Medicinal Plants As Natural Polarizers of Macrophages: Phytochemicals and Pharmacological Effects

Author(s): Amirhossein Davoodvandi, Roxana Sahebnasagh, Omid Mardanshah, Zatollah Asemi, Majid Nejati, Mohammad K. Shahrzad*, Hamid R. Mirzaei*, Hamed Mirzaei*.

Journal Name: Current Pharmaceutical Design

Volume 25 , Issue 30 , 2019


Abstract:

Macrophages are one of the crucial mediators of the immune response in different physiological and pathological conditions. These cells have critical functions in the inflammation mechanisms that are involved in the inhibition or progression of a wide range of diseases including cancer, autoimmune diseases, etc. It has been shown that macrophages are generally divided into two subtypes, M1 and M2, which are distinguished on the basis of their different gene expression patterns and phenotype. M1 macrophages are known as pro-inflammatory cells and are involved in inflammatory mechanisms, whereas M2 macrophages are known as anti-inflammatory cells that are involved in the inhibition of the inflammatory pathways. M2 macrophages help in tissue healing via producing anti-inflammatory cytokines. Increasing evidence indicated that the appearance of different macrophage subtypes is associated with the fate of diseases (progression versus suppression). Hence, polarization of macrophages can be introduced as an important venue in finding, designing and developing novel therapeutic approaches. Albeit, there are different pharmacological agents that are used for the treatment of various disorders, it has been shown that several natural compounds have the potential to regulate M1 to M2 macrophage polarization and vice versa. Herein, for the first time, we summarized new insights into the pharmacological effects of natural compounds on macrophage polarization.

Keywords: Medicinal plant, phytochemicals, macrophage polarization, therapy, natural polarizers, pharmacological effects.

[1]
Sica A, Erreni M, Allavena P, Porta C. Macrophage polarization in pathology. Cell Mol Life Sci 2015; 72(21): 4111-26.
[http://dx.doi.org/10.1007/s00018-015-1995-y] [PMID: 26210152]
[2]
Patel U, Rajasingh S, Samanta S, Cao T, Dawn B, Rajasingh J. Macrophage polarization in response to epigenetic modifiers during infection and inflammation. Drug Discov Today 2017; 22(1): 186-93.
[http://dx.doi.org/10.1016/j.drudis.2016.08.006] [PMID: 27554801]
[3]
Biswas SK, Chittezhath M, Shalova IN, Lim J-Y. Macrophage polarization and plasticity in health and disease. Immunol Res 2012; 53(1-3): 11-24.
[http://dx.doi.org/10.1007/s12026-012-8291-9] [PMID: 22418728]
[4]
Medzhitov R. Origin and physiological roles of inflammation. Nature 2008; 454(7203): 428-35.
[http://dx.doi.org/10.1038/nature07201] [PMID: 18650913]
[5]
Sica A, Mantovani A. Macrophage plasticity and polarization: in vivo veritas. J Clin Invest 2012; 122(3): 787-95.
[http://dx.doi.org/10.1172/JCI59643] [PMID: 22378047]
[6]
Rahimifard M, Maqbool F, Moeini-Nodeh S, et al. Targeting the TLR4 signaling pathway by polyphenols: A novel therapeutic strategy for neuroinflammation. Ageing Res Rev 2017; 36: 11-9.
[http://dx.doi.org/10.1016/j.arr.2017.02.004] [PMID: 28235660]
[7]
Zhuang P, Wan Y, Geng S, et al. Salvianolic Acids for Injection (SAFI) suppresses inflammatory responses in activated microglia to attenuate brain damage in focal cerebral ischemia. J Ethnopharmacol 2017; 198: 194-204.
[http://dx.doi.org/10.1016/j.jep.2016.11.052] [PMID: 28087473]
[8]
Gullo F, Ceriani M, D’Aloia A, et al. Plant polyphenols and exendin-4 prevent hyperactivity and TNF-α release in LPS-treated in vitro neuron/astrocyte/microglial networks. Front Neurosci 2017; 11: 500.
[http://dx.doi.org/10.3389/fnins.2017.00500] [PMID: 28932183]
[9]
C Jurado-Coronel J, Echeverria V, Hidalgo OA, Gonzalez J, Aliev G, E Barreto G. Implication of green tea as a possible therapeutic approach for Parkinson disease. CNS Neurol Disord Drug Targets 2016; 15: 292-300.
[10]
Areiza-Mazo N, Robles J, Zamudio-Rodriguez JA, et al. Extracts of Physalis peruviana protect astrocytic cells under oxidative stress with rotenone. Front Chem 2018; 6: 276.
[http://dx.doi.org/10.3389/fchem.2018.00276] [PMID: 30175092]
[11]
Sutachan JJ, Casas Z, Albarracin SL, et al. Cellular and molecular mechanisms of antioxidants in Parkinson’s disease. Nutr Neurosci 2012; 15(3): 120-6.
[http://dx.doi.org/10.1179/1476830511Y.0000000033] [PMID: 22732354]
[12]
Putta S, Yarla NS, Peluso I, et al. Anthocyanins: Multi-Target Agents for Prevention and Therapy of Chronic Diseases. Curr Pharm Des 2017; 23(41): 6321-46.
[http://dx.doi.org/10.2174/1381612823666170519151801] [PMID: 28741457]
[13]
Barreto GE, Guedes RC. Polyphenols and neurodegenerative diseases. Nutr Neurosci 2012; 15(3): 92-3.
[http://dx.doi.org/10.1179/12Z.00000000034] [PMID: 22732352]
[14]
Barreto GE, Avila-Rodriguez M, Foitzick M, Aliev G, Echeverria V. Advances in medicinal plants with effects on anxiety behavior associated to mental and Health conditions. Curr Med Chem 2017; 24(4): 411-23.
[http://dx.doi.org/10.2174/0929867323666161101140908] [PMID: 27804869]
[15]
Mazo NA, Echeverria V, Cabezas R, et al. Medicinal plants as protective strategies against Parkinson’s disease. Curr Pharm Des 2017; 23(28): 4180-8.
[http://dx.doi.org/10.2174/1381612823666170316142803] [PMID: 28302024]
[16]
Singh SK, Barreto GE, Aliev G, Echeverria V. Ginkgo biloba as an alternative medicine in the treatment of anxiety in dementia and other psychiatric disorders. Curr Drug Metab 2017; 18(2): 112-9.
[http://dx.doi.org/10.2174/1389200217666161201112206] [PMID: 27908257]
[17]
Wynn TA, Chawla A, Pollard JW. Macrophage biology in development, homeostasis and disease. Nature 2013; 496(7446): 445-55.
[http://dx.doi.org/10.1038/nature12034] [PMID: 23619691]
[18]
Shi C, Pamer EG. Monocyte recruitment during infection and inflammation. Nat Rev Immunol 2011; 11(11): 762-74.
[http://dx.doi.org/10.1038/nri3070] [PMID: 21984070]
[19]
Nakagawa Y, Chiba K. Diversity and plasticity of microglial cells in psychiatric and neurological disorders. Pharmacol Ther 2015; 154: 21-35.
[http://dx.doi.org/10.1016/j.pharmthera.2015.06.010] [PMID: 26129625]
[20]
Zhou D, Huang C, Lin Z, et al. Macrophage polarization and function with emphasis on the evolving roles of coordinated regulation of cellular signaling pathways. Cell Signal 2014; 26(2): 192-7.
[http://dx.doi.org/10.1016/j.cellsig.2013.11.004] [PMID: 24219909]
[21]
Shapouri-Moghaddam A, Mohammadian S, Vazini H, et al. Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol 2018; 233(9): 6425-40.
[http://dx.doi.org/10.1002/jcp.26429] [PMID: 29319160]
[22]
Porta C, Riboldi E, Ippolito A, Sica A. Molecular and epigenetic basis of macrophage polarized activation. Semin Immunol 2015; 27(4): 237-48.
[http://dx.doi.org/10.1016/j.smim.2015.10.003]
[23]
Ganz T. Macrophages and systemic iron homeostasis. J Innate Immun 2012; 4(5-6): 446-53.
[http://dx.doi.org/10.1159/000336423] [PMID: 22441209]
[24]
Ganz T. Macrophages and iron metabolism. Microbiol Spectr 2016; 4(5)
[25]
Mackenzie EL, Iwasaki K, Tsuji Y. Intracellular iron transport and storage: from molecular mechanisms to health implications. Antioxid Redox Signal 2008; 10: 997-1030.
[http://dx.doi.org/10.1089/ars.2007.1893]
[26]
Soares MP, Hamza I. Macrophages and iron metabolism. Immunity 2016; 44(3): 492-504.
[http://dx.doi.org/10.1016/j.immuni.2016.02.016] [PMID: 26982356]
[27]
Mills CD. Macrophage arginine metabolism to ornithine/urea or nitric oxide/citrulline: a life or death issue. Crit Rev Immunol 2001; 21(5): 399-425.
[28]
Rath M, Müller I, Kropf P, Closs EI, Munder M. Metabolism via arginase or nitric oxide synthase: two competing arginine pathways in macrophages. Front Immunol 2014; 5: 532.
[http://dx.doi.org/10.3389/fimmu.2014.00532] [PMID: 25386178]
[29]
Lackey DE, Olefsky JM. Regulation of metabolism by the innate immune system. Nat Rev Endocrinol 2016; 12(1): 15-28.
[http://dx.doi.org/10.1038/nrendo.2015.189] [PMID: 26553134]
[30]
Murray PJ, Wynn TA. Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol 2011; 11(11): 723-37.
[http://dx.doi.org/10.1038/nri3073] [PMID: 21997792]
[31]
Shiratori H, Feinweber C, Luckhardt S, et al. An in vitro test system for compounds that modulate human inflammatory macrophage polarization. Eur J Pharmacol 2018; 833: 328-38.
[http://dx.doi.org/10.1016/j.ejphar.2018.06.017] [PMID: 29920284]
[32]
Gensel JC, Kopper TJ, Zhang B, Orr MB, Bailey WM. Predictive screening of M1 and M2 macrophages reveals the immunomodulatory effectiveness of post spinal cord injury azithromycin treatment. Sci Rep 2017; 7: 40144.
[http://dx.doi.org/10.1038/srep40144] [PMID: 28057928]
[33]
Amantea D, Certo M, Petrelli F, et al. Azithromycin protects mice against ischemic stroke injury by promoting macrophage transition towards M2 phenotype. Exp Neurol 2016; 275(Pt 1): 116-25.
[http://dx.doi.org/10.1016/j.expneurol.2015.10.012] [PMID: 26518285]
[34]
Dugo L, Belluomo MG, Fanali C, et al. Effect of Cocoa polyphenolic extract on macrophage polarization from proinflammatory M1 to anti-inflammatory M2 state. Oxid Med Cell Longev 2017; 20176293740
[http://dx.doi.org/10.1155/2017/6293740]
[35]
Joe B, Vijaykumar M, Lokesh BR. Biological properties of curcumin-cellular and molecular mechanisms of action. Crit Rev Food Sci Nutr 2004; 44(2): 97-111.
[http://dx.doi.org/10.1080/10408690490424702] [PMID: 15116757]
[36]
Payton F, Sandusky P, Alworth WL. NMR study of the solution structure of curcumin. J Nat Prod 2007; 70(2): 143-6.
[http://dx.doi.org/10.1021/np060263s] [PMID: 17315954]
[37]
Kocaadam B, Şanlier N. Curcumin, an active component of turmeric (Curcuma longa), and its effects on health. Crit Rev Food Sci Nutr 2017; 57(13): 2889-95.
[http://dx.doi.org/10.1080/10408398.2015.1077195] [PMID: 26528921]
[38]
Shafabakhsh R, Pourhanifeh MH, Mirzaei HR, Sahebkar A, Asemi Z, Mirzaei H. Targeting regulatory T cells by curcumin: A potential for cancer immunotherapy. Pharmacol Res 2019; 147104353
[http://dx.doi.org/10.1016/j.phrs.2019.104353] [PMID: 31306775]
[39]
Hesari A, Azizian M, Sheikhi A, et al. Chemopreventive and therapeutic potential of curcumin in esophageal cancer: current and future status. Int J Cancer 2019; 144(6): 1215-26.
[40]
Mirzaei H, Shakeri A, Rashidi B, Jalili A, Banikazemi Z, Sahebkar A. Phytosomal curcumin: A review of pharmacokinetic, experimental and clinical studies. Biomed Pharmacother 2017; 85: 102-12.
[http://dx.doi.org/10.1016/j.biopha.2016.11.098] [PMID: 27930973]
[41]
Karimian MS, Pirro M, Majeed M, Sahebkar A. Curcumin as a natural regulator of monocyte chemoattractant protein-1. Cytokine Growth Factor Rev 2017; 33: 55-63.
[http://dx.doi.org/10.1016/j.cytogfr.2016.10.001] [PMID: 27743775]
[42]
Noorafshan A, Ashkani-Esfahani S. A review of therapeutic effects of curcumin. Curr Pharm Des 2013; 19(11): 2032-46.
[PMID: 23116311]
[43]
Wilken R, Veena MS, Wang MB, Srivatsan ES. Curcumin: A review of anti-cancer properties and therapeutic activity in head and neck squamous cell carcinoma. Mol Cancer 2011; 10: 12.
[http://dx.doi.org/10.1186/1476-4598-10-12] [PMID: 21299897]
[44]
Abe Y, Hashimoto S, Horie T. Curcumin inhibition of inflammatory cytokine production by human peripheral blood monocytes and alveolar macrophages. Pharmacol Res 1999; 39(1): 41-7.
[http://dx.doi.org/10.1006/phrs.1998.0404] [PMID: 10051376]
[45]
Chen D, Nie M, Fan MW, Bian Z. Anti-inflammatory activity of curcumin in macrophages stimulated by lipopolysaccharides from Porphyromonas gingivalis. Pharmacology 2008; 82(4): 264-9.
[http://dx.doi.org/10.1159/000161127] [PMID: 18849645]
[46]
Buhrmann C, Mobasheri A, Busch F, et al. Curcumin modulates NF-κB-mediated inflammation in human tenocytes in vitro: role of the phosphatidylinositol 3-kinase-Akt pathway. J Biol Chem 2011; 286(32): 28556-66.
[47]
Zhao C, Cai Y, He X, et al. Synthesis and anti-inflammatory evaluation of novel mono-carbonyl analogues of curcumin in LPS-stimulated RAW 264.7 macrophages. Eur J Med Chem 2010; 45(12): 5773-80.
[http://dx.doi.org/10.1016/j.ejmech.2010.09.037] [PMID: 20934787]
[48]
Jain SK, Rains J, Croad J, Larson B, Jones K. Curcumin supplementation lowers TNF-α, IL-6, IL-8, and MCP-1 secretion in high glucose-treated cultured monocytes and blood levels of TNF-α, IL-6, MCP-1, glucose, and glycosylated hemoglobin in diabetic rats. Antioxid Redox Signal 2009; 11: 241-9.
[49]
Yadav R, Jee B, Awasthi SK. Curcumin suppresses the production of pro-inflammatory cytokine interleukin-18 in lipopolysaccharide stimulated murine macrophage-like cells. Indian J Clin Biochem 2015; 30(1): 109-12.
[http://dx.doi.org/10.1007/s12291-014-0452-2] [PMID: 25646051]
[50]
Anand David AV, Arulmoli R, Parasuraman S. Overviews of biological importance of quercetin: a bioactive flavonoid. Pharmacogn Rev 2016; 10(20): 84-9.
[http://dx.doi.org/10.4103/0973-7847.194044] [PMID: 28082789]
[51]
Dong J, Zhang X, Zhang L, et al. Quercetin reduces obesity-associated adipose tissue macrophage infiltration and inflammation in mice: a mechanism including AMPKα1/SIRT1. J Lipid Res 2014; 55(3): 363-74.
[52]
De Stefano D, Maiuri MC, Simeon V, et al. Lycopene, quercetin and tyrosol prevent macrophage activation induced by gliadin and IFN-γ. Eur J Pharmacol 2007; 566(1-3): 192-9.
[http://dx.doi.org/10.1016/j.ejphar.2007.03.051] [PMID: 17477920]
[53]
Kim YJ, Park W. Anti-inflammatory effect of quercetin on RAW 264.7 mouse macrophages induced with polyinosinic-polycytidylic acid. Molecules 2016; 21(4): 450.
[http://dx.doi.org/10.3390/molecules21040450] [PMID: 27049378]
[54]
Lara-Guzman OJ, Tabares-Guevara JH, Leon-Varela YM, et al. Proatherogenic macrophage activities are targeted by the flavonoid quercetin. J Pharmacol Exp Ther 2012; 343(2): 296-306.
[http://dx.doi.org/10.1124/jpet.112.196147] [PMID: 22869926]
[55]
Hämäläinen M, Nieminen R, Asmawi MZ, Vuorela P, Vapaatalo H, Moilanen E. Effects of flavonoids on prostaglandin E2 production and on COX-2 and mPGES-1 expressions in activated macrophages. Planta Med 2011; 77(13): 1504-11.
[http://dx.doi.org/10.1055/s-0030-1270762] [PMID: 21341175]
[56]
Sun L, Li E, Wang F, et al. Quercetin increases macrophage cholesterol efflux to inhibit foam cell formation through activating PPARγ-ABCA1 pathway. Int J Clin Exp Pathol 2015; 8(9): 10854-60.
[PMID: 26617799]
[57]
Overman A, Chuang CC, McIntosh M. Quercetin attenuates inflammation in human macrophages and adipocytes exposed to macrophage-conditioned media. Int J Obes 2011; 35(9): 1165-72.
[http://dx.doi.org/10.1038/ijo.2010.272] [PMID: 21224828]
[58]
Chawla A. Control of macrophage activation and function by PPARs. Circ Res 2010; 106(10): 1559-69.
[http://dx.doi.org/10.1161/CIRCRESAHA.110.216523] [PMID: 20508200]
[59]
Le NH, Kim C-S, Park T, et al. Quercetin protects against obesity-induced skeletal muscle inflammation and atrophy. Mediators Inflamm 2014; 2014 834294
[http://dx.doi.org/10.1155/2014/834294]
[60]
Gentz BA, Malan TP Jr. Renal toxicity with sevoflurane: a storm in a teacup? Drugs 2001; 61(15): 2155-62.
[http://dx.doi.org/10.2165/00003495-200161150-00001] [PMID: 11772127]
[61]
Lesovaya E, Yemelyanov A, Swart AC, Swart P, Haegeman G, Budunova I. Discovery of compound A-a selective activator of the glucocorticoid receptor with anti-inflammatory and anti-cancer activity. Oncotarget 2015; 6(31): 30730-44.
[http://dx.doi.org/10.18632/oncotarget.5078] [PMID: 26436695]
[62]
Beck IM, Drebert ZJ, Hoya-Arias R, et al. Compound A, a selective glucocorticoid receptor modulator, enhances heat shock protein Hsp70 gene promoter activation. PLoS One 2013; 8(7)e69115
[http://dx.doi.org/10.1371/journal.pone.0069115] [PMID: 23935933]
[63]
Gavrila A, Chachi L, Tliba O, Brightling C, Amrani Y. Effect of the plant derivative Compound A on the production of corticosteroid-resistant chemokines in airway smooth muscle cells. Am J Respir Cell Mol Biol 2015; 53(5): 728-37.
[http://dx.doi.org/10.1165/rcmb.2014-0477OC] [PMID: 25897650]
[64]
De Bosscher K, Vanden Berghe W, Beck IM, et al. A fully dissociated compound of plant origin for inflammatory gene repression. Proc Natl Acad Sci USA 2005; 102(44): 15827-32.
[http://dx.doi.org/10.1073/pnas.0505554102] [PMID: 16243974]
[65]
Dewint P, Gossye V, De Bosscher K, et al. A plant-derived ligand favoring monomeric glucocorticoid receptor conformation with impaired transactivation potential attenuates collagen-induced arthritis. J Immunol 2008; 180(4): 2608-15.
[http://dx.doi.org/10.4049/jimmunol.180.4.2608] [PMID: 18250472]
[66]
Saksida T, Vujicic M, Nikolic I, Stojanovic I, Haegeman G, Stosic-Grujicic S. Compound A, a selective glucocorticoid receptor agonist, inhibits immunoinflammatory diabetes, induced by multiple low doses of streptozotocin in mice. Br J Pharmacol 2014; 171(24): 5898-909.
[http://dx.doi.org/10.1111/bph.12892] [PMID: 25158597]
[67]
Liberman A, Antunica-Noguerol M, Ferraz-de-Paula V, Palermo-Neto J, Castro C. Compound A, a dissociated glucocorticoid receptor modulator, inhibits T-bet (Th1) and induces GATA-3 (Th2) activity in immune cells. PLoS One 2012; 7(4) e3515
[68]
Siemann E, Creasy L. Concentration of the phytoalexin resveratrol in wine. Am J Enol Vitic 1992; 43: 49-52.
[69]
Szekeres T, Fritzer-Szekeres M, Saiko P, Jäger W. Resveratrol and resveratrol analogues-structure-activity relationship. Pharm Res 2010; 27(6): 1042-8.
[http://dx.doi.org/10.1007/s11095-010-0090-1] [PMID: 20232118]
[70]
Olas B, Wachowicz B, Saluk-Juszczak J, Zieliński T, Kaca W, Buczyński A. Antioxidant activity of resveratrol in endotoxin-stimulated blood platelets. Cell Biol Toxicol 2001; 17(2): 117-25.
[http://dx.doi.org/10.1023/A:1010962222305] [PMID: 11499695]
[71]
Gordish KL, Beierwaltes WH. Resveratrol induces acute endothelium-dependent renal vasodilation mediated through nitric oxide and reactive oxygen species scavenging. Am J Physiol Renal Physiol 2014; 306(5): F542-50.
[http://dx.doi.org/10.1152/ajprenal.00437.2013] [PMID: 24431202]
[72]
Wang Z, Zou J, Huang Y, Cao K, Xu Y, Wu JM. Effect of resveratrol on platelet aggregation in vivo and in vitro. Chin Med J 2002; 115(3): 378-80.
[PMID: 11940369]
[73]
Wu JM, Hsieh TC, Wang Z. Cardioprotection by resveratrol: a review of effects/targets in cultured cells and animal tissues. Am J Cardiovasc Dis 2011; 1(1): 38-47.
[PMID: 22254184]
[74]
Goswami SK, Das DK. Resveratrol and chemoprevention. Cancer Lett 2009; 284(1): 1-6.
[http://dx.doi.org/10.1016/j.canlet.2009.01.041] [PMID: 19261378]
[75]
Inoue H, Nakata R. Resveratrol targets in inflammation. Endocr Metab Immune Disord Drug Targets 2015; 15: 186-95.
[http://dx.doi.org/10.2174/1871530315666150316120316]
[76]
Buryanovskyy L, Fu Y, Boyd M, et al. Crystal structure of quinone reductase 2 in complex with resveratrol. Biochemistry 2004; 43(36): 11417-26.
[http://dx.doi.org/10.1021/bi049162o] [PMID: 15350128]
[77]
Murias M, Miksits M, Aust S, et al. Metabolism of resveratrol in breast cancer cell lines: impact of sulfotransferase 1A1 expression on cell growth inhibition. Cancer Lett 2008; 261(2): 172-82.
[http://dx.doi.org/10.1016/j.canlet.2007.11.008] [PMID: 18082939]
[78]
Pineda-Sanabria SE, Robertson IM, Sykes BD. Structure of trans-resveratrol in complex with the cardiac regulatory protein troponin C. Biochemistry 2011; 50(8): 1309-20.
[http://dx.doi.org/10.1021/bi101985j] [PMID: 21226534]
[79]
Rahman S, Islam R. Mammalian Sirt1: insights on its biological functions. Cell Commun Signal 2011; 9: 11.
[http://dx.doi.org/10.1186/1478-811X-9-11] [PMID: 21549004]
[80]
Stünkel W, Campbell RM. Sirtuin 1 (SIRT1): the misunderstood HDAC. J Biomol Screen 2011; 16(10): 1153-69.
[http://dx.doi.org/10.1177/1087057111422103] [PMID: 22086720]
[81]
Vaquero A, Scher M, Lee D, Erdjument-Bromage H, Tempst P, Reinberg D. Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin. Mol Cell 2004; 16(1): 93-105.
[http://dx.doi.org/10.1016/j.molcel.2004.08.031] [PMID: 15469825]
[82]
Imai S, Armstrong CM, Kaeberlein M, Guarente L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 2000; 403(6771): 795-800.
[http://dx.doi.org/10.1038/35001622] [PMID: 10693811]
[83]
Fang Y, Nicholl MB. Sirtuin 1 in malignant transformation: friend or foe? Cancer Lett 2011; 306(1): 10-4.
[http://dx.doi.org/10.1016/j.canlet.2011.02.019] [PMID: 21414717]
[84]
Liu TF, Yoza BK, El Gazzar M, Vachharajani VT, McCall CE. NAD+-dependent SIRT1 deacetylase participates in epigenetic reprogramming during endotoxin tolerance. J Biol Chem 2011; 286(11): 9856-64.
[http://dx.doi.org/10.1074/jbc.M110.196790] [PMID: 21245135]
[85]
Hallows WC, Lee S, Denu JM. Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases. Proc Natl Acad Sci USA 2006; 103(27): 10230-5.
[http://dx.doi.org/10.1073/pnas.0604392103] [PMID: 16790548]
[86]
Hirschey MD, Shimazu T, Capra JA, Pollard KS, Verdin E. SIRT1 and SIRT3 deacetylate homologous substrates: AceCS1,2 and HMGCS1,2. Aging (Albany NY) 2011; 3(6): 635-42.
[http://dx.doi.org/10.18632/aging.100339] [PMID: 21701047]
[87]
Buttari B, Profumo E, Segoni L, et al. Resveratrol counteracts inflammation in human M1 and M2 macrophages upon challenge with 7-oxo-cholesterol: potential therapeutic implications in atherosclerosis. Oxid Med Cell Longev 2014; 2014 257543
[88]
Nagase H, Visse R, Murphy G. Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res 2006; 69(3): 562-73.
[http://dx.doi.org/10.1016/j.cardiores.2005.12.002] [PMID: 16405877]
[89]
Parks WC, Wilson CL, López-Boado YS. Matrix metalloproteinases as modulators of inflammation and innate immunity. Nat Rev Immunol 2004; 4(8): 617-29.
[http://dx.doi.org/10.1038/nri1418] [PMID: 15286728]
[90]
Manicone AM, McGuire JK. Matrix metalloproteinases as modulators of inflammation. Semin Cell Dev Biol 2008; 19(1): 34-41.
[http://dx.doi.org/10.1016/j.semcdb.2007.07.003]
[91]
Newby AC. Metalloproteinase expression in monocytes and macrophages and its relationship to atherosclerotic plaque instability. Arterioscler Thromb Vasc Biol 2008; 28(12): 2108-14.
[http://dx.doi.org/10.1161/ATVBAHA.108.173898] [PMID: 18772495]
[92]
Gordon S, Taylor PR. Monocyte and macrophage heterogeneity. Nat Rev Immunol 2005; 5(12): 953-64.
[http://dx.doi.org/10.1038/nri1733] [PMID: 16322748]
[93]
Martinez FO, Helming L, Gordon S. Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol 2009; 27: 451-83.
[http://dx.doi.org/10.1146/annurev.immunol.021908.132532] [PMID: 19105661]
[94]
Page-McCaw A, Ewald AJ, Werb Z. Matrix metalloproteinases and the regulation of tissue remodelling. Nat Rev Mol Cell Biol 2007; 8(3): 221-33.
[http://dx.doi.org/10.1038/nrm2125] [PMID: 17318226]
[95]
Elkington PT, Ugarte-Gil CA, Friedland JS. Matrix metalloproteinases in tuberculosis. Eur Respir J 2011; 38: 456-64.
[http://dx.doi.org/10.1183/09031936.00015411]
[96]
Murphy G, Knäuper V, Atkinson S, et al. Matrix metalloproteinases in arthritic disease. Arthritis Res 2002; 4(Suppl. 3): S39-49.
[http://dx.doi.org/10.1186/ar572] [PMID: 12110122]
[97]
Sorsa T, Tjäderhane L, Konttinen YT, et al. Matrix metalloproteinases: contribution to pathogenesis, diagnosis and treatment of periodontal inflammation. Ann Med 2006; 38(5): 306-21.
[http://dx.doi.org/10.1080/07853890600800103] [PMID: 16938801]
[98]
Newby AC. Dual role of matrix metalloproteinases (matrixins) in intimal thickening and atherosclerotic plaque rupture. Physiol Rev 2005; 85(1): 1-31.
[http://dx.doi.org/10.1152/physrev.00048.2003] [PMID: 15618476]
[99]
Yang X, Xu S, Qian Y, Xiao Q. Resveratrol regulates microglia M1/M2 polarization via PGC-1α in conditions of neuroinflammatory injury. Brain Behav Immun 2017; 64: 162-72.
[http://dx.doi.org/10.1016/j.bbi.2017.03.003] [PMID: 28268115]
[100]
Perera A, Ton SH, Palanisamy UD. Perspectives on geraniin, a multifunctional natural bioactive compound. Trends Food Sci Technol 2015; 44: 243-57.
[http://dx.doi.org/10.1016/j.tifs.2015.04.010]
[101]
Ito H. Metabolites of the Ellagitannin geraniin and their antioxidant activities. Planta Med 2011; 77(11): 1110-5.
[http://dx.doi.org/10.1055/s-0030-1270749] [PMID: 21294073]
[102]
Vassallo A, Vaccaro MC, De Tommasi N, Dal Piaz F, Leone A. Identification of the plant compound geraniin as a novel Hsp90 inhibitor. PLoS One 2013; 8(9) e74266
[http://dx.doi.org/10.1371/journal.pone.0074266] [PMID: 24066128]
[103]
Boakye YD, Agyare C, Abotsi WKM, Ayande PG, Ossei PPS. Anti-inflammatory activity of aqueous leaf extract of Phyllanthus muellerianus (Kuntze) Exell. and its major constituent, geraniin. J Ethnopharmacol 2016; 187: 17-27.
[http://dx.doi.org/10.1016/j.jep.2016.04.020] [PMID: 27103113]
[104]
Choi H-J, Choi H-J, Park M-J, et al. The inhibitory effects of Geranium thunbergii on interferon-γ- and LPS-induced inflammatory responses are mediated by Nrf2 activation. Int J Mol Med 2015; 35(5): 1237-45.
[http://dx.doi.org/10.3892/ijmm.2015.2128] [PMID: 25761198]
[105]
Ma Q. Role of nrf2 in oxidative stress and toxicity. Annu Rev Pharmacol Toxicol 2013; 53: 401-26.
[http://dx.doi.org/10.1146/annurev-pharmtox-011112-140320] [PMID: 23294312]
[106]
Seng S, Avraham HK, Birrane G, Jiang S, Avraham S. Nuclear matrix protein (NRP/B) modulates the nuclear factor (Erythroid-derived 2)-related 2 (NRF2)-dependent oxidative stress response. J Biol Chem 2010; 285(34): 26190-8.
[http://dx.doi.org/10.1074/jbc.M109.095786] [PMID: 20511222]
[107]
Yajima N, Takahashi M, Morimoto H, et al. Critical role of bone marrow apoptosis-associated speck-like protein, an inflammasome adaptor molecule, in neointimal formation after vascular injury in mice. Circulation 2008; 117(24): 3079-87.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.107.746453] [PMID: 18541743]
[108]
Freigang S, Ampenberger F, Spohn G, et al. Nrf2 is essential for cholesterol crystal-induced inflammasome activation and exacerbation of atherosclerosis. Eur J Immunol 2011; 41(7): 2040-51.
[http://dx.doi.org/10.1002/eji.201041316] [PMID: 21484785]
[109]
Chartoumpekis DV, Ziros PG, Psyrogiannis AI, et al. Nrf2 represses FGF21 during long-term high-fat diet-induced obesity in mice. Diabetes 2011; 60(10): 2465-73.
[http://dx.doi.org/10.2337/db11-0112] [PMID: 21852674]
[110]
Pi J, Leung L, Xue P, et al. Deficiency in the nuclear factor E2-related factor-2 transcription factor results in impaired adipogenesis and protects against diet-induced obesity. J Biol Chem 2010; 285(12): 9292-300.
[http://dx.doi.org/10.1074/jbc.M109.093955] [PMID: 20089859]
[111]
Liu X, Li J, Peng X, et al. Geraniin inhibits LPS-induced THP-1 macrophages switching to M1 phenotype via SOCS1/NF-κB pathway. Inflammation 2016; 39(4): 1421-33.
[http://dx.doi.org/10.1007/s10753-016-0374-7] [PMID: 27290719]
[112]
Dalpke A, Heeg K, Bartz H, Baetz A. Regulation of innate immunity by suppressor of cytokine signaling (SOCS) proteins. Immunobiology 2008; 213(3-4): 225-35.
[http://dx.doi.org/10.1016/j.imbio.2007.10.008] [PMID: 18406369]
[113]
Yoshimura A, Naka T, Kubo M. SOCS proteins, cytokine signalling and immune regulation. Nat Rev Immunol 2007; 7(6): 454-65.
[http://dx.doi.org/10.1038/nri2093] [PMID: 17525754]
[114]
Liu Y, Stewart KN, Bishop E, et al. Unique expression of suppressor of cytokine signaling 3 is essential for classical macrophage activation in rodents in vitro and in vivo. J Immunol 2008; 180(9): 6270-8.
[http://dx.doi.org/10.4049/jimmunol.180.9.6270] [PMID: 18424750]
[115]
Tang J, Kozaki K, Farr AG, et al. The absence of platelet-derived growth factor-B in circulating cells promotes immune and inflammatory responses in atherosclerosis-prone ApoE-/- mice. Am J Pathol 2005; 167(3): 901-12.
[http://dx.doi.org/10.1016/S0002-9440(10)62061-5] [PMID: 16127167]
[116]
Brysha M, Zhang J-G, Bertolino P, et al. Suppressor of cytokine signaling-1 attenuates the duration of interferon γ signal transduction in vitro and in vivo. J Biol Chem 2001; 276(25): 22086-9.
[http://dx.doi.org/10.1074/jbc.M102737200] [PMID: 11306591]
[117]
Starr R, Metcalf D, Elefanty AG, et al. Liver degeneration and lymphoid deficiencies in mice lacking suppressor of cytokine signaling-1. Proc Natl Acad Sci USA 1998; 95(24): 14395-9.
[http://dx.doi.org/10.1073/pnas.95.24.14395] [PMID: 9826711]
[118]
Lang R, Pauleau A-L, Parganas E, et al. SOCS3 regulates the plasticity of gp130 signaling. Nat Immunol 2003; 4(6): 546-50.
[http://dx.doi.org/10.1038/ni932] [PMID: 12754506]
[119]
Yasukawa H, Ohishi M, Mori H, et al. IL-6 induces an anti-inflammatory response in the absence of SOCS3 in macrophages. Nat Immunol 2003; 4(6): 551-6.
[http://dx.doi.org/10.1038/ni938] [PMID: 12754507]
[120]
Zhou H, Miki R, Eeva M, et al. Reciprocal regulation of SOCS 1 and SOCS3 enhances resistance to ionizing radiation in glioblastoma multiforme. Clin Cancer Res 2007; 13(8): 2344-53.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-2303] [PMID: 17438093]
[121]
Baetz A, Frey M, Heeg K, Dalpke AH. Suppressor of cytokine signaling (SOCS) proteins indirectly regulate toll-like receptor signaling in innate immune cells. J Biol Chem 2004; 279(52): 54708-15.
[http://dx.doi.org/10.1074/jbc.M410992200] [PMID: 15491991]
[122]
Hanada T, Tanaka K, Matsumura Y, et al. Induction of hyper Th1 cell-type immune responses by dendritic cells lacking the suppressor of cytokine signaling-1 gene. J Immunol 2005; 174(7): 4325-32.
[http://dx.doi.org/10.4049/jimmunol.174.7.4325] [PMID: 15778397]
[123]
Chen F, Guo N, Cao G, Zhou J, Yuan Z. Molecular analysis of curcumin-induced polarization of murine RAW264.7 macrophages. J Cardiovasc Pharmacol 2014; 63(6): 544-52.
[http://dx.doi.org/10.1097/FJC.0000000000000079] [PMID: 24709638]
[124]
Gao S, Zhou J, Liu N, et al. Curcumin induces M2 macrophage polarization by secretion IL-4 and/or IL-13. J Mol Cell Cardiol 2015; 85: 131-9.
[http://dx.doi.org/10.1016/j.yjmcc.2015.04.025] [PMID: 25944087]
[125]
Karuppagounder V, Arumugam S, Thandavarayan RA, et al. Curcumin alleviates renal dysfunction and suppresses inflammation by shifting from M1 to M2 macrophage polarization in daunorubicin induced nephrotoxicity in rats. Cytokine 2016; 84: 1-9.
[http://dx.doi.org/10.1016/j.cyto.2016.05.001] [PMID: 27203664]
[126]
Larmonier CB, Midura-Kiela MT, Ramalingam R, et al. Modulation of neutrophil motility by curcumin: implications for inflammatory bowel disease. Inflamm Bowel Dis 2011; 17(2): 503-15.
[http://dx.doi.org/10.1002/ibd.21391] [PMID: 20629184]
[127]
Li B, Hu Y, Zhao Y, et al. Curcumin attenuates titanium particle-induced inflammation by regulating macrophage polarization in vitro and in vivo. Front Immunol 2017; 8: 55.
[http://dx.doi.org/10.3389/fimmu.2017.00055] [PMID: 28197150]
[128]
Liu Z, Ran Y, Huang S, et al. Curcumin protects against ischemic stroke by Titrating microglia/macrophage polarization. Front Aging Neurosci 2017; 9: 233.
[http://dx.doi.org/10.3389/fnagi.2017.00233] [PMID: 28785217]
[129]
Tan R-Z, Liu J, Zhang Y-Y, et al. Curcumin relieved cisplatin-induced kidney inflammation through inhibiting Mincle-maintained M1 macrophage phenotype. Phytomedicine 2019; 52: 284-94.
[http://dx.doi.org/10.1016/j.phymed.2018.09.210] [PMID: 30599909]
[130]
Yang Z, He C, He J, Chu J, Liu H, Deng X. Curcumin-mediated bone marrow mesenchymal stem cell sheets create a favorable immune microenvironment for adult full-thickness cutaneous wound healing. Stem Cell Res Ther 2018; 9(1): 21.
[http://dx.doi.org/10.1186/s13287-018-0768-6] [PMID: 29386050]
[131]
Yang R, Zheng Y, Wang Q, Zhao L. Curcumin-loaded chitosan-bovine serum albumin nanoparticles potentially enhanced Aβ 42 phagocytosis and modulated macrophage polarization in Alzheimer’s disease. Nanoscale Res Lett 2018; 13(1): 330.
[http://dx.doi.org/10.1186/s11671-018-2759-z] [PMID: 30350003]
[132]
Zhao X-A, Chen G, Liu Y, et al. Curcumin reduces Ly6Chi monocyte infiltration to protect against liver fibrosis by inhibiting Kupffer cells activation to reduce chemokines secretion. Biomed Pharmacother 2018; 106: 868-78.
[http://dx.doi.org/10.1016/j.biopha.2018.07.028] [PMID: 30119257]
[133]
Zhou Y, Zhang T, Wang X, et al. Curcumin modulates macrophage polarization through the inhibition of the toll-like receptor 4 expression and its signaling pathways. Cell Physiol Biochem 2015; 36(2): 631-41.
[http://dx.doi.org/10.1159/000430126] [PMID: 25998190]
[134]
Rutledge KE, Cheng Q, Jabbarzadeh E. Modulation of inflammatory response and induction of bone formation based on combinatorial effects of resveratrol. J Nanomed Nanotechnol 2016; 7(1): 7.
[http://dx.doi.org/10.4172/2157-7439.1000350] [PMID: 27175310]
[135]
Sun L, Chen B, Jiang R, Li J, Wang B. Resveratrol inhibits lung cancer growth by suppressing M2-like polarization of tumor associated macrophages. Cell Immunol 2017; 311: 86-93.
[http://dx.doi.org/10.1016/j.cellimm.2016.11.002] [PMID: 27825563]
[136]
Wan J, Benkdane M, Teixeira-Clerc F, et al. M2 Kupffer cells promote M1 Kupffer cell apoptosis: a protective mechanism against alcoholic and nonalcoholic fatty liver disease. Hepatology 2014; 59(1): 130-42.
[http://dx.doi.org/10.1002/hep.26607] [PMID: 23832548]
[137]
Nejati M, Atlasi MA, Karimian M, Nikzad H, Azami TA. Lipoprotein lipase gene polymorphisms as risk factors for stroke: a computational and meta-analysis. Iran J Basic Med Sci 2018; 21(7): 701-8.
[138]
Wang Y, Bao J, Wu X, et al. Genipin crosslinking reduced the immunogenicity of xenogeneic decellularized porcine whole-liver matrices through regulation of immune cell proliferation and polarization. Sci Rep 2016; 6: 24779.
[http://dx.doi.org/10.1038/srep24779] [PMID: 27098308]
[139]
Yang CL, Sun YH, Yu WH, Yin XZ, Weng J, Feng B. Modulation of macrophage phenotype through controlled release of interleukin-4 from gelatine coatings on titanium surfaces. Eur Cell Mater 2018; 36: 15-29.
[http://dx.doi.org/10.22203/eCM.v036a02] [PMID: 30047980]
[140]
Jamali L, Tofigh R, Tutunchi S, et al. Circulating microRNAs as diagnostic and therapeutic biomarkers in gastric and esophageal cancers. J Cell Physiol 2018; 233(11): 8538-50.
[http://dx.doi.org/10.1002/jcp.26850] [PMID: 29923196]
[141]
Boakye YD, Groyer L, Heiss EH. An increased autophagic flux contributes to the anti-inflammatory potential of urolithin A in macrophages. Biochim Biophys Acta 2018; 1862(1): 61-70.
[http://dx.doi.org/10.1016/j.bbagen.2017.10.006] [PMID: 29031765]
[142]
Chang Y, Jia X, Wei F, et al. CP-25, a novel compound, protects against autoimmune arthritis by modulating immune mediators of inflammation and bone damage. Sci Rep 2016; 6: 26239.
[http://dx.doi.org/10.1038/srep26239] [PMID: 27184722]
[143]
Li X, Jin Q, Yao Q, et al. The flavonoid quercetin ameliorates liver inflammation and fibrosis by regulating hepatic macrophages activation and polarization in mice. Front Pharmacol 2018; 9: 72.
[http://dx.doi.org/10.3389/fphar.2018.00072] [PMID: 29497376]
[144]
Feng X, Qin H, Shi Q, et al. Chrysin attenuates inflammation by regulating M1/M2 status via activating PPARγ. Biochem Pharmacol 2014; 89(4): 503-14.
[http://dx.doi.org/10.1016/j.bcp.2014.03.016] [PMID: 24704474]
[145]
Wadibhasme PG, Ghaisas MM, Thakurdesai PA. Anti-asthmatic potential of chrysin on ovalbumin-induced bronchoalveolar hyperresponsiveness in rats. Pharm Biol 2011; 49(5): 508-15.
[http://dx.doi.org/10.3109/13880209.2010.521754] [PMID: 21501099]
[146]
Feng X, Weng D, Zhou F, et al. Activation of PPARγ by a natural flavonoid modulator, apigenin ameliorates obesity-related inflammation via regulation of macrophage polarization. EBioMedicine 2016; 9: 61-76.
[http://dx.doi.org/10.1016/j.ebiom.2016.06.017] [PMID: 27374313]
[147]
Iwanowycz S, Wang J, Altomare D, Hui Y, Fan D. Emodin bi-directionally modulates macrophage polarization and epigenetically regulates macrophage memory. J Biol Chem 2016; 291(22): 11491-503.
[148]
Iwanowycz S, Wang J, Hodge J, Wang Y, Yu F, Fan D. Emodin inhibits breast cancer growth by blocking the tumor-promoting feedforward loop between cancer cells and macrophages. Mol Cancer Ther 2016; 15(8): 1931-42.
[http://dx.doi.org/10.1158/1535-7163.MCT-15-0987] [PMID: 27196773]
[149]
Jia X, Yu F, Wang J, et al. Emodin suppresses pulmonary metastasis of breast cancer accompanied with decreased macrophage recruitment and M2 polarization in the lungs. Breast Cancer Res Treat 2014; 148(2): 291-302.
[http://dx.doi.org/10.1007/s10549-014-3164-7] [PMID: 25311112]
[150]
Song YD, Li XZ, Wu YX, et al. Emodin alleviates alternatively activated macrophage and asthmatic airway inflammation in a murine asthma model. Acta Pharmacol Sin 2018; 39(8): 1317-25.
[http://dx.doi.org/10.1038/aps.2017.147]
[151]
Pan J, Jin JL, Ge HM, et al. Malibatol A regulates microglia M1/M2 polarization in experimental stroke in a PPARγ-dependent manner. J Neuroinflammation 2015; 12: 51.
[http://dx.doi.org/10.1186/s12974-015-0270-3] [PMID: 25889216]
[152]
Piao M, Cao H, He N, et al. Berberine inhibits intestinal polyps growth in Apc (min/+) mice via regulation of macrophage polarization. Evid Based Complem Alter Med 2016. 5137505
[153]
Ye L, Liang S, Guo C, et al. Inhibition of M1 macrophage activation in adipose tissue by berberine improves insulin resistance. Life Sci 2016; 166: 82-91.
[http://dx.doi.org/10.1016/j.lfs.2016.09.025] [PMID: 27702567]
[154]
Liu Y, Liu X, Hua W, et al. Berberine inhibits macrophage M1 polarization via AKT1/SOCS1/NF-κB signaling pathway to protect against DSS-induced colitis. Int Immunopharmacol 2018; 57: 121-31.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 25
ISSUE: 30
Year: 2019
Page: [3225 - 3238]
Pages: 14
DOI: 10.2174/1381612825666190829154934
Price: $58

Article Metrics

PDF: 23
HTML: 2
EPUB: 1
PRC: 1

Special-new-year-discount