Catalytic Transformation of Bio-oil to Benzaldehyde and Benzoic Acid: An Approach for the Production of High-value Aromatic Bio-chemicals

Author(s): Xiaoping Wu, Lijuan Zhu, Changhui Zhu, Chenguang Wang, Quanxin Li*.

Journal Name: Current Green Chemistry

Volume 6 , Issue 2 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Benzaldehyde and benzoic acid are high-value aromatic chemicals and important intermediates in chemical industry, and the catalytic conversion of biomass-based sources to these aromatic chemicals is of great significance in both academic and industrial fields. This work demonstrated that bio-oil was directionally converted into benzaldehyde and benzoic acid by three-step process under atmospheric pressure and moderate temperatures. The process included the catalytic cracking of biooil into aromatics over 1% Ga/HZSM-5 catalyst, followed by the dealkylation of heavier alkylaromatics to toluene over Re/HY catalyst and the liquid-phase oxidation of toluene-rich aromatics to the targeted chemicals over CoCl2/NHPI (CoCl2/N-Hydroxyphthalimide) catalyst. The production of benzaldehyde and benzoic acid from the bio-oil-derived aromatics, with the overall selectivity of 86.8%, was achieved using CoCl2/NHPI catalyst at 100 °C. Furthermore, adding a small amount of methanol into the feed would efficiently suppress the coke formation, and thus, enhance the yield of aromatics. Potentially, the novel synthesis route offers a green way for the production of higher value-added aromatic chemicals using renewable and environmentally friendly biomass-based sources.

Keywords: Biomass, pyrolysis, bio-oil, benzaldehyde, benzoic acid, catalytic cracking, dealkylation, oxidation.

[1]
Lu, B.; Cai, N.; Sun, J.; Wang, X.; Li, X.; Zhao, J.X.; Cai, Q.H. Solvent-free oxidation of toluene in an ionic liquid with H2O2 as oxidant. Chem. Eng. J., 2013, 225, 266-270.
[http://dx.doi.org/10.1016/j.cej.2013.03.087]
[2]
Losada, J.P.; Heckl, I.; Bertok, B.; Friedler, F.; Garcia-Ojeda, J.C.; Argoti, A. Process network synthesis for benzaldehyde production: P-graph approach. Chem. Eng. Trans., 2015, 45, 1369-1374.
[3]
Tahir, M.N.; Nielsen, T.T.; Larsen, K.L. beta-cyclodextrin functionalized on glass micro-particles: A green catalyst for selective oxidation of toluene to benzaldehyde. Appl. Surf. Sci., 2016, 389, 1108-1112.
[http://dx.doi.org/10.1016/j.apsusc.2016.07.176]
[4]
Rezaei, E.; Soltan, J. EXAFS and kinetic study of MnOx/gamma-alumina in gas phase catalytic oxidation of toluene by ozone. Appl. Catal. B, 2014, 148, 70-79.
[http://dx.doi.org/10.1016/j.apcatb.2013.10.041]
[5]
Christoforidis, K.C.; Iglesias-Juez, A.; Figueroa, S.J.A.; Di Michiel, M.; Newton, M.A.; Fernandez-Garcia, M. Structure and activity of iron-doped TiO2-anatase nanomaterials for gas-phase toluene photo-oxidation. Catal. Sci. Technol., 2013, 3, 626-634.
[http://dx.doi.org/10.1039/C2CY20405C]
[6]
Korologos, C.A.; Nikolaki, M.D.; Zerva, C.N.; Philippopoulos, C.J.; Poulopoulos, S.G. Photocatalytic oxidation of benzene, toluene, ethylbenzene and m-xylene in the gas-phase over TiO2-based catalysts. J. Photoch. Photobio. A, 2012, 244, 24-31.
[http://dx.doi.org/10.1016/j.jphotochem.2012.06.016]
[7]
Genuino, H.C.; Suib, S.L. Gas-phase total oxidation of benzene, toluene, ethylbenzene, and xylenes using shape-selective manganese oxide and copper manganese oxide catalysts; Abstr. Pap. Am. Chem. S., 2012, p. 244.
[8]
Mo, M.; Zheng, M.; Tang, J.; Chen, Y.; Lu, Q.; Xun, Y. Selective oxidation of toluene using Ag nanoparticles self-supported on Ag2 V4 O11 nanobelts. Res. Chem. Intermed., 2015, 41, 4067-4076.
[http://dx.doi.org/10.1007/s11164-013-1511-7]
[9]
Hosseini, S.A.; Niaei, A.; Salari, D.; Jodaei, A. Gas phase oxidation of Toluene and Ethyl acetate over proton and cobalt exchanged ZSM-5 nano catalysts- experimental study and ANN modeling. Bull. Korean Chem. Soc., 2010, 31, 808-814.
[http://dx.doi.org/10.5012/bkcs.2010.31.04.808]
[10]
Colon, G.; Maicu, M.; Hidalgo, M.C.; Navio, J.A.; Kubacka, A.; Fernandez-Garcia, M. Gas phase photocatalytic oxidation of toluene using highly active Pt doped TiO2. J. Mol. Catal. A., 2010, 320, 14-18.
[http://dx.doi.org/10.1016/j.molcata.2009.12.009]
[11]
Maira, A.J.; Yeung, K.L.; Soria, J.; Coronado, J.M.; Belver, C.; Lee, C.Y. Gas-phase photo-oxidation of toluene using nanometer-size TiO2 catalysts. Appl. Catal. B, 2001, 29, 327-336.
[http://dx.doi.org/10.1016/S0926-3373(00)00211-3]
[12]
Meng, Y.; Liang, B.; Tang, S.W. A study on the liquid-phase oxidation of toluene in ionic liquids. Appl. Catal. A., 2012, 439, 1-7.
[http://dx.doi.org/10.1016/j.apcata.2012.06.026]
[13]
Du, B.; Kim, S.I.; Lou, L.L.; Jia, A.Z.; Liu, G.X.; Qi, B.; Liu, S.X. A simple and efficient zeolite catalyst for toluene oxidation in aqueous media. Appl. Catal. A., 2012, 425, 191-198.
[http://dx.doi.org/10.1016/j.apcata.2012.03.021]
[14]
Xue, M.W.; Chen, H.; Zhang, H.L.; Auroux, A.; Shen, J.A.Y. Preparation and characterization of V-Ag-O catalysts for the selective oxidation of toluene. Appl. Catal. A., 2010, 379, 7-14.
[http://dx.doi.org/10.1016/j.apcata.2010.02.023]
[15]
Wang, X.Q.; Wu, J.P.; Zhao, M.W.; Lv, Y.F.; Li, G.Y.; Hu, C.W. Partial oxidation of toluene in CH3COOH by H2O2 in the presence of VO (acac)(2) catalyst. J. Phys. Chem. C, 2009, 113, 14270-14278.
[http://dx.doi.org/10.1021/jp9028062]
[16]
Wu, X.K.; Deng, Z.L.; Yan, J.J.; Zhang, F.; Zhang, Z.B. Effect of acetic Anhydride on the oxidation of toluene to benzaldehyde with metal/bromide catalysts. Ind. Eng. Chem. Res., 2014, 53, 14601-14606.
[http://dx.doi.org/10.1021/ie502686u]
[17]
Subrahmanyam, C.; Louis, B.; Viswanathan, B.; Renken, A.; Varadarajan, T.K. Synthesis, characterisation and catalytic properties of vanadium substituted mesoporous aluminophosphates. Appl. Catal. A., 2005, 282, 67-71.
[http://dx.doi.org/10.1016/j.apcata.2004.12.001]
[18]
Shijina, A.V.; Renuka, N.K. Hydrogen peroxide oxidation of toluene over V/Al systems. React. Kinet. Catal. Lett., 2008, 94, 261-270.
[http://dx.doi.org/10.1007/s11144-008-5285-7]
[19]
Zhou, W.; Huang, K.; Cao, M.; Sun, F.A.; He, M.; Chen, Z. Selective oxidation of toluene to benzaldehyde in liquid phase over CoAl oxides prepared from hydrotalcite-like precursors. React. Kinet. Mech. Catal., 2015, 115, 341-353.
[http://dx.doi.org/10.1007/s11144-015-0833-4]
[20]
Yuan, Z.H.; Chen, B.Z.; Zhao, J.S. Controllability analysis for the liquid-phase catalytic oxidation of toluene to benzoic acid. Chem. Eng. Sci., 2011, 66, 5137-5147.
[http://dx.doi.org/10.1016/j.ces.2011.07.005]
[21]
Zhong, W.Z.; Kirk, S.R.; Yin, D.L.; Li, Y.Q.; Zou, R.; Mao, L.Q.; Zou, G.Q. Solvent-free selective oxidation of toluene by oxygen over MnOx/SBA-15catalysts: Relationship between catalytic behavior and surface structure. Chem. Eng. J., 2015, 280, 737-747.
[http://dx.doi.org/10.1016/j.cej.2015.06.051]
[22]
Sun, Z.G.; Li, G.; Zhang, Y.; Liu, H.O.; Gao, X.H. Ag-Cu-BTC prepared by postsynthetic exchange as effective catalyst for selective oxidation of toluene to benzaldehyde. Catal. Commun., 2015, 59, 92-96.
[http://dx.doi.org/10.1016/j.catcom.2014.09.047]
[23]
Acharyya, S.S.; Ghosh, S.; Tiwari, R.; Sarkar, B.; Singha, R.K.; Pendem, C.; Sasaki, T.; Bal, R. Preparation of the CuCr2O4 spinel nanoparticles catalyst for selective oxidation of toluene to benzaldehyde. Green Chem., 2014, 16, 2500-2508.
[http://dx.doi.org/10.1039/C3GC42369G]
[24]
Ortiz, F.J.G.; Campanario, F.J.; Ollero, P. Supercritical water reforming of model compounds of bio-oil aqueous phase: Acetic acid, acetol, butanol and glucose. Chem. Eng. J., 2016, 298, 243-258.
[http://dx.doi.org/10.1016/j.cej.2016.04.002]
[25]
Bi, P.; Yuan, Y.; Fan, M.; Jiang, P.; Zhai, Q.; Li, Q. Production of aromatics through current-enhanced catalytic conversion of bio-oil tar. Bioresour. Technol., 2013, 136, 222-229.
[http://dx.doi.org/10.1016/j.biortech.2013.02.100] [PMID: 23567684]
[26]
Kan, T.; Strezov, V.; Evans, T.J. Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters. Renew. Sustain. Energy Rev., 2016, 57, 1126-1140.
[http://dx.doi.org/10.1016/j.rser.2015.12.185]
[27]
Wu, X.P.; Fan, M.H.; Li, Q.X. Production of benzene from lignin through current enhanced catalytic conversion. Chin. J. Chem. Phys., 2017, 30, 479-486.
[http://dx.doi.org/10.1063/1674-0068/30/cjcp1603052]
[28]
Wei, L.; Qi, Z.; Wang, C.G.; Wang, T.J.; Long, J.X.; Ying, X.; Ma, L.L. Interaction among bio-oil model components during oxidative degradation. Biomass Bioenergy, 2015, 77, 135-146.
[http://dx.doi.org/10.1016/j.biombioe.2015.03.025]
[29]
Valle, B.; Aramburu, B.; Remiro, A.; Bilbao, J.; Gayubo, A.G. Effect of calcination/reduction conditions of Ni/La2O3-alpha Al2O3 catalyst on its activity and stability for hydrogen production by steam reforming of raw bio-oil/ethanol. Appl. Catal. B, 2014, 147, 402-410.
[http://dx.doi.org/10.1016/j.apcatb.2013.09.022]
[30]
Wang, S.R.; Cai, Q.J.; Chen, J.H.; Zhang, L.; Wang, X.Y.; Yu, C.J. Green aromatic hydrocarbon production from cocracking of a bio-oil model compound mixture and ethanol over Ga2O3/HZSM-5. Ind. Eng. Chem. Res., 2014, 53, 13935-13944.
[http://dx.doi.org/10.1021/ie5024029]
[31]
Daroch, M.; Geng, S.; Wang, G.Y. Recent advances in liquid biofuel production from algal feedstocks. Appl. Energy, 2013, 102, 1371-1381.
[http://dx.doi.org/10.1016/j.apenergy.2012.07.031]
[32]
Wang, J.C.; Bi, P.Y.; Zhang, Y.J.; Xue, H.; Jiang, P.W.; Wu, X.P.; Liu, J.X.; Wang, T.J.; Li, Q.X. Preparation of jet fuel range hydrocarbons by catalytic transformation of bio-oil derived from fast pyrolysis of straw stalk. Energy, 2015, 86, 488-499.
[http://dx.doi.org/10.1016/j.energy.2015.04.053]
[33]
Yuan, Y.N.; Bi, P.Y.; Fan, M.H.; Zhang, Z.X.; Jiang, P.W.; Li, Q.X. Directional synthesis of liquid higher olefins through catalytic transformation of bio-oil. J. Chem. Technol. Biotechnol., 2014, 89, 239-248.
[http://dx.doi.org/10.1002/jctb.4107]
[34]
Severa, G.; Kumar, G.; Troung, M.; Young, G.; Cooney, M.J. Simultaneous extraction and separation of phorbol esters and bio-oil from Jatropha biomass using ionic liquid-methanol co-solvents. Separ. Purif. Tech., 2013, 116, 265-270.
[http://dx.doi.org/10.1016/j.seppur.2013.06.001]
[35]
Maher, K.D.; Bressler, D.C. Pyrolysis of triglyceride materials for the production of renewable fuels and chemicals. Bioresour. Technol., 2007, 98(12), 2351-2368.
[http://dx.doi.org/10.1016/j.biortech.2006.10.025] [PMID: 17166713]
[36]
Twaiq, F.A.A.; Mohamad, A.R.; Bhatia, S. Performance of composite catalysts in palm oil cracking for the production of liquid fuels and chemicals. Fuel Process. Technol., 2004, 85, 1283-1300.
[http://dx.doi.org/10.1016/j.fuproc.2003.08.003]
[37]
Rahimi, N.; Karimzadeh, R. Kinetic modeling of catalytic cracking of C-4 alkanes over La/HZSM-5 catalysts in light olefin production. J. Anal. Appl. Pyrolysis, 2015, 115, 242-254.
[http://dx.doi.org/10.1016/j.jaap.2015.08.004]
[38]
Caeiro, G.; Carvalho, R.H.; Wang, X.; Lemos, M.A.N.D.A.; Lemos, F.; Guisnet, M.; Ribeiro, F.R. Activation of C-2-C-4 alkanes over acid and bifunctional zeolite catalysts. J. Mol. Catal. A, 2006, 255, 131-158.
[http://dx.doi.org/10.1016/j.molcata.2006.03.068]
[39]
Rezaei, P.S.; Shafaghat, H.; Daud, W.M.A.W. Production of green aromatics and olefins by catalytic cracking of oxygenate compounds derived from biomass pyrolysis: A review. J. Mol. Catal. A, 2014, 469, 490-511.
[http://dx.doi.org/10.1016/j.apcata.2013.09.036]
[40]
Zhang, G.Q.; Bai, T.; Chen, T.F.; Fan, W.T.; Zhang, X. Conversion of methanol to light aromatics on Zn-modified Nano-HZSM-5 Zeolite catalysts. Ind. Eng. Chem. Res., 2014, 53, 14932-14940.
[http://dx.doi.org/10.1021/ie5021156]
[41]
Rönkkönen, H.; Simell, P.; Reinikainen, M.; Niemelä, M.; Krause, O. Precious metal catalysts in the clean-up of biomass gasification gas Part 1: Monometallic catalysts and their impact on gasification gas composition. Fuel Process. Technol., 2011, 92, 1457-1465.
[http://dx.doi.org/10.1016/j.fuproc.2011.03.006]
[42]
Ishii, Y.; Sakaguchi, S.; Iwahama, T. Innovation of hydrocarbon oxidation with molecular oxygen and related reactions. Adv. Synth. Catal., 2001, 343, 393-427.
[http://dx.doi.org/10.1002/1615-4169(200107)343:5<393:AID-ADSC393>3.0.CO;2-K]
[43]
Zhong, W.Z.; Kirk, S.R.; Yin, D.L.; Li, Y.Q.; Zou, R.; Mao, L.Q.; Zou, G.Q. Solvent-free selective oxidation of toluene by oxygen over MnOx/SBA-15 catalysts: Relationship between catalytic behavior and surface structure. Chem. Eng. J., 2015, 280, 737-747.
[http://dx.doi.org/10.1016/j.cej.2015.06.051]
[44]
Gong, F.; Yang, Z.; Hong, C.; Huang, W.; Ning, S.; Zhang, Z.; Xu, Y.; Li, Q. Selective conversion of bio-oil to light olefins: Controlling catalytic cracking for maximum olefins. Bioresour. Technol., 2011, 102(19), 9247-9254.
[http://dx.doi.org/10.1016/j.biortech.2011.07.009] [PMID: 21807503]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 6
ISSUE: 2
Year: 2019
Page: [135 - 146]
Pages: 12
DOI: 10.2174/2213346106666190830114619

Article Metrics

PDF: 10
HTML: 1