Tetraethylammonium Fluoride-mediated A Green Hydrogen Transfer Process for Selective Reduction of Biomass-derived Aldehydes

Author(s): Zhaozhuo Yu, Fusheng Xu, Yan Li, Hiroyuki Konno, Hu Li*, Song Yang*.

Journal Name: Current Green Chemistry

Volume 6 , Issue 2 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Hydrogenation of furfural (FUR) to furfuryl alcohol (FFA) is a key step and one of the representative examples for comprehensive utilization of biomass, while relatively harsh conditions are typically required to achieve satisfactory results using molecular hydrogen, formic acid, or alcohol as H-donor over expensive metal catalysts. In this work, a new and benign reaction system, composed of green and cheap tetraethylammonium fluoride and polymethylhydrosiloxane (PMHS), is developed to be efficient for transfer hydrogenation of bio-based FUR to high-value FFA under mild conditions. After reacting at 35 ℃ for 0.5 h, 94.9% FUR conversion and 92.3% yield of FFA could be achieved. This protocol is also widely applicable to the selective reduction of various aromatic aldehydes, giving relevant alcohols in high yields of 81.0-99.9% at 35-60 °C within 30-120 min. Moreover, the mechanism of fluoride-activated hydrosilylation was demonstrated to be responsible for the efficient transfer hydrogenation process.

Keywords: Green catalysis, biomass conversion, bio-based furfural, hydrogen transfer, ionic liquids, tetraethylammonium fluoride.

[1]
Alonso, D.M.; Wettstein, S.G.; Dumesic, J.A. Bimetallic catalysts for upgrading of biomass to fuels and chemicals. Chem. Soc. Rev., 2012, 41(24), 8075-8098.
[http://dx.doi.org/10.1039/c2cs35188a] [PMID: 22872312]
[2]
Malladi, K.T.; Sowlati, T. Biomass logistics: A review of important features, optimization modeling and the new trends. Renew. Sustain. Energy Rev., 2018, 94, 587-599.
[http://dx.doi.org/10.1016/j.rser.2018.06.052]
[3]
Filiciotto, L.; Luque, R. Biomass Promises: A bumpy road to a renewable economy. Curr. Green Chem., 2018, 5, 47-59.
[http://dx.doi.org/10.2174/2213346105666180403145243]
[4]
Li, H.; Zhao, W.; Dai, W.; Long, J.; Watanabe, M.; Meier, S.; Saravanamurugan, S.; Yang, S.; Riisager, A. Noble metal-free upgrading of multi-unsaturated biomass derivatives at room temperature: Silyl species enable reactivity. Green Chem., 2018, 20, 5327-5335.
[http://dx.doi.org/10.1039/C8GC02934B]
[5]
Li, H.; Yang, T.; Fang, Z. Biomass-derived mesoporous HF-containing hybrid for efficient Meerwein-Ponndorf-Verley reduction at low temperatures. Appl. Catal. B, 2018, 227, 79-89.
[http://dx.doi.org/10.1016/j.apcatb.2018.01.017]
[6]
Luque, R. Catalytic biomass processing: Prospects in future biorefineries. Curr. Green Chem., 2015, 2, 90-95.
[http://dx.doi.org/10.2174/2213346101666141017231115]
[7]
Zhang, S.; Yang, M.; Shao, J.; Yang, H.; Zeng, K.; Chen, Y.; Luo, J.; Agblevor, F.A.; Chen, H. The conversion of biomass to light olefins on Fe-modified ZSM-5 catalyst: Effect of pyrolysis parameters. Sci. Total Environ., 2018, 628-629, 350-357.
[http://dx.doi.org/10.1016/j.scitotenv.2018.01.316] [PMID: 29453172]
[8]
Darji, D.; Alias, Y.; Abd Razak, N.H. Effect of recycled imidazolium-based ionic liquids on biomass from rubber wood. Curr. Green Chem., 2017, 4, 74-81.
[http://dx.doi.org/10.2174/2213346104666170908161507]
[9]
Fang, C.; Li, Y.; Yu, Z.; Li, H.; Yang, S. Efficient catalytic upgrade of fructose to alkyl levulinates with phenylpyridine-phosphotungstate solid hybrids. Curr. Green Chem., 2019, 6, 44-52.
[http://dx.doi.org/10.2174/2213346105666181112112330]
[10]
Wang, J.; Zhang, Z.; Jin, S.; Shen, X. Efficient conversion of carbohydrates into 5-hydroxylmethylfurfan and 5-ethoxymethylfurfural over sufonic acid-functionalized mesoporous carbon catalyst. Fuel, 2017, 192, 102-107.
[http://dx.doi.org/10.1016/j.fuel.2016.12.027]
[11]
Mariscal, R.; Maireles-Torres, P.; Ojeda, M.; Sádaba, I.; López Granados, M. Furfural: A renewable and versatile platform molecule for the synthesis of chemicals and fuels. Energy Environ. Sci., 2016, 9, 1144-1189.
[http://dx.doi.org/10.1039/C5EE02666K]
[12]
Sheldon, R.A. Green and sustainable manufacture of chemicals from biomass: State of the art. Green Chem., 2014, 16, 950-963.
[http://dx.doi.org/10.1039/C3GC41935E]
[13]
Liu, Z.; Tian, D.; Hu, J.; Shen, F.; Long, L.; Zhang, Y.; Yang, G.; Zeng, Y.; Zhang, J.; He, J.; Deng, S.; Hu, Y. Functionalizing bottom ash from biomass power plant for removing methylene blue from aqueous solution. Sci. Total Environ., 2018, 634, 760-768.
[http://dx.doi.org/10.1016/j.scitotenv.2018.04.010] [PMID: 29653421]
[14]
Lange, J.P.; van der Heide, E.; van Buijtenen, J.; Price, R. Furfural--a promising platform for lignocellulosic biofuels. ChemSusChem, 2012, 5(1), 150-166.
[http://dx.doi.org/10.1002/cssc.201100648] [PMID: 22213717]
[15]
Gilkey, M.J.; Xu, B. Heterogeneous Catalytic transfer hydrogenation as an effective pathway in biomass upgrading. ACS Catal., 2016, 6, 1420-1436.
[http://dx.doi.org/10.1021/acscatal.5b02171]
[16]
Saravanamurugan, S.; Riisager, A.; Taarning, E.; Meier, S. Mechanism and stereoselectivity of zeolite-catalysed sugar isomerisation in alcohols. Chem. Commun. (Camb.), 2016, 52(86), 12773-12776.
[http://dx.doi.org/10.1039/C6CC05592C] [PMID: 27727336]
[17]
Wangchuk, T.; He, C.; Knibbs, L.D.; Mazaheri, M.; Morawska, L. A pilot study of traditional indoor biomass cooking and heating in rural Bhutan: Gas and particle concentrations and emission rates. Indoor Air, 2017, 27(1), 160-168.
[http://dx.doi.org/10.1111/ina.12291] [PMID: 26878824]
[18]
Zhang, D.; Wang, J.; Lin, Y.; Si, Y.; Huang, C.; Yang, J.; Huang, B.; Li, W. Present situation and future prospect of renewable energy in China. Renew. Sustain. Energy Rev., 2017, 76, 865-871.
[http://dx.doi.org/10.1016/j.rser.2017.03.023]
[19]
Alcantara, A.R.; de Maria, P.D. Recent advances on the use of 2-methyltetrahydrofuran (2-Me THF) in biotransformations. Curr. Green Chem., 2018, 5, 86-103.
[http://dx.doi.org/10.2174/2213346105666180727100924]
[20]
Xu, S.; Lamm, M.E.; Rahman, M.A.; Zhang, X.; Zhu, T.; Zhao, Z.; Tang, C. Renewable atom-efficient polyesters and thermosetting resins derived from high oleic soybean oil. Green Chem., 2018, 20, 1106-1113.
[http://dx.doi.org/10.1039/C7GC03774K]
[21]
Shikinaka, K.; Sotome, H.; Kubota, Y.; Tominaga, Y.; Nakamura, M.; Navarro, R.R.; Otsuka, Y. A small amount of nanoparticulated plant biomass, lignin, enhances the heat tolerance of poly(ethylene carbonate). J. Mol. Catal. Chem., 2018, 6, 837-839.
[22]
Li, H.; Yang, S.; Riisager, A.; Pandey, A.; Sangwan, R.S.; Saravanamurugan, S.; Luque, R. Zeolite and zeotype-catalysed transformations of biofuranic compounds. Green Chem., 2016, 18, 5701-5735.
[http://dx.doi.org/10.1039/C6GC02415G]
[23]
Yan, K.; Chen, A. Efficient hydrogenation of biomass-derived furfural and levulinic acid on the facilely synthesized noble-metal-free Cu-Cr catalyst. Energy, 2013, 58, 357-363.
[http://dx.doi.org/10.1016/j.energy.2013.05.035]
[24]
Vetere, V.; Merlo, A.B.; Ruggera, J.F.; Casella, M.L. Transition metal-based bimetallic catalysts for the chemoselective hydrogenation of furfuraldehyde. J. Brazil. Chem. Soc., 2010, 21, 914-920.
[25]
Chatterjee, I.; Oestreich, M.B. (C6F5)3-catalyzed transfer hydrogenation of imines and related heteroarenes using cyclohexa-1,4-dienes as a dihydrogen source. Angew. Chem. Int. Ed. Engl., 2015, 54(6), 1965-1968.
[http://dx.doi.org/10.1002/anie.201409246] [PMID: 25529119]
[26]
Tsuji, Y.; Fujihara, T. Carbon dioxide as a carbon source in organic transformation: carbon-carbon bond forming reactions by transition-metal catalysts. Chem. Commun. (Camb.), 2012, 48(80), 9956-9964.
[http://dx.doi.org/10.1039/c2cc33848c] [PMID: 22859266]
[27]
Addis, D.; Das, S.; Junge, K.; Beller, M. Selective reduction of carboxylic acid derivatives by catalytic hydrosilylation. Angew. Chem. Int. Ed. Engl., 2011, 50(27), 6004-6011.
[http://dx.doi.org/10.1002/anie.201100145] [PMID: 21648027]
[28]
Fujii, A.; Matsuo, H.; Choi, J.; Fujitani, T.; Fujita, K. Efficient synthesis of 2-oxazolidinones and quinazoline-2,4(1H,3H)-diones from CO2 catalyzed by tetrabutylammonium fluoride. Tetrahedron, 2018, 74, 2914-2920.
[http://dx.doi.org/10.1016/j.tet.2018.04.059]
[29]
Li, B.; Yu, J.; Li, C.; Li, Y.; Luo, J.; Shao, Y. “One pot” synthesis of tertiary amines: Ru(II) catalyzed direct reductive N-benzylation of imines with benzyl bromide derivatives. Tetrahedron Lett., 2017, 58, 137-141.
[http://dx.doi.org/10.1016/j.tetlet.2016.11.112]
[30]
Li, H.; Zhao, W.; Saravanamurugan, S.; Dai, W.; He, J.; Meier, S.; Yang, S.; Riisager, A. Control of selectivity in hydrosilane-promoted heterogeneous palladium-catalysed reduction of furfural and aromatic carboxides. Commun. Chem., 2018, 1, 32.
[http://dx.doi.org/10.1038/s42004-018-0033-z]
[31]
Dussan, K.; Girisuta, B.; Haverty, D.; Leahy, J.J.; Hayes, M.H.B. Kinetics of levulinic acid and furfural production from Miscanthus × giganteus. Bioresour. Technol., 2013, 149, 216-224.
[http://dx.doi.org/10.1016/j.biortech.2013.09.006] [PMID: 24103645]
[32]
Huang, W.; Li, H.; Zhu, B.; Feng, Y.; Wang, S.; Zhang, S. Selective hydrogenation of furfural to furfuryl alcohol over catalysts prepared via sonochemistry. Ultrason. Sonochem., 2007, 14(1), 67-74.
[http://dx.doi.org/10.1016/j.ultsonch.2006.03.002] [PMID: 16690343]
[33]
Long, J.; Zhao, W.; Xu, Y.; Wu, W.; Fang, C.; Li, H.; Yang, S. Low-temperature catalytic hydrogenation of bio-based furfural and relevant aldehydes using cesium carbonate and hydrosiloxane. RSC Advances, 2019, 9, 3063-3071.
[http://dx.doi.org/10.1039/C8RA08616H]
[34]
Lopes, A.M.; Bogel-Łukasik, R. Acidic ionic liquids as sustainable approach of cellulose and lignocellulosic biomass conversion without additional catalysts. ChemSusChem, 2015, 8(6), 947-965.
[http://dx.doi.org/10.1002/cssc.201402950] [PMID: 25703380]
[35]
Li, H.; Saravanamurugan, S.; Yang, S.; Riisager, A. Catalytic alkylation of 2-methylfuran with formalin using supported acidic ionic liquids. ACS Sustain. Chem.& Eng., 2015, 3, 3274-3280.
[http://dx.doi.org/10.1021/acssuschemeng.5b00850]
[36]
Li, H.; Zhang, Q.; Liu, X.; Chang, F.; Zhang, Y.; Xue, W.; Yang, S. Immobilizing Cr3+ with SO3H-functionalized solid polymeric ionic liquids as efficient and reusable catalysts for selective transformation of carbohydrates into 5-hydroxymethylfurfural. Bioresour. Technol., 2013, 144, 21-27.
[http://dx.doi.org/10.1016/j.biortech.2013.06.063] [PMID: 23850822]
[37]
Ullah, Z.; Bustam, M.A.; Man, Z. Biodiesel production from waste cooking oil by acidic ionic liquid as a catalyst. Renew. Energy, 2015, 77, 521-526.
[http://dx.doi.org/10.1016/j.renene.2014.12.040]
[38]
Vekariya, R.L. A review of ionic liquids: Applications towards catalytic organic transformations. J. Mol. Liq., 2017, 227, 44-60.
[http://dx.doi.org/10.1016/j.molliq.2016.11.123]
[39]
Zhang, H.; Li, H.; Pan, H.; Wang, A.; Souzanchi, S.; Xu, C.; Yang, S. Magnetically recyclable acidic polymeric ionic liquids decorated with hydrophobic regulators as highly efficient and stable catalysts for biodiesel production. Appl. Energy, 2018, 223, 416-429.
[http://dx.doi.org/10.1016/j.apenergy.2018.04.061]
[40]
Wu, W.; Zhao, W.; Fang, C.; Wang, Z.; Yang, T.; Li, H.; Yang, S. Quantitative hydrogenation of furfural to furfuryl alcohol with recyclable KF and hydrosilane at room temperature in minutes. Catal. Commun., 2018, 105, 6-10.
[http://dx.doi.org/10.1016/j.catcom.2017.11.005]
[41]
Catalán, J. Toward a generalized treatment of the solvent effect based on four empirical scales: Dipolarity (SdP, a new scale), polarizability (SP), acidity (SA), and basicity (SB) of the medium. J. Phys. Chem. B, 2009, 113(17), 5951-5960.
[http://dx.doi.org/10.1021/jp8095727] [PMID: 19344103]
[42]
Lukevics, E.; Dzintara, M. The alcoholysis of hydrosilanes. J. Organomet. Chem., 1985, 295, 265-315.
[http://dx.doi.org/10.1016/0022-328X(85)80314-4]
[43]
Li, H.; Zhao, W.; Fang, Z. Hydrophobic Pd nanocatalysts for one-pot and high-yield production of liquid furanic biofuels at low temperatures. Appl. Catal. B, 2017, 215, 18-27.
[http://dx.doi.org/10.1016/j.apcatb.2017.05.039]
[44]
Li, H.; Zhao, W.; Riisager, A.; Saravanamurugan, S.; Wang, Z.; Fang, Z.; Yang, S.A. Pd-catalyzed in situ domino process for mild and quantitative production of 2,5-dimethylfuran directly from carbohydrates. Green Chem., 2017, 19, 2101-2106.
[http://dx.doi.org/10.1039/C7GC00580F]
[45]
Liu, B.; Zhou, X. Synthesis of 1, 2-phenylenedimethanols by base-promoted reduction of isobenzofuran-1(3H)-ones with silane. Chin. Chem. Lett., 2019, 30, 725-728.
[http://dx.doi.org/10.1016/j.cclet.2018.11.025]
[46]
Vasilikogiannaki, E.; Titilas, I.; Gryparis, C.; Louka, A.; Lykakis, I.N.; Stratakis, M. Efficient hydrosilylation of carbonyl compounds by 1,1,3,3-tetramethyldisiloxane catalyzed by Au/TiO2. Tetrahedron, 2014, 70, 6106-6113.
[http://dx.doi.org/10.1016/j.tet.2014.03.094]
[47]
Bette, V.; Mortreux, A.; Savoia, D.; Carpentier, J-F. New developments in zinc-catalyzed asymmetric hydrosilylation of ketones with PMHS. Tetrahedron, 2004, 60, 2837-2842.
[http://dx.doi.org/10.1016/j.tet.2004.01.051]
[48]
Smoluchowski, R. Anisotropy of the electronic work function of metals. Phys. Rev., 1941, 60, 661-674.
[http://dx.doi.org/10.1103/PhysRev.60.661]
[49]
Tang, S.Y.; Bourne, R.A.; Smith, R.L.; Poliakoff, M. The 24 principles of green engineering and green chem.: “IMPROVEMENTS PRODUCTIVELY. Green Chem., 2008, 10, 268-269.
[http://dx.doi.org/10.1039/b719469m]
[50]
Motoyama, Y.; Mitsui, K.; Ishida, T.; Nagashima, H. Self-encapsulation of homogeneous catalyst species into polymer gel leading to a facile and efficient separation system of amine products in the Ru-catalyzed reduction of carboxamides with polymethylhydrosiloxane (PMHS). J. Am. Chem. Soc., 2005, 127(38), 13150-13151.
[http://dx.doi.org/10.1021/ja054453l] [PMID: 16173735]
[51]
Miller, J.D.; Ishida, H. Quantitative intermolecular reaction of hydrolyzed trialkoxysilanes at submonolayer, monolayer, and multilayer surface coverages. Langmuir, 1986, 2, 127-131.
[http://dx.doi.org/10.1021/la00068a002]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 6
ISSUE: 2
Year: 2019
Page: [127 - 134]
Pages: 8
DOI: 10.2174/2213346106666190830115519

Article Metrics

PDF: 10
HTML: 1