients with rheumatoid arthritis: a systematic literature review. Rheumatology (Oxford) 2011; 50(3): 518-31.
[http://dx.doi.org/10.1093/rheumatology/keq316] [PMID: 21071477]
[33]
Low AS, Symmons DP, Lunt M, et al. Relationship between exposure to tumour necrosis factor inhibitor therapy and incidence and severity of myocardial infarction in patients with rheumatoid arthritis. Ann Rheum Dis 2017; 76(4): 654-60.
[http://dx.doi.org/10.1136/annrheumdis-2016-209784]
[34]
Sönmez HE, Demir S, Bilginer Y, Özen S. Anakinra treatment in macrophage activation syndrome: a single center experience and systemic review of literature. Clin Rheumatol 2018; 37(12): 3329-35.
[http://dx.doi.org/10.1007/s10067-018-4095-1] [PMID: 29663156]
[35]
Peiró C, Lorenzo Ó, Carraro R, Sánchez-Ferrer CF. IL-1β inhibition in cardiovascular complications associated to diabetes mellitus. Front Pharmacol 2017; 8: 363.
[http://dx.doi.org/10.3389/fphar.2017.00363] [PMID: 28659798]
[36]
Mills CD, Kincaid K, Alt JM, Heilman MJ, Hill AM. M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol 2000; 164(12): 6166-73.
[http://dx.doi.org/10.4049/jimmunol.164.12.6166] [PMID: 10843666]
[37]
Gordon S. Alternative activation of macrophages. Nat Rev Immunol 2003; 3(1): 23-35.
[http://dx.doi.org/10.1038/nri978] [PMID: 12511873]
[38]
Ingersoll MA, Platt AM, Potteaux S, Randolph GJ. Monocyte trafficking in acute and chronic inflammation. Trends Immunol 2011; 32(10): 470-7.
[http://dx.doi.org/10.1016/j.it.2011.05.001] [PMID: 21664185]
[39]
Hanna RN, Shaked I, Hubbeling HG, et al. NR4A1 (Nur77) deletion polarizes macrophages toward an inflammatory phenotype and increases atherosclerosis. Circ Res 2012; 110(3): 416-27.
[http://dx.doi.org/10.1161/CIRCRESAHA.111.253377] [PMID: 22194622]
[40]
Sharma N, Lu Y, Zhou G, et al. Myeloid Krüppel-like factor 4 deficiency augments atherogenesis in ApoE-/- mice--brief report. Arterioscler Thromb Vasc Biol 2012; 32(12): 2836-8.
[http://dx.doi.org/10.1161/ATVBAHA.112.300471] [PMID: 23065827]
[41]
Cardilo-Reis L, Gruber S, Schreier SM, et al. Interleukin-13 protects from atherosclerosis and modulates plaque composition by skewing the macrophage phenotype. EMBO Mol Med 2012; 4(10): 1072-86.
[http://dx.doi.org/10.1002/emmm.201201374] [PMID: 23027612]
[42]
Feig JE, Parathath S, Rong JX, et al. Reversal of hyperlipidemia with a genetic switch favorably affects the content and inflammatory state of macrophages in atherosclerotic plaques. Circulation 2011; 123(9): 989-98.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.110.984146]
[43]
Galkina E, Ley K. Vascular adhesion molecules in atherosclerosis. Arterioscler Thromb Vasc Biol 2007; 27(11): 2292-301.
[http://dx.doi.org/10.1161/ATVBAHA.107.149179] [PMID: 17673705]
[44]
Cybulsky MI, Iiyama K, Li H, et al. A major role for VCAM-1, but not ICAM-1, in early atherosclerosis. J Clin Invest 2001; 107(10): 1255-62.
[http://dx.doi.org/10.1172/JCI11871] [PMID: 11375415]
[45]
Schreiner EP, Kern M, Steck A, Foster CA. Synthesis of ether analogues derived from HUN-7293 and evaluation as inhibitors of VCAM-1 expression. Bioorg Med Chem Lett 2004; 14(19): 5003-6.
[http://dx.doi.org/10.1016/j.bmcl.2004.07.012] [PMID: 15341969]
[46]
Tardif J-C, McMurray JJ, Klug E, et al. Effects of succinobucol (AGI-1067) after an acute coronary syndrome: a randomised, double-blind, placebo-controlled trial. Lancet 2008; 371(9626): 1761-8.
[http://dx.doi.org/10.1016/S0140-6736(08)60763-1] [PMID: 18502300]
[47]
Duffy SJ, Dart AM. Novel cardiac therapies and innocent by standers. Lancet 2008; 371(9626): 1726-8.
[http://dx.doi.org/10.1016/S0140-6736(08)60737-0] [PMID: 18502279]
[48]
Besemer J, Harant H, Wang S, et al. Selective inhibition of cotranslational translocation of vascular cell adhesion molecule 1. Nature 2005; 436(7048): 290-3.
[http://dx.doi.org/10.1038/nature03670] [PMID: 16015337]
[49]
Gu L, Okada Y, Clinton SK, et al. Absence of monocyte chemoattractant protein-1 reduces atherosclerosis in low density lipoprotein receptor-deficient mice. Mol Cell 1998; 2(2): 275-81.
[http://dx.doi.org/10.1016/S1097-2765(00)80139-2] [PMID: 9734366]
[50]
Guo J, Van Eck M, Twisk J, et al. Transplantation of monocyte CC-chemokine receptor 2-deficient bone marrow into ApoE3-Leiden mice inhibits atherogenesis. Arterioscler Thromb Vasc Biol 2003; 23(3): 447-53.
[http://dx.doi.org/10.1161/01.ATV.0000058431.78833.F5] [PMID: 12615695]
[51]
Veillard NR, Kwak B, Pelli G, et al. Antagonism of RANTES receptors reduces atherosclerotic plaque formation in mice. Circ Res 2004; 94(2): 253-61.
[http://dx.doi.org/10.1161/01.RES.0000109793.17591.4E] [PMID: 14656931]
[52]
Bursill CA, Choudhury RP, Ali Z, Greaves DR, Channon KM. Broad-spectrum CC-chemokine blockade by gene transfer inhibits macrophage recruitment and atherosclerotic plaque formation in apolipoprotein E-knockout mice. Circulation 2004; 110(16): 2460-6.
[http://dx.doi.org/10.1161/01.CIR.0000145122.58420.CO] [PMID: 15477414]
[53]
Haverslag R, Pasterkamp G, Hoefer IE. Targeting adhesion molecules in cardiovascular disorders. Cardiovasc Hematol Disord Drug Targets 2008; 8(4): 252-60.
[http://dx.doi.org/10.2174/187152908786786188]
[54]
Gilbert J, Lekstrom-Himes J, Donaldson D, et al. Effect of CC chemokine receptor 2 CCR2 blockade on serum C-reactive protein in individuals at atherosclerotic risk and with a single nucleotide polymorphism of the monocyte chemoattractant protein-1 promoter region. Am J Cardiol 2011; 107(6): 906-11.
[http://dx.doi.org/10.1016/j.amjcard.2010.11.005] [PMID: 21247529]
[55]
Morand EF. New therapeutic target in inflammatory disease: macrophage migration inhibitory factor. Intern Med J 2005; 35(7): 419-26.
[http://dx.doi.org/10.1111/j.1445-5994.2005.00853.x] [PMID: 15958113]
[56]
Burger-Kentischer A, Goebel H, Seiler R, et al. Expression of macrophage migration inhibitory factor in different stages of human atherosclerosis. Circulation 2002; 105(13): 1561-6.
[http://dx.doi.org/10.1161/01.CIR.0000012942.49244.82] [PMID: 11927523]
[57]
Cai H. NAD(P)H oxidase-dependent self-propagation of hydrogen peroxide and vascular disease. Circ Res 2005; 96(8): 818-22.
[http://dx.doi.org/10.1161/01.RES.0000163631.07205.fb] [PMID: 15860762]
[58]
Cathcart MK. Regulation of superoxide anion production by NADPH oxidase in monocytes/macrophages: contributions to atherosclerosis. Arterioscler Thromb Vasc Biol 2004; 24(1): 23-8.
[http://dx.doi.org/10.1161/01.ATV.0000097769.47306.12] [PMID: 14525794]
[59]
Saha P, Modarai B, Humphries J, et al. The monocyte/macrophage as a therapeutic target in atherosclerosis. Curr Opin Pharmacol 2009; 9(2): 109-18.
[http://dx.doi.org/10.1016/j.coph.2008.12.017] [PMID: 19230773]
[60]
Barry-Lane PA, Patterson C, van der Merwe M, et al. p47phox is required for atherosclerotic lesion progression in ApoE(-/-) mice. J Clin Invest 2001; 108(10): 1513-22.
[http://dx.doi.org/10.1172/JCI200111927] [PMID: 11714743]
[61]
Chen JY, Ye ZX, Wang XF, et al. Nitric oxide bioavailability dysfunction involves in atherosclerosis. Biomed Pharmacother 2018; 97: 423-8.
[http://dx.doi.org/10.1016/j.biopha.2017.10.122] [PMID: 29091892]
[62]
Esaki T, Hayashi T, Muto E, et al. Expression of inducible nitric oxide synthase and Fas/Fas ligand correlates with the incidence of apoptotic cell death in atheromatous plaques of human coronary arteries. Nitric Oxide 2000; 4(6): 561-71.
[http://dx.doi.org/10.1006/niox.2000.0311] [PMID: 11139364]
[63]
Goncharov NV, Avdonin PV, Nadeev AD, Zharkikh IL, Jenkins RO. Reactive oxygen species in pathogenesis of atherosclerosis. Curr Pharm Des 2015; 21: 1134-46.
[http://dx.doi.org/10.2174/1381612820666141014142557]
[64]
Funk CD. Lipoxygenase pathways as mediators of early inflammatory events in atherosclerosis. Arterioscler Thromb Vasc Biol 2006; 26(6): 1204-6.
[http://dx.doi.org/10.1161/01.ATV.0000222960.43792.ff]
[65]
Jawien J, Gajda M, Rudling M, et al. Inhibition of five lipoxygenase activating protein (FLAP) by MK-886 decreases atherosclerosis in apoE/LDLR-double knockout mice. Eur J Clin Invest 2006; 36(3): 141-6.
[http://dx.doi.org/10.1111/j.1365-2362.2006.01606.x] [PMID: 16506957]
[66]
Vidal C, Gómez-Hernández A, Sánchez-Galán E, et al. Licofelone, a balanced inhibitor of cyclooxygenase and 5-lipoxygenase, reduces inflammation in a rabbit model of atherosclerosis. J Pharmacol Exp Ther 2007; 320(1): 108-16.
[http://dx.doi.org/10.1124/jpet.106.110361] [PMID: 17015640]
[67]
Li AC, Glass CK. The macrophage foam cell as a target for therapeutic intervention. Nat Med 2002; 8(11): 1235-42.
[http://dx.doi.org/10.1038/nm1102-1235] [PMID: 12411950]
[68]
Burnett J. Eflucimibe. Pierre Fabre/Eli Lilly. Curr Opin Investig Drugs 2003; 4(3): 347-51.
[69]
Pillarisetti S, Alexander CW, Saxena U. Atherosclerosis -- new targets and therapeutics. Curr Med Chem Cardiovasc Hematol Agents 2004; 2(4): 327-34.
[http://dx.doi.org/10.2174/1568016043356246] [PMID: 15320783]
[70]
Nissen SE, Tuzcu EM, Brewer HB, et al. ACAT Intravascular Atherosclerosis Treatment Evaluation (ACTIVATE) Investigators. Effect of ACAT inhibition on the progression of coronary atherosclerosis. N Engl J Med 2006; 354(12): 1253-63.
[http://dx.doi.org/10.1056/NEJMoa054699] [PMID: 16554527]
[71]
Joyce CW, Wagner EM, Basso F, et al. ABCA1 overexpression in the liver of LDLr-KO mice leads to accumulation of pro-atherogenic lipoproteins and enhanced atherosclerosis. J Biol Chem 2006; 281(44): 33053-65.
[http://dx.doi.org/10.1074/jbc.M604526200] [PMID: 16928680]
[72]
Qiu G, Hill JS. Atorvastatin inhibits ABCA1 expression and cholesterol efflux in THP-1 macrophages by an LXR-dependent pathway. J Cardiovasc Pharmacol 2008; 51(4): 388-95.
[http://dx.doi.org/10.1097/FJC.0b013e318167141f] [PMID: 18427282]
[73]
Tazoe F, Yagyu H, Okazaki H, et al. Induction of ABCA1 by overexpression of hormone-sensitive lipase in macrophages. Biochem Biophys Res Commun 2008; 376(1): 111-5.
[http://dx.doi.org/10.1016/j.bbrc.2008.08.101] [PMID: 18762171]
[74]
Teupser D, Kretzschmar D, Tennert C, et al. Effect of macrophage overexpression of murine liver X receptor-α (LXR-α) on atherosclerosis in LDL-receptor deficient mice. Arterioscler Thromb Vasc Biol 2008; 28(11): 2009-15.
[http://dx.doi.org/10.1161/ATVBAHA.108.175257] [PMID: 18787185]
[75]
Parizadeh SMR, Azarpazhooh MR, Moohebati M, et al. Simvastatin therapy reduces prooxidant-antioxidant balance: Results of a placebo-controlled cross-over trial. Lipids 2011; 46: 333-40.
[76]
Sahebkar A, Kotani K, Serban C, et al. Statin therapy reduces plasma endothelin-1 concentrations: A meta-analysis of 15 randomized controlled trials. Atherosclerosis 2015; 241: 433-42.
[77]
Sahebkar A, Serban C, Mikhailidis DP, et al. Association between statin use and plasma d-dimer levels: A systematic review and meta-analysis of randomised controlled trials. Thrombosis and Haemostasis 2015; 114: 546-57.
[78]
Diamantis E, Kyriakos G, Quiles-Sanchez LV, Farmaki P, Troupis T. The anti-inflammatory effects of statins on coronary artery disease: an updated review of the literature. Curr Cardiol Rev 2017; 13: 209-16.
[79]
Hohensinner P, Baumgartner J, Ebenbauer B, et al. Statin treatment reduces matrix degradation capacity of proinflammatory polarized macrophages. Vascular pharmacology 2018; 110: 49-54.
[80]
Ridker PM, Danielson E, Fonseca FA, et al. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. New England journal of medicine 2008; 359: 2195-207.
[81]
Tall AR, Yvan-Charvet L, Terasaka N, Pagler T, Wang N. HDL, ABC transporters, and cholesterol efflux: Implications for the treatment of atherosclerosis. Cell metabolism 2008; 7: 365-75.
[82]
Chinetti G, Lestavel S, Remaley A, et al. PPAR alpha and PPAR gamma activators induce cholesterol removal from human macrophage foam cells through stimulation of the ABC-1 pathway. Circulation 2000; 102: 311-1.
[83]
Tontonoz P, Nagy L, Alvarez JG, Thomazy VA, Evans RM. PPARgamma promotes monocyte/macrophage differentiation and uptake of oxidized LDL. Cell 1998; 93(2): 241-52.
[http://dx.doi.org/10.1016/S0092-8674(00)81575-5] [PMID: 9568716]
[84]
Li AC, Brown KK, Silvestre MJ, Willson TM, Palinski W, Glass CK. Peroxisome proliferator-activated receptor γ ligands inhibit development of atherosclerosis in LDL receptor-deficient mice. J Clin Invest 2000; 106(4): 523-31.
[http://dx.doi.org/10.1172/JCI10370] [PMID: 10953027]
[85]
Ricote M, Li AC, Willson TM, Kelly CJ, Glass CK. The peroxisome proliferator-activated receptor-γ is a negative regulator of macrophage activation. Nature 1998; 391(6662): 79-82.
[http://dx.doi.org/10.1038/34178] [PMID: 9422508]
[86]
Kockx M, Jessup W, Kritharides L. Regulation of endogenous apolipoprotein E secretion by macrophages. Arterioscler Thromb Vasc Biol 2008; 28(6): 1060-7.
[http://dx.doi.org/10.1161/ATVBAHA.108.164350] [PMID: 18388328]
[87]
Singh NN, Ramji DP. Transforming growth factor-β-induced expression of the apolipoprotein E gene requires c-Jun N-terminal kinase, p38 kinase, and casein kinase 2. Arterioscler Thromb Vasc Biol 2006; 26(6): 1323-9.
[http://dx.doi.org/10.1161/01.ATV.0000220383.19192.55] [PMID: 16601234]
[88]
Gafencu AV, Robciuc MR, Fuior E, Zannis VI, Kardassis D, Simionescu M. Inflammatory signaling pathways regulating ApoE gene expression in macrophages. J Biol Chem 2007; 282(30): 21776-85.
[http://dx.doi.org/10.1074/jbc.M611422200] [PMID: 17553793]
[89]
Laffitte BA, Repa JJ, Joseph SB, et al. LXRs control lipid-inducible expression of the apolipoprotein E gene in macrophages and adipocytes. Proc Natl Acad Sci USA 2001; 98(2): 507-12.
[http://dx.doi.org/10.1073/pnas.98.2.507] [PMID: 11149950]
[90]
Zhang SH, Reddick RL, Piedrahita JA, Maeda N. Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E. Science 1992; 258(5081): 468-71.
[http://dx.doi.org/10.1126/science.1411543] [PMID: 1411543]
[91]
Linton MF, Atkinson JB, Fazio S. Prevention of atherosclerosis in apolipoprotein E-deficient mice by bone marrow transplantation. Science 1995; 267(5200): 1034-7.
[http://dx.doi.org/10.1126/science.7863332] [PMID: 7863332]
[92]
Page MM, Watts GF. PCSK9 in context: a contemporary review of an important biological target for the prevention and treatment of atherosclerotic cardiovascular disease. Diabetes Obes Metab 2018; 20(2): 270-82.
[http://dx.doi.org/10.1111/dom.13070] [PMID: 28736830]
[93]
Reiner Ž. PCSK9 inhibitors in clinical practice: expectations and reality. Atherosclerosis 2018; 270: 187-8.
[http://dx.doi.org/10.1016/j.atherosclerosis.2018.01.001] [PMID: 29366497]
[94]
Pećin I, Hartgers ML, Hovingh GK, Dent R, Reiner Ž. Prevention of cardiovascular disease in patients with familial hypercholesterolaemia: the role of PCSK9 inhibitors. Eur J Prev Cardiol 2017; 24(13): 1383-401.
[http://dx.doi.org/10.1177/2047487317717346] [PMID: 28644091]
[95]
Sahebkar A, Watts GF. New therapies targeting apoB metabolism for high-risk patients with inherited dyslipidaemias: what can the clinician expect? Cardiovasc Drugs Ther 2013; 27(6): 559-67.
[http://dx.doi.org/10.1007/s10557-013-6479-4] [PMID: 23913122]
[96]
Gomes Quinderé AL, Barros Benevides NM, Pelli G, et al. Treatment with sulphated galactan inhibits macrophage chemotaxis and reduces intraplaque macrophage content in atherosclerotic mice. Vascul Pharmacol 2015; 71: 84-92.
[http://dx.doi.org/10.1016/j.vph.2015.02.015] [PMID: 25869506]
[97]
Nagase H. Matrix metalloproteinases. In: ed, Zinc metalloproteases in health and disease. CRC Press 2014; pp. 173-224.
[98]
Marx N, Froehlich J, Siam L, et al. Antidiabetic PPAR γ-activator rosiglitazone reduces MMP-9 serum levels in type 2 diabetic patients with coronary artery disease. Arterioscler Thromb Vasc Biol 2003; 23(2): 283-8.
[http://dx.doi.org/10.1161/01.ATV.0000054195.35121.5E] [PMID: 12588772]
[99]
Rayner KJ, Sheedy FJ, Esau CC, et al. Antagonism of miR-33 in mice promotes reverse cholesterol transport and regression of atherosclerosis. J Clin Invest 2011; 121(7): 2921-31.
[http://dx.doi.org/10.1172/JCI57275] [PMID: 21646721]
[100]
Wang Y, Wang GZ, Rabinovitch PS, Tabas I. Macrophage mitochondrial oxidative stress promotes atherosclerosis and nuclear factor-κB-mediated inflammation in macrophages. Circ Res 2014; 114(3): 421-33.
[http://dx.doi.org/10.1161/CIRCRESAHA.114.302153] [PMID: 24297735]
[101]
Sahebkar A, Di Giosia P, Stamerra CA, et al. Effect of monoclonal antibodies to PCSK9 on high-sensitivity C-reactive protein levels: a meta-analysis of 16 randomized controlled treatment arms. Br J Clin Pharmacol 2016; 81(6): 1175-90.
[http://dx.doi.org/10.1111/bcp.12905] [PMID: 26861255]
[102]
Bohula EA, Giugliano RP, Leiter LA, et al. Inflammatory and cholesterol risk in the FOURIER trial. Circulation 2018; 138(2): 131-40.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.118.034032] [PMID: 29530884]
[103]
Nicholls SJ, Puri R, Anderson T, et al. Effect of evolocumab on progression of coronary disease in statin-treated patients: The GLAGOV randomized clinical trial. JAMA 2016; 316(22): 2373-84.
[http://dx.doi.org/10.1001/jama.2016.16951] [PMID: 27846344]
[104]
Abdolmaleki F, Gheibi Hayat SM, Bianconi V, Johnston TP, Sahebkar A. Atherosclerosis and immunity: a perspective. Trends Cardiovasc Med 2018; 29(6): 363-71.
[PMID: 30292470]
[105]
McLaren JE, Calder CJ, McSharry BP, et al. The TNF-like protein 1A-death receptor 3 pathway promotes macrophage foam cell formation in vitro. J Immunol 2010; 184(10): 5827-34.
[106]
Tabas I, Lichtman AH. Monocyte-macrophages and T cells in atherosclerosis. Immunity 2017; 47(4): 621-34.
[http://dx.doi.org/10.1016/j.immuni.2017.09.008] [PMID: 29045897]
[107]
Sjaarda J, Gerstein H, Chong M, et al. Blood CSF1 and CXCL12 as causal mediators of coronary artery disease. J Am Coll Cardiol 2018; 72(3): 300-10.
[http://dx.doi.org/10.1016/j.jacc.2018.04.067] [PMID: 30012324]
[108]
Cipollone F, Cicolini G, Bucci M. Cyclooxygenase and prostaglandin synthases in atherosclerosis: recent insights and future perspectives. Pharmacol Ther 2008; 118(2): 161-80.
[http://dx.doi.org/10.1016/j.pharmthera.2008.01.002] [PMID: 18420277]
[109]
Eikelboom JW, Hankey GJ. Failure of aspirin to prevent atherothrombosis: potential mechanisms and implications for clinical practice. Am J Cardiovasc Drugs 2004; 4(1): 57-67.
[http://dx.doi.org/10.2165/00129784-200404010-00006] [PMID: 14967066]
[110]
Cayatte AJ, Du Y, Oliver-Krasinski J, Lavielle G, Verbeuren TJ, Cohen RA. The thromboxane receptor antagonist S18886 but not aspirin inhibits atherogenesis in apo E-deficient mice: evidence that eicosanoids other than thromboxane contribute to atherosclerosis. Arterioscler Thromb Vasc Biol 2000; 20(7): 1724-8.
[http://dx.doi.org/10.1161/01.ATV.20.7.1724] [PMID: 10894809]
[111]
Viles-Gonzalez JF, Fuster V, Corti R, et al. Atherosclerosis regression and TP receptor inhibition: effect of S18886 on plaque size and composition--a magnetic resonance imaging study. Eur Heart J 2005; 26(15): 1557-61.
[http://dx.doi.org/10.1093/eurheartj/ehi175] [PMID: 15734766]
[112]
Park JS, Gamboni-Robertson F, He Q, et al. High Mobility group box 1 protein (HMGB1) interacts with multiple Toll like receptors. Am J Physiol Cell Physiol 2006; 290(3): C917-24.
[113]
Huang C-K, Pang H, Wang L, et al. New therapy via targeting androgen receptor in monocytes/macrophages to battle atherosclerosis. Hypertension 2014; 63(6): 1345-53.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.113.02804] [PMID: 24688120]
[114]
Nurnberg ST, Zhang H, Hand NJ, et al. From loci to biology: functional genomics of genome-wide association for coronary disease. Circ Res 2016; 118(4): 586-606.
[http://dx.doi.org/10.1161/CIRCRESAHA.115.306464] [PMID: 26892960]
[115]
Kessler T, Vilne B, Schunkert H. The impact of genome-wide association studies on the pathophysiology and therapy of cardiovascular disease. EMBO Mol Med 2016; 8(7): 688-701.
[http://dx.doi.org/10.15252/emmm.201506174] [PMID: 27189168]
[116]
von Hundelshausen P, Agten SM, Eckardt V, et al. Chemokine interactome mapping enables tailored intervention in acute and chronic inflammation. Sci Transl Med 2017; 9(384)eaah6650
[http://dx.doi.org/10.1126/scitranslmed.aah6650] [PMID: 28381538]
[117]
Noels H, Döring Y, van der Vorst E, et al. FP526 vascular cxcr4 limits atherosclerosis by maintaining arterial integrity. Nephrol Dial Transplant 2018; 33: I216-6.
[http://dx.doi.org/10.1093/ndt/gfy104.FP526]
[118]
Abdolmaleki F, Farahani N, Gheibi Hayat SM, et al. The role of efferocytosis in autoimmune diseases. Front Immunol 2018; 9: 1645.
[http://dx.doi.org/10.3389/fimmu.2018.01645] [PMID: 30083153]
[119]
Gheibi Hayat SM, Bianconi V, Pirro M, Sahebkar A. Efferocytosis: molecular mechanisms and pathophysiological perspectives. Immunol Cell Biol 2019; 97(2): 124-33.
[http://dx.doi.org/10.1111/imcb.12206] [PMID: 30230022]
[120]
Tajbakhsh A, Rezaee M, Kovanen PT, Sahebkar A. Efferocytosis in atherosclerotic lesions: malfunctioning regulatory pathways and control mechanisms. Pharmacol Ther 2018; 188: 12-25.
[http://dx.doi.org/10.1016/j.pharmthera.2018.02.003] [PMID: 29444453]
[121]
Tajbakhsh A, Gheibi Hayat SM, Butler AE, Sahebkar A. Effect of soluble cleavage products of important receptors/ligands on efferocytosis: their role in inflammatory, autoimmune and cardiovascular disease. Ageing Res Rev 2019; 50: 43-57.
[http://dx.doi.org/10.1016/j.arr.2019.01.007] [PMID: 30639340]
[122]
Tao H, Yancey PG, Babaev VR, et al. Macrophage SR-BI mediates efferocytosis via Src/PI3K/Rac1 signaling and reduces atherosclerotic lesion necrosis. J Lipid Res 2015; 56(8): 1449-60.
[http://dx.doi.org/10.1194/jlr.M056689] [PMID: 26059978]
[123]
Khallou-Laschet J, Varthaman A, Fornasa G, et al. Macrophage plasticity in experimental atherosclerosis. PLoS One 2010; 5(1)e8852
[http://dx.doi.org/10.1371/journal.pone.0008852] [PMID: 20111605]
[124]
Feig JE, Parathath S, Rong JX, et al. Reversal of hyperlipidemia with a genetic switch favorably affects the content and inflammatory state of macrophages in atherosclerotic plaques. Circulation 2011; 123(9): 989-98.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.110.984146] [PMID: 21339485]
[125]
Uderhardt S, Krönke G. 12/15-lipoxygenase during the regulation of inflammation, immunity, and self-tolerance. J Mol Med (Berl) 2012; 90(11): 1247-56.
[http://dx.doi.org/10.1007/s00109-012-0954-4] [PMID: 22983484]
[126]
Schif-Zuck S, Gross N, Assi S, Rostoker R, Serhan CN, Ariel A. Saturated-efferocytosis generates pro-resolving CD11b low macrophages: modulation by resolvins and glucocorticoids. Eur J Immunol 2011; 41(2): 366-79.
[http://dx.doi.org/10.1002/eji.201040801] [PMID: 21268007]
[127]
Henson PM, Bratton DL, Fadok VA. Apoptotic cell removal. Curr Biol 2001; 11(19): R795-805.
[http://dx.doi.org/10.1016/S0960-9822(01)00474-2] [PMID: 11591341]
[128]
Tabas I. Macrophage death and defective inflammation resolution in atherosclerosis. Nat Rev Immunol 2010; 10(1): 36-46.
[http://dx.doi.org/10.1038/nri2675] [PMID: 19960040]
[129]
Tabas I. Consequences and therapeutic implications of macrophage apoptosis in atherosclerosis: the importance of lesion stage and phagocytic efficiency. Arterioscler Thromb Vasc Biol 2005; 25(11): 2255-64.
[http://dx.doi.org/10.1161/01.ATV.0000184783.04864.9f] [PMID: 16141399]
[130]
Rothblat GH, Phillips MC. High-density lipoprotein heterogeneity and function in reverse cholesterol transport. Curr Opin Lipidol 2010; 21(3): 229-38.
[http://dx.doi.org/10.1097/MOL.0b013e328338472d] [PMID: 20480549]
[131]
Tall AR, Yvan-Charvet L, Terasaka N, Pagler T, Wang N. HDL, ABC transporters, and cholesterol efflux: implications for the treatment of atherosclerosis. Cell Metab 2008; 7(5): 365-75.
[http://dx.doi.org/10.1016/j.cmet.2008.03.001] [PMID: 18460328]
[132]
Kojima Y, Downing K, Kundu R, et al. Cyclin-dependent kinase inhibitor 2B regulates efferocytosis and atherosclerosis. J Clin Invest 2014; 124(3): 1083-97.
[http://dx.doi.org/10.1172/JCI70391] [PMID: 24531546]
[133]
Ogden CA, Kowalewski R, Peng Y, Montenegro V, Elkon KB. IGM is required for efficient complement mediated phagocytosis of apoptotic cells in vivo. Autoimmunity 2005; 38(4): 259-64.
[http://dx.doi.org/10.1080/08916930500124452] [PMID: 16206508]
[134]
Schrijvers DM, De Meyer GR, Herman AG, Martinet W. Phagocytosis in atherosclerosis: molecular mechanisms and implications for plaque progression and stability. Cardiovasc Res 2007; 73(3): 470-80.
[http://dx.doi.org/10.1016/j.cardiores.2006.09.005] [PMID: 17084825]
[135]
Fanola CL, Morrow DA, Cannon CP, et al. Interleukin‐6 and the risk of adverse outcomes in patients after an acute coronary syndrome: observations from the SOLID‐TIMI 52 (stabilization of plaque using darapladib-thrombolysis in myocardial infarction 52) trial. J Am Heart Assoc 2017; 6(10)e005637
[http://dx.doi.org/10.1161/JAHA.117.005637] [PMID: 29066436]
[136]
White HD, Held C, Stewart R, et al. Darapladib for preventing ischemic events in stable coronary heart disease. N Engl J Med 2014; 370(18): 1702-11.
[http://dx.doi.org/10.1056/NEJMoa1315878] [PMID: 24678955]
[137]
O’Donoghue ML, Glaser R, Cavender MA, et al. Effect of losmapimod on cardiovascular outcomes in patients hospitalized with acute myocardial infarction: a randomized clinical trial. JAMA 2016; 315(15): 1591-9.
[http://dx.doi.org/10.1001/jama.2016.3609] [PMID: 27043082]
[138]
Nicholls SJ, Kastelein JJ, Schwartz GG, et al. Varespladib and cardiovascular events in patients with an acute coronary syndrome: the VISTA-16 randomized clinical trial. JAMA 2014; 311(3): 252-62.
[http://dx.doi.org/10.1001/jama.2013.282836] [PMID: 24247616]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy