Molecular Mechanisms of Complement System Proteins and Matrix Metalloproteinases in the Pathogenesis of Age-Related Macular Degeneration

Author(s): Naima Mansoor, Fazli Wahid, Maleeha Azam, Khadim Shah, Anneke I. den Hollander, Raheel Qamar, Humaira Ayub*.

Journal Name: Current Molecular Medicine

Volume 19 , Issue 10 , 2019

  Journal Home
Translate in Chinese
Become EABM
Become Reviewer

Abstract:

Age-related macular degeneration (AMD) is an eye disorder affecting predominantly the older people above the age of 50 years in which the macular region of the retina deteriorates, resulting in the loss of central vision. The key factors associated with the pathogenesis of AMD are age, smoking, dietary, and genetic risk factors. There are few associated and plausible genes involved in AMD pathogenesis. Common genetic variants (with a minor allele frequency of >5% in the population) near the complement genes explain 40–60% of the heritability of AMD. The complement system is a group of proteins that work together to destroy foreign invaders, trigger inflammation, and remove debris from cells and tissues. Genetic changes in and around several complement system genes, including the CFH, contribute to the formation of drusen and progression of AMD. Similarly, Matrix metalloproteinases (MMPs) that are normally involved in tissue remodeling also play a critical role in the pathogenesis of AMD. MMPs are involved in the degradation of cell debris and lipid deposits beneath retina but with age their functions get affected and result in the drusen formation, succeeding to macular degeneration. In this review, AMD pathology, existing knowledge about the normal and pathological role of complement system proteins and MMPs in the eye is reviewed. The scattered data of complement system proteins, MMPs, drusenogenesis, and lipofusogenesis have been gathered and discussed in detail. This might add new dimensions to the understanding of molecular mechanisms of AMD pathophysiology and might help in finding new therapeutic options for AMD.

Keywords: Higher age diseases, drusen formation, genetics based pathogenesis, AMD therapeutics, complement involvement in AMD, matrix metalloproteinases.

[1]
Jonasson F, Arnarsson A, Eiríksdottir G, et al. Prevalence of age-related macular degeneration in old persons: Age, Gene/environment susceptibility reykjavik study. Ophthalmology 2011; 118(5): 825-30.
[http://dx.doi.org/10.1016/j.ophtha.2010.08.044] [PMID: 21126770]
[2]
Graham KW, Chakravarthy U, Hogg RE, Muldrew KA, Young IS, Kee F. Identifying features of early and late age related macular degeneration: a comparison of multicolor versus traditional color fundus photography. Retina 2018; 38(9): 1751-8.
[http://dx.doi.org/10.1097/IAE.0000000000001777] [PMID: 28834946]
[3]
Soriano M, Aguirre G. Ophthalmology: current and future developments: diagnostic atlas of retinal diseases sharjah. Bentham Science Publishers 2016.
[http://dx.doi.org/10.2174/97816810835751160101]
[4]
Health Quality O. Medical Advisory Secretariat. Routine eye examinations for persons 20-64 years of age: an evidence-based analysis. Ont Health Technol Assess Ser 2006; 6(15): 1-81.
[PMID: 23074485]
[5]
Hageman GS, Luthert PJ, Victor Chong NH, Johnson LV, Anderson DH, Mullins RF. An integrated hypothesis that considers drusen as biomarkers of immune-mediated processes at the RPE-Bruch’s membrane interface in aging and age-related macular degeneration. Prog Retin Eye Res 2001; 20(6): 705-32.
[http://dx.doi.org/10.1016/S1350-9462(01)00010-6] [PMID: 11587915]
[6]
Chen Y, Bedell M, Zhang K. Age-related macular degeneration: genetic and environmental factors of disease. Mol Interv 2010; 10(5): 271-81.
[http://dx.doi.org/10.1124/mi.10.5.4] [PMID: 21045241]
[7]
Despriet DD, van Duijn CM, Oostra BA, et al. Complement component C3 and risk of age-related macular degeneration. Ophthalmology 2009; 116(3): 474-480.e2.
[http://dx.doi.org/10.1016/j.ophtha.2008.09.055] [PMID: 19168221]
[8]
Maugeri A, Barchitta M, Mazzone MG, Giuliano F, Agodi A. Complement system and age related macular degeneration: implications of gene environment interaction for preventive and personalized medicine Biomed Res Int 2018 2018.
[http://dx.doi.org/10.1155/2018/7532507]
[9]
Fritsche LG, Chen W, Schu M, et al. AMD Gene Consortium Seven new loci associated with age-related macular degeneration Nat Genet 2013; 45(4): 433-439, e1-e2.
[http://dx.doi.org/10.1038/ng.2578] [PMID: 23455636]
[10]
Travascio F, Ed. The Role of matrix metalloproteinase in human body pathologies. IntechOpen 2017.
[http://dx.doi.org/10.5772/66560]
[11]
Liu JH, Wann H, Chen MM, et al. Baicalein significantly protects human retinal pigment epithelium cells against H2O2-induced oxidative stress by scavenging reactive oxygen species and downregulating the expression of matrix metalloproteinase-9 and vascular endothelial growth factor. J Ocul Pharmacol Ther 2010; 26(5): 421-9.
[http://dx.doi.org/10.1089/jop.2010.0063] [PMID: 20879805]
[12]
Golestaneh N, Chu Y, Xiao YY, Stoleru GL, Theos AC. Dysfunctional autophagy in RPE, a contributing factor in age-related macular degeneration. Cell Death Dis 2017; 8(1)e2537
[http://dx.doi.org/10.1038/cddis.2016.453] [PMID: 28055007]
[13]
Kanda A, Chen W, Othman M, et al. A variant of mitochondrial protein LOC387715/ARMS2, not HTRA1, is strongly associated with age-related macular degeneration. Proc Natl Acad Sci USA 2007; 104(41): 16227-32.
[http://dx.doi.org/10.1073/pnas.0703933104] [PMID: 17884985]
[14]
Arakawa S, Takahashi A, Ashikawa K, et al. Genome-wide association study identifies two susceptibility loci for exudative age-related macular degeneration in the Japanese population. Nat Genet 2011; 43(10): 1001-4.
[http://dx.doi.org/10.1038/ng.938] [PMID: 21909106]
[15]
Chen W, Stambolian D, Edwards AO, et al. Complications of age-related macular degeneration prevention trial research group. Genetic variants near TIMP3 and high-density lipoprotein-associated loci influence susceptibility to age-related macular degeneration. Proc Natl Acad Sci USA 2010; 107(16): 7401-6.
[http://dx.doi.org/10.1073/pnas.0912702107] [PMID: 20385819]
[16]
Neale BM, Fagerness J, Reynolds R, et al. Genome-wide association study of advanced age-related macular degeneration identifies a role of the hepatic lipase gene (LIPC). Proc Natl Acad Sci USA 2010; 107(16): 7395-400.
[http://dx.doi.org/10.1073/pnas.0912019107] [PMID: 20385826]
[17]
Yu Y, Bhangale TR, Fagerness J, et al. Common variants near FRK/COL10A1 and VEGFA are associated with advanced age-related macular degeneration. Hum Mol Genet 2011; 20(18): 3699-709.
[http://dx.doi.org/10.1093/hmg/ddr270] [PMID: 21665990]
[18]
Fritsche LG, Fariss RN, Stambolian D, Abecasis GR, Curcio CA, Swaroop A. Age-related macular degeneration: genetics and biology coming together. Annu Rev Genomics Hum Genet 2014; 15: 151-71.
[http://dx.doi.org/10.1146/annurev-genom-090413-025610] [PMID: 24773320]
[19]
Edwards AO, Ritter R III, Abel KJ, Manning A, Panhuysen C, Farrer LA. Complement factor H polymorphism and age-related macular degeneration. Science 2005; 308(5720): 421-4.
[http://dx.doi.org/10.1126/science.1110189] [PMID: 15761121]
[20]
Haines JL, Hauser MA, Schmidt S, et al. Complement factor H variant increases the risk of age-related macular degeneration. Science 2005; 308(5720): 419-21.
[http://dx.doi.org/10.1126/science.1110359] [PMID: 15761120]
[21]
Klein RJ, Zeiss C, Chew EY, et al. Complement factor H polymorphism in age-related macular degeneration. Science 2005; 308(5720): 385-9.
[http://dx.doi.org/10.1126/science.1109557] [PMID: 15761122]
[22]
Rivera A, Fisher SA, Fritsche LG, et al. Hypothetical LOC387715 is a second major susceptibility gene for age-related macular degeneration, contributing independently of complement factor H to disease risk. Hum Mol Genet 2005; 14(21): 3227-36.
[http://dx.doi.org/10.1093/hmg/ddi353] [PMID: 16174643]
[23]
Chirco KR. Mechanisms of pathophysiology and methods for regeneration of the choriocapillaris in age related macular degeneration Dissertation. University of Iowa 2017.
[http://dx.doi.org/10.17077/etd.07nuvvw0]
[24]
Mathis T, Housset M, Eandi C, et al. Activated monocytes resist elimination by retinal pigment epithelium and downregulate their OTX2 expression via TNF-α. Aging Cell 2017; 16(1): 173-82.
[http://dx.doi.org/10.1111/acel.12540] [PMID: 27660103]
[25]
Provencio I, Rodriguez IR, Jiang G, Hayes WP, Moreira EF, Rollag MD. A novel human opsin in the inner retina. J Neurosci 2000; 20(2): 600-5.
[http://dx.doi.org/10.1523/JNEUROSCI.20-02-00600.2000] [PMID: 10632589]
[26]
Sivaprasad S, Bailey TA, Chong VN. Bruch’s membrane and the vascular intima: is there a common basis for age-related changes and disease? Clin Exp Ophthalmol 2005; 33(5): 518-23.
[http://dx.doi.org/10.1111/j.1442-9071.2005.01074.x] [PMID: 16181282]
[27]
de Jong PT. Age-related macular degeneration. N Engl J Med 2006; 355(14): 1474-85.
[http://dx.doi.org/10.1056/NEJMra062326] [PMID: 17021323]
[28]
Charman WN. The eye in focus: Accommodation and presbyopia. Clin Exp Optom 2008; 91(3): 207-25.
[http://dx.doi.org/10.1111/j.1444-0938.2008.00256.x] [PMID: 18336584]
[29]
Nowak JZ. Age-related macular degeneration (AMD): pathogenesis and therapy. Pharmacol Rep 2006; 58(3): 353-63.
[PMID: 16845209]
[30]
Curcio CA, Johnson M, Huang JD, Rudolf M. Apolipoprotein B-containing lipoproteins in retinal aging and age-related macular degeneration. J Lipid Res 2010; 51(3): 451-67.
[http://dx.doi.org/10.1194/jlr.R002238] [PMID: 19797256]
[31]
Campochiaro PA. Gene transfer for ocular neovascularization and macular edema. Gene Ther 2012; 19(2): 121-6.
[http://dx.doi.org/10.1038/gt.2011.164] [PMID: 22071973]
[32]
Anderson DH, Radeke MJ, Gallo NB, et al. The pivotal role of the complement system in aging and age-related macular degeneration: hypothesis re-visited. Prog Retin Eye Res 2010; 29(2): 95-112.
[http://dx.doi.org/10.1016/j.preteyeres.2009.11.003] [PMID: 19961953]
[33]
Rodriguez JD, Lane K, Hollander DA, et al. Cone photoreceptor macular function and recovery after photostress in early non-exudative age-related macular degeneration. Clin Ophthalmol 2018; 12: 1325-35.
[http://dx.doi.org/10.2147/OPTH.S165658] [PMID: 30100705]
[34]
Luibl V, Isas JM, Kayed R, Glabe CG, Langen R, Chen J. Drusen deposits associated with aging and age-related macular degeneration contain nonfibrillar amyloid oligomers. J Clin Invest 2006; 116(2): 378-85.
[http://dx.doi.org/10.1172/JCI25843] [PMID: 16453022]
[35]
Ehrlich R, Harris A, Kheradiya NS, Winston DM, Ciulla TA, Wirostko B. Age-related macular degeneration and the aging eye. Clin Interv Aging 2008; 3(3): 473-82.
[PMID: 18982917]
[36]
Chung WH, van Dijk EH, Mohabati D, et al. Neovascular age-related macular degeneration without drusen in the fellow eye: clinical spectrum and therapeutic outcome. Clin Ophthalmol 2016; 11: 63-70.
[http://dx.doi.org/10.2147/OPTH.S122568] [PMID: 28053502]
[37]
Yamada Y, Ishibashi K, Ishibashi K, et al. The expression of advanced glycation endproduct receptors in rpe cells associated with basal deposits in human maculas. Exp Eye Res 2006; 82(5): 840-8.
[http://dx.doi.org/10.1016/j.exer.2005.10.005] [PMID: 16364296]
[38]
Reale E, Groos S, Eckardt U, Eckardt C, Luciano L. New components of ‘basal laminar deposits’ in age-related macular degeneration. Cells Tissues Organs (Print) 2009; 190(3): 170-81.
[http://dx.doi.org/10.1159/000187632] [PMID: 19088465]
[39]
Chhablani J, Ruiz Medrano J. Choroidal Disorders. 1st ed. Academic Press: Elsevier 2017.
[40]
Curcio CA, Millican CL. Basal linear deposit and large drusen are specific for early age-related maculopathy. Arch Ophthalmol 1999; 117(3): 329-39.
[http://dx.doi.org/10.1001/archopht.117.3.329] [PMID: 10088810]
[41]
Klein R, Klein BE, Knudtson MD, Meuer SM, Swift M, Gangnon RE. Fifteen-year cumulative incidence of age-related macular degeneration: the Beaver Dam Eye Study. Ophthalmology 2007; 114(2): 253-62.
[http://dx.doi.org/10.1016/j.ophtha.2006.10.040] [PMID: 17270675]
[42]
Rudolf M, Clark ME, Chimento MF, Li CM, Medeiros NE, Curcio CA. Prevalence and morphology of druse types in the macula and periphery of eyes with age-related maculopathy. Invest Ophthalmol Vis Sci 2008; 49(3): 1200-9.
[http://dx.doi.org/10.1167/iovs.07-1466] [PMID: 18326750]
[43]
Schachat AP, Wilkinson CP, Hinton DR, Sadda SR, Wiedemann P. Ryan’s Retina. 6th ed. Elsevier Health Sciences 2018.
[44]
Julien S, Schraermeyer U. Lipofuscin can be eliminated from the retinal pigment epithelium of monkeys. Neurobiol Aging 2012; 33(10): 2390-7.
[http://dx.doi.org/10.1016/j.neurobiolaging.2011.12.009] [PMID: 22244091]
[45]
Saprunova VB, Pilipenko DI, Alexeevsky AV, Fursova AZh, Kolosova NG, Bakeeva LE. Lipofuscin granule dynamics during development of age-related macular degeneration. Biochemistry (Mosc) 2010; 75(2): 130-8.
[http://dx.doi.org/10.1134/S0006297910020021] [PMID: 20367599]
[46]
Holz FG, Bindewald-Wittich A, Fleckenstein M, Dreyhaupt J, Scholl HP, Schmitz-Valckenberg S. FAM-Study Group. Progression of geographic atrophy and impact of fundus autofluorescence patterns in age-related macular degeneration. Am J Ophthalmol 2007; 143(3): 463-72.
[http://dx.doi.org/10.1016/j.ajo.2006.11.041] [PMID: 17239336]
[47]
Godley BF, Shamsi FA, Liang FQ, Jarrett SG, Davies S, Boulton M. Blue light induces mitochondrial DNA damage and free radical production in epithelial cells. J Biol Chem 2005; 280(22): 21061-6.
[http://dx.doi.org/10.1074/jbc.M502194200] [PMID: 15797866]
[48]
Radu RA, Hu J, Yuan Q, et al. Complement system dysregulation and inflammation in the retinal pigment epithelium of a mouse model for Stargardt macular degeneration. J Biol Chem 2011; 286(21): 18593-601.
[http://dx.doi.org/10.1074/jbc.M110.191866] [PMID: 21464132]
[49]
Lai E. Application of SNP technologies in medicine: lessons learned and future challenges. Genome Res 2001; 11(6): 927-9.
[http://dx.doi.org/10.1101/gr.192301] [PMID: 11381021]
[50]
Feero WG, Guttmacher AE, Collins FS. The genome gets personal--almost. JAMA 2008; 299(11): 1351-2.
[http://dx.doi.org/10.1001/jama.299.11.1351] [PMID: 18349096]
[51]
Fuse N. Genetic bases for glaucoma. Tohoku J Exp Med 2010; 221(1): 1-10.
[http://dx.doi.org/10.1620/tjem.221.1] [PMID: 20431268]
[52]
Donoso LA, Kim D, Frost A, Callahan A, Hageman G. The role of inflammation in the pathogenesis of age-related macular degeneration. Surv Ophthalmol 2006; 51(2): 137-52.
[http://dx.doi.org/10.1016/j.survophthal.2005.12.001] [PMID: 16500214]
[53]
Baird PN, Craig JE, Richardson AJ, et al. Analysis of 15 primary open-angle glaucoma families from Australia identifies a founder effect for the Q368STOP mutation of myocilin. Hum Genet 2003; 112(2): 110-6.
[PMID: 12522550]
[54]
Tuo J, Bojanowski CM, Chan CC. Genetic factors of age related macular degeneration Prog Retin Eye Res 2004; 23(2): 229 49.
[http://dx.doi.org/10.1016/j.preteyeres.2004.02.001]
[55]
Weeks DE, Conley YP, Tsai HJ, et al. Age-related maculopathy: a genomewide scan with continued evidence of susceptibility loci within the 1q31, 10q26, and 17q25 regions. Am J Hum Genet 2004; 75(2): 174-89.
[http://dx.doi.org/10.1086/422476] [PMID: 15168325]
[56]
Zareparsi S, Branham KE, Li M, et al. Strong association of the Y402H variant in complement factor H at 1q32 with susceptibility to age-related macular degeneration. Am J Hum Genet 2005; 77(1): 149-53.
[http://dx.doi.org/10.1086/431426] [PMID: 15895326]
[57]
Maller JB, Fagerness JA, Reynolds RC, Neale BM, Daly MJ, Seddon JM. Variation in complement factor 3 is associated with risk of age-related macular degeneration. Nat Genet 2007; 39(10): 1200-1.
[http://dx.doi.org/10.1038/ng2131] [PMID: 17767156]
[58]
Gold B, Merriam JE, Zernant J, et al. AMD Genetics Clinical Study Group. Variation in factor B (BF) and complement component 2 (C2) genes is associated with age-related macular degeneration. Nat Genet 2006; 38(4): 458-62.
[http://dx.doi.org/10.1038/ng1750] [PMID: 16518403]
[59]
Fagerness JA, Maller JB, Neale BM, Reynolds RC, Daly MJ, Seddon JM. Variation near complement factor I is associated with risk of advanced AMD. Eur J Hum Genet 2009; 17(1): 100-4.
[http://dx.doi.org/10.1038/ejhg.2008.140] [PMID: 18685559]
[60]
Ma DH, Chen JK, Zhang F, Lin KY, Yao JY, Yu JS. Regulation of corneal angiogenesis in limbal stem cell deficiency. Prog Retin Eye Res 2006; 25(6): 563-90.
[http://dx.doi.org/10.1016/j.preteyeres.2006.09.001] [PMID: 17079182]
[61]
Berger EA, McClellan SA, Barrett RP, Hazlett LD. Testican-1 promotes resistance against Pseudomonas aeruginosa-induced keratitis through regulation of MMP-2 expression and activation. Invest Ophthalmol Vis Sci 2011; 52(8): 339-46.
[62]
Kowluru RA, Mishra M. Regulation of matrix metalloproteinase in the pathogenesis of diabetic retinopathy. Prog Mol Biol Transl Sci 2017; 148: 67-85.
[http://dx.doi.org/10.1016/bs.pmbts.2017.02.004] [PMID: 28662829]
[63]
Vartak DG, Gemeinhart RA. Matrix metalloproteases: underutilized targets for drug delivery. J Drug Target 2007; 15(1): 1-20.
[http://dx.doi.org/10.1080/10611860600968967] [PMID: 17365270]
[64]
Sivak JM, Fini ME. MMPs in the eye: emerging roles for matrix metalloproteinases in ocular physiology. Prog Retin Eye Res 2002; 21(1): 1-14.
[http://dx.doi.org/10.1016/S1350-9462(01)00015-5] [PMID: 11906808]
[65]
Nagase H, Visse R, Murphy G. Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res 2006; 69(3): 562-73.
[http://dx.doi.org/10.1016/j.cardiores.2005.12.002] [PMID: 16405877]
[66]
Chau KY, Sivaprasad S, Patel N, Donaldson TA, Luthert PJ, Chong NV. Plasma levels of matrix metalloproteinase-2 and -9 (MMP-2 and MMP-9) in age-related macular degeneration. Eye (Lond) 2008; 22(6): 855-9.
[http://dx.doi.org/10.1038/sj.eye.6702722x] [PMID: 18597988]
[67]
Marin-Castaño ME, Striker GE, Alcazar O, Catanuto P, Espinosa-Heidmann DG, Cousins SW. Repetitive nonlethal oxidant injury to retinal pigment epithelium decreased extracellular matrix turnover in vitro and induced sub-RPE deposits in vivo. Invest Ophthalmol Vis Sci 2006; 47(9): 4098-112.
[http://dx.doi.org/10.1167/iovs.05-1230] [PMID: 16936130]
[68]
Steen B, Sejersen S, Berglin L, Seregard S, Kvanta A. Matrix metalloproteinases and metalloproteinase inhibitors in choroidal neovascular membranes. Invest Ophthalmol Vis Sci 1998; 39(11): 2194-200.
[PMID: 9761302]
[69]
Visse R, Nagase H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res 2003; 92(8): 827-39.
[http://dx.doi.org/10.1161/01.RES.0000070112.80711.3D] [PMID: 12730128]
[70]
Leu ST, Batni S, Radeke MJ, Johnson LV, Anderson DH, Clegg DO. Drusen are cold spots for proteolysis: expression of matrix metalloproteinases and their tissue inhibitor proteins in age related macular degeneration. Exp Eye Res 2002; 74(1): 141-54.
[http://dx.doi.org/10.1006/exer.2001.1112] [PMID: 11878827]
[71]
Marin-Castaño ME, Csaky KG, Cousins SW. Nonlethal oxidant injury to human retinal pigment epithelium cells causes cell membrane blebbing but decreased MMP-2 activity. Invest Ophthalmol Vis Sci 2005; 46(9): 3331-40.
[http://dx.doi.org/10.1167/iovs.04-1224] [PMID: 16123437]
[72]
Zhuge Y, Xu J. Rac1 mediates type I collagen-dependent MMP-2 activation. role in cell invasion across collagen barrier. J Biol Chem 2001; 276(19): 16248-56.
[http://dx.doi.org/10.1074/jbc.M010190200] [PMID: 11340084]
[73]
Alcazar O, Cousins SW, Marin-Castaño ME. MMP-14 and TIMP-2 overexpression protects against hydroquinone-induced oxidant injury in RPE: implications for extracellular matrix turnover. Invest Ophthalmol Vis Sci 2007; 48(12): 5662-70.
[http://dx.doi.org/10.1167/iovs.07-0392] [PMID: 18055817]
[74]
Elliot SJ, Catanuto P, Espinosa-Heidmann DG, et al. Estrogen receptor beta protects against in vivo injury in RPE cells. Exp Eye Res 2010; 90(1): 10-6.
[http://dx.doi.org/10.1016/j.exer.2009.09.001] [PMID: 19799898]
[75]
Elner SG, Elner VM, Kindzelskii AL, et al. Human RPE cell lysis of extracellular matrix: functional urokinase plasminogen activator receptor (uPAR), collagenase and elastase. Exp Eye Res 2003; 76(5): 585-95.
[http://dx.doi.org/10.1016/S0014-4835(03)00028-9] [PMID: 12697422]
[76]
Nita M, Strzałka-Mrozik B, Grzybowski A, Mazurek U, Romaniuk W. Age-related macular degeneration and changes in the extracellular matrix. Med Sci Monit 2014; 20: 1003-16.
[http://dx.doi.org/10.12659/MSM.889887] [PMID: 24938626]
[77]
Moses MA, Langer R. A metalloproteinase inhibitor as an inhibitor of neovascularization. J Cell Biochem 1991; 47(3): 230-5.
[http://dx.doi.org/10.1002/jcb.240470308] [PMID: 1724245]
[78]
Gautieri A, Uzel S, Vesentini S, Redaelli A, Buehler MJ. Molecular and mesoscale mechanisms of osteogenesis imperfecta disease in collagen fibrils. Biophys J 2009; 97(3): 857-65.
[http://dx.doi.org/10.1016/j.bpj.2009.04.059] [PMID: 19651044]
[79]
Hewitt AT, Nakazawa K, Newsome DA. Analysis of newly synthesized Bruch’s membrane proteoglycans. Invest Ophthalmol Vis Sci 1989; 30(3): 478-86.
[PMID: 2925318]
[80]
Green WR. Histopathology of age-related macular degeneration. Mol Vis 1999; 5: 27.
[PMID: 10562651]
[81]
Karwatowski WS, Jeffries TE, Duance VC, Albon J, Bailey AJ, Easty DL. Preparation of Bruch’s membrane and analysis of the age-related changes in the structural collagens. Br J Ophthalmol 1995; 79(10): 944-52.
[http://dx.doi.org/10.1136/bjo.79.10.944] [PMID: 7488585]
[82]
van der Schaft TL, Mooy CM, de Bruijn WC, Oron FG, Mulder PG, de Jong PT. Histologic features of the early stages of age-related macular degeneration. A statistical analysis. Ophthalmology 1992; 99(2): 278-86.
[http://dx.doi.org/10.1016/S0161-6420(92)31982-7] [PMID: 1553220]
[83]
Pauleikhoff D, Harper CA, Marshall J, Bird AC. Aging changes in Bruch’s membrane. A histochemical and morphologic study. Ophthalmology 1990; 97(2): 171-8.
[http://dx.doi.org/10.1016/S0161-6420(90)32619-2] [PMID: 1691475]
[84]
Spaide RF, Ho-Spaide WC, Browne RW, Armstrong D. Characterization of peroxidized lipids in Bruch’s membrane. Retina 1999; 19(2): 141-7.
[http://dx.doi.org/10.1097/00006982-199902000-00010] [PMID: 10213241]
[85]
Booij JC, Baas DC, Beisekeeva J, Gorgels TG, Bergen AA. The dynamic nature of Bruch’s membrane. Prog Retin Eye Res 2010; 29(1): 1-18.
[http://dx.doi.org/10.1016/j.preteyeres.2009.08.003] [PMID: 19747980]
[86]
Chen SJ, Cheng CY, Lee AF, et al. Pulsatile ocular blood flow in asymmetric exudative age related macular degeneration. Br J Ophthalmol 2001; 85(12): 1411-5.
[http://dx.doi.org/10.1136/bjo.85.12.1411] [PMID: 11734510]
[87]
Luo C, Chen M, Xu H. Complement gene expression and regulation in mouse retina and retinal pigment epithelium/choroid. Mol Vis 2011; 17: 1588-97.
[PMID: 21738388]
[88]
Fett AL, Hermann MM, Muether PS, Kirchhof B, Fauser S. Immunohistochemical localization of complement regulatory proteins in the human retina. Histol Histopathol 2012; 27(3): 357-64.
[PMID: 22237713]
[89]
Vogt SD, Barnum SR, Curcio CA, Read RW. Distribution of complement anaphylatoxin receptors and membrane-bound regulators in normal human retina. Exp Eye Res 2006; 83(4): 834-40.
[http://dx.doi.org/10.1016/j.exer.2006.04.002] [PMID: 16764856]
[90]
Chen M, Forrester JV, Xu H. Synthesis of complement factor H by retinal pigment epithelial cells is down-regulated by oxidized photoreceptor outer segments. Exp Eye Res 2007; 84(4): 635-45.
[http://dx.doi.org/10.1016/j.exer.2006.11.015] [PMID: 17292886]
[91]
Fukuoka Y, Medof EM. C5a receptor-mediated production of IL-8 by the human retinal pigment epithelial cell line, ARPE-19. Curr Eye Res 2001; 23(5): 320-5.
[http://dx.doi.org/10.1076/ceyr.23.5.320.5437] [PMID: 11910520]
[92]
Cheng LB, Cheng L, Bi HE, et al. Alpha-melanocyte stimulating hormone protects retinal pigment epithelium cells from oxidative stress through activation of melanocortin 1 receptor-Akt-mTOR signaling. Biochem Biophys Res Commun 2014; 443(2): 447-52.
[http://dx.doi.org/10.1016/j.bbrc.2013.11.113] [PMID: 24316214]
[93]
Rodríguez de Córdoba S, Esparza-Gordillo J, Goicoechea de Jorge E, Lopez-Trascasa M, Sánchez-Corral P. The human complement factor H: functional roles, genetic variations and disease associations. Mol Immunol 2004; 41(4): 355-67.
[http://dx.doi.org/10.1016/j.molimm.2004.02.005] [PMID: 15163532]
[94]
Li M, Atmaca-Sonmez P, Othman M, et al. CFH haplotypes without the Y402H coding variant show strong association with susceptibility to age-related macular degeneration. Nat Genet 2006; 38(9): 1049-54.
[http://dx.doi.org/10.1038/ng1871] [PMID: 16936733]
[95]
Magnusson KP, Duan S, Sigurdsson H, et al. CFH Y402H confers similar risk of soft drusen and both forms of advanced AMD. PLoS Med 2006; 3(1)e5
[http://dx.doi.org/10.1371/journal.pmed.0030005] [PMID: 16300415]
[96]
Chen LJ, Liu DT, Tam PO, et al. Association of complement factor H polymorphisms with exudative age-related macular degeneration. Mol Vis 2006; 12: 1536-42.
[PMID: 17167412]
[97]
Hocking HG, Herbert AP, Kavanagh D, et al. Structure of the N-terminal region of complement factor H and conformational implications of disease-linked sequence variations. J Biol Chem 2008; 283(14): 9475-87.
[http://dx.doi.org/10.1074/jbc.M709587200] [PMID: 18252712]
[98]
Hageman GS, Hancox LS, Taiber AJ, et al. Extended haplotypes in the complement factor H (CFH) and CFH related (CFHR) family of genes protect against age related macular degeneration: Characterization, ethnic distribution and evolutionary implications. Ann Med 2006; 38(8): 592-604.
[http://dx.doi.org/10.1080/07853890601097030]
[99]
de Córdoba SR, de Jorge EG. Translational mini-review series on complement factor H: Genetics and disease associations of human complement factor H. Clin Exp Immunol 2008; 151(1): 1-13.
[http://dx.doi.org/10.1111/j.1365-2249.2007.03552.x] [PMID: 18081690]
[100]
Cao S, Ko A, Partanen M, et al. Relationship between systemic cytokines and complement factor H Y402H polymorphism in patients with dry age-related macular degeneration. Am J Ophthalmol 2013; 156(6): 1176-83.
[http://dx.doi.org/10.1016/j.ajo.2013.08.003] [PMID: 24083687]
[101]
Park KH, Fridley BL, Ryu E, Tosakulwong N, Edwards AO. Complement component 3 (C3) haplotypes and risk of advanced age-related macular degeneration. Invest Ophthalmol Vis Sci 2009; 50(7): 3386-93.
[http://dx.doi.org/10.1167/iovs.08-3231] [PMID: 19234341]
[102]
Spencer KL, Olson LM, Anderson BM, et al. C3 R102G polymorphism increases risk of age-related macular degeneration. Hum Mol Genet 2008; 17(12): 1821-4.
[http://dx.doi.org/10.1093/hmg/ddn075] [PMID: 18325906]
[103]
Johnson LV, Leitner WP, Staples MK, Anderson DH. Complement activation and inflammatory processes in Drusen formation and age related macular degeneration. Exp Eye Res 2001; 73(6): 887-96.
[http://dx.doi.org/10.1006/exer.2001.1094] [PMID: 11846519]
[104]
Mullins RF, Russell SR, Anderson DH, Hageman GS. Drusen associated with aging and age-related macular degeneration contain proteins common to extracellular deposits associated with atherosclerosis, elastosis, amyloidosis, and dense deposit disease. FASEB J 2000; 14(7): 835-46.
[http://dx.doi.org/10.1096/fasebj.14.7.835] [PMID: 10783137]
[105]
Curcio CA, Presley JB, Millican CL, Medeiros NE. Basal deposits and drusen in eyes with age-related maculopathy: evidence for solid lipid particles. Exp Eye Res 2005; 80(6): 761-75.
[http://dx.doi.org/10.1016/j.exer.2004.09.017] [PMID: 15939032]
[106]
Ambati J, Ambati BK, Yoo SH, Ianchulev S, Adamis AP. Age-related macular degeneration: etiology, pathogenesis, and therapeutic strategies. Surv Ophthalmol 2003; 48(3): 257-93.
[http://dx.doi.org/10.1016/S0039-6257(03)00030-4] [PMID: 12745003]
[107]
Shigenaga MK, Hagen TM, Ames BN. Oxidative damage and mitochondrial decay in aging. Proc Natl Acad Sci USA 1994; 91(23): 10771-8.
[http://dx.doi.org/10.1073/pnas.91.23.10771] [PMID: 7971961]
[108]
Ferreira SM, Lerner SF, Brunzini R, Evelson PA, Llesuy SF. Oxidative stress markers in aqueous humor of glaucoma patients. Am J Ophthalmol 2004; 137(1): 62-9.
[http://dx.doi.org/10.1016/S0002-9394(03)00788-8] [PMID: 14700645]
[109]
Saccà SC, Izzotti A, Rossi P, Traverso C. Glaucomatous outflow pathway and oxidative stress. Exp Eye Res 2007; 84(3): 389-99.
[http://dx.doi.org/10.1016/j.exer.2006.10.008] [PMID: 17196589]
[110]
Borish ET, Pryor WA, Venugopal S, Deutsch WA. DNA synthesis is blocked by cigarette tar-induced DNA single-strand breaks. Carcinogenesis 1987; 8(10): 1517-20.
[http://dx.doi.org/10.1093/carcin/8.10.1517] [PMID: 2820603]
[111]
Yildirim Z, Ucgun NI, Yildirim F. The role of oxidative stress and antioxidants in the pathogenesis of age-related macular degeneration. Clinics (São Paulo) 2011; 66(5): 743-6.
[PMID: 21789374]
[112]
Frank HA. Structural determinations and spectroscopic studies of carotenoids reveal the factors important in controlling their function in biological systems. Eur J Clin Nutr 1996; 50(Suppl. 3): S13-6.
[PMID: 8841767]
[113]
Beatty S, Koh H, Phil M, Henson D, Boulton M. The role of oxidative stress in the pathogenesis of age-related macular degeneration. Surv Ophthalmol 2000; 45(2): 115-34.
[http://dx.doi.org/10.1016/S0039-6257(00)00140-5] [PMID: 11033038]
[114]
Cai J, Nelson KC, Wu M, Sternberg P Jr, Jones DP. Oxidative damage and protection of the RPE. Prog Retin Eye Res 2000; 19(2): 205-21.
[http://dx.doi.org/10.1016/S1350-9462(99)00009-9] [PMID: 10674708]
[115]
Gaillard ER, Atherton SJ, Eldred G, Dillon J. Photophysical studies on human retinal lipofuscin. Photochem Photobiol 1995; 61(5): 448-53.
[http://dx.doi.org/10.1111/j.1751-1097.1995.tb02343.x] [PMID: 7770505]
[116]
Holz FG, Schütt F, Kopitz J, et al. Inhibition of lysosomal degradative functions in RPE cells by a retinoid component of lipofuscin. Invest Ophthalmol Vis Sci 1999; 40(3): 737-43.
[PMID: 10067978]
[117]
Ergorul C, Ray A, Huang W, et al. Hypoxia inducible factor-1α (HIF-1α) and some HIF-1 target genes are elevated in experimental glaucoma. J Mol Neurosci 2010; 42(2): 183-91.
[http://dx.doi.org/10.1007/s12031-010-9343-z] [PMID: 20237864]
[118]
Schwartz M, Ziv Y. Immunity to self and self-maintenance: a unified theory of brain pathologies. Trends Immunol 2008; 29(5): 211-9.
[http://dx.doi.org/10.1016/j.it.2008.01.003] [PMID: 18328784]
[119]
Tezel G. Fourth ARVO/Pfizer Ophthalmics Research Institute Conference Working Group. The role of glia, mitochondria, and the immune system in glaucoma. Invest Ophthalmol Vis Sci 2009; 50(3): 1001-12.
[http://dx.doi.org/10.1167/iovs.08-2717] [PMID: 19244206]
[120]
Parmeggiani F, Romano MR, Costagliola C, et al. Mechanism of inflammation in age related macular degeneration Mediators Inflamm 2012; 2012.
[http://dx.doi.org/10.1155/2012/546786]
[121]
Dunaief JL, Dentchev T, Ying GS, Milam AH. The role of apoptosis in age-related macular degeneration. Arch Ophthalmol 2002; 120(11): 1435-42.
[http://dx.doi.org/10.1001/archopht.120.11.1435] [PMID: 12427055]
[122]
Hollyfield JG, Perez VL, Salomon RG. A hapten generated from an oxidation fragment of docosahexaenoic acid is sufficient to initiate age related macular degeneration. Mol Neurobiol 2010; 41(23): 290-8.
[http://dx.doi.org/10.1007/s12035-010-8110-z]
[123]
Zhang K, Zhang L, Weinreb RN. Ophthalmic drug discovery: novel targets and mechanisms for retinal diseases and glaucoma. Nat Rev Drug Discov 2012; 11(7): 541-59.
[http://dx.doi.org/10.1038/nrd3745] [PMID: 22699774]
[124]
Das A, McGuire PG. Retinal and choroidal angiogenesis: pathophysiology and strategies for inhibition. Prog Retin Eye Res 2003; 22(6): 721-48.
[http://dx.doi.org/10.1016/j.preteyeres.2003.08.001] [PMID: 14575722]
[125]
Campochiaro PA. Ocular neovascularisation and excessive vascular permeability. Expert Opin Biol Ther 2004; 4(9): 1395-402.
[http://dx.doi.org/10.1517/14712598.4.9.1395] [PMID: 15335307]
[126]
Kijlstra A, La Heij E, Hendrikse F. Immunological factors in the pathogenesis and treatment of age-related macular degeneration. Ocul Immunol Inflamm 2005; 13(1): 3-11.
[http://dx.doi.org/10.1080/09273940590909185] [PMID: 15804763]
[127]
Kauppinen A, Paterno JJ, Blasiak J, Salminen A, Kaarniranta K. Inflammation and its role in age-related macular degeneration. Cell Mol Life Sci 2016; 73(9): 1765-86.
[http://dx.doi.org/10.1007/s00018-016-2147-8] [PMID: 26852158]
[128]
Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 2010; 11(5): 373-84.
[http://dx.doi.org/10.1038/ni.1863] [PMID: 20404851]
[129]
Kvanta A, Shen WY, Sarman S, Seregard S, Steen B, Rakoczy E. Matrix metalloproteinase (MMP) expression in experimental choroidal neovascularization. Curr Eye Res 2000; 21(3): 684-90.
[http://dx.doi.org/10.1076/0271-3683(200009)2131-RFT684] [PMID: 11120556]
[130]
Liutkeviciene R, Lesauskaite V, Marsalkiene SG, et al. MMP-2 Rs24386 (C-->T) gene polymorphism and the phenotype of age-related macular degeneration. Int J Ophthalmol 2017; 10(9): 1349-53.
[131]
Lambert V, Wielockx B, Munaut C, et al. MMP-2 and MMP-9 synergize in promoting choroidal neovascularization. FASEB J 2003; 17(15): 2290-2.
[http://dx.doi.org/10.1096/fj.03-0113fje] [PMID: 14563686]
[132]
Ottino P, Finley J, Rojo E, et al. Hypoxia activates matrix metalloproteinase expression and the VEGF system in monkey choroid-retinal endothelial cells: Involvement of cytosolic phospholipase A2 activity. Mol Vis 2004; 10: 341-50.
[PMID: 15162095]
[133]
Hoffmann S, He S, Ehren M, Ryan SJ, Wiedemann P, Hinton DR. MMP-2 and MMP-9 secretion by rpe is stimulated by angiogenic molecules found in choroidal neovascular membranes. Retina 2006; 26(4): 454-61.
[PMID: 16603966]
[134]
Chau KY, Sivaprasad S, Patel N, Donaldson TA, Luthert PJ, Chong NV. Plasma levels of matrix metalloproteinase-2 and -9 (MMP-2 and MMP-9) in age-related macular degeneration. Eye (Lond) 2007; 21(12): 1511-5.
[http://dx.doi.org/10.1038/sj.eye.6702722] [PMID: 17304258]
[135]
Tatar O, Adam A, Shinoda K, et al. Matrix metalloproteinases in human choroidal neovascular membranes excised following verteporfin photodynamic therapy. Br J Ophthalmol 2007; 91(9): 1183-9.
[http://dx.doi.org/10.1136/bjo.2007.114769] [PMID: 17475706]
[136]
Zeng R, Wen F, Zhang X, Su Y. Serum levels of matrix metalloproteinase 2 and matrix metalloproteinase 9 elevated in polypoidal choroidal vasculopathy but not in age-related macular degeneration. Mol Vis 2013; 19: 729-36.
[PMID: 23559867]
[137]
Hoffmann S, Friedrichs U, Eichler W, Rosenthal A, Wiedemann P. Advanced glycation end products induce choroidal endothelial cell proliferation, matrix metalloproteinase-2 and VEGF upregulation in vitro. Graefes Arch Clin Exp Ophthalmol 2002; 240(12): 996-1002.
[http://dx.doi.org/10.1007/s00417-002-0568-6] [PMID: 12483322]
[138]
Plantner JJ, Jiang C, Smine A. Increase in interphotoreceptor matrix gelatinase A (MMP-2) associated with age-related macular degeneration. Exp Eye Res 1998; 67(6): 637-45.
[http://dx.doi.org/10.1006/exer.1998.0552] [PMID: 9990329]
[139]
Yazama F, Kadonosono K, Itoh N, Ohno S. Role of matrix metalloproteinase-7 in angiogenesis associated with age-related macular degeneration. J Electron Microsc (Tokyo) 2002; 51(2): 127-31.
[http://dx.doi.org/10.1093/jmicro/51.2.127] [PMID: 12005165]
[140]
Kadonosono K, Yazama F, Itoh N, Sawada H, Ohno S. Expression of matrix metalloproteinase-7 in choroidal neovascular membranes in age-related macular degeneration. Am J Ophthalmol 1999; 128(3): 382-4.
[http://dx.doi.org/10.1016/S0002-9394(99)00135-X] [PMID: 10511046]
[141]
Lambert V, Munaut C, Jost M, et al. Matrix metalloproteinase-9 contributes to choroidal neovascularization. Am J Pathol 2002; 161(4): 1247-53.
[http://dx.doi.org/10.1016/S0002-9440(10)64401-X] [PMID: 12368198]
[142]
Fiotti N, Pedio M, Battaglia Parodi M, et al. MMP-9 microsatellite polymorphism and susceptibility to exudative form of age-related macular degeneration. Genet Med 2005; 7(4): 272-7.
[http://dx.doi.org/10.1097/01.GIM.0000159903.69597.73] [PMID: 15834245]
[143]
Pons M, Cousins SW, Alcazar O, Striker GE, Marin-Castaño ME. Angiotensin II-induced MMP-2 activity and MMP-14 and basigin protein expression are mediated via the angiotensin II receptor type 1-mitogen-activated protein kinase 1 pathway in retinal pigment epithelium: implications for age-related macular degeneration. Am J Pathol 2011; 178(6): 2665-81.
[http://dx.doi.org/10.1016/j.ajpath.2011.02.006] [PMID: 21641389]
[144]
Lommatzsch A, Hermans P, Müller KD, Bornfeld N, Bird AC, Pauleikhoff D. Are low inflammatory reactions involved in exudative age-related macular degeneration? Morphological and immunhistochemical analysis of AMD associated with basal deposits. Graefes Arch Clin Exp Ophthalmol 2008; 246(6): 803-10.
[http://dx.doi.org/10.1007/s00417-007-0749-4] [PMID: 18414889]
[145]
Guo L, Hussain AA, Limb GA, Marshall J. Age-dependent variation in metalloproteinase activity of isolated human Bruch’s membrane and choroid. Invest Ophthalmol Vis Sci 1999; 40(11): 2676-82.
[PMID: 10509665]
[146]
Kamei M, Hollyfield JG. TIMP-3 in Bruch’s membrane: changes during aging and in age-related macular degeneration. Invest Ophthalmol Vis Sci 1999; 40(10): 2367-75.
[PMID: 10476804]
[147]
Klenotic PA, Munier FL, Marmorstein LY, Anand-Apte B. Tissue inhibitor of metalloproteinases-3 (TIMP-3) is a binding partner of epithelial growth factor-containing fibulin-like extracellular matrix protein 1 (EFEMP1). Implications for macular degenerations. J Biol Chem 2004; 279(29): 30469-73.
[http://dx.doi.org/10.1074/jbc.M403026200] [PMID: 15123717]
[148]
Ardeljan D, Meyerle CB, Agron E, et al. Influence of TIMP3/SYN3 polymorphisms on the phenotypic presentation of age-related macular degeneration. Eur J Hum Genet 2003; 21: 1152.
[149]
Bailey TA, Alexander RA, Dubovy SR, Luthert PJ, Chong NH. Measurement of TIMP-3 expression and Bruch’s membrane thickness in human macula. Exp Eye Res 2001; 73(6): 851-8.
[http://dx.doi.org/10.1006/exer.2001.1089] [PMID: 11846515]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 19
ISSUE: 10
Year: 2019
Page: [705 - 718]
Pages: 14
DOI: 10.2174/1566524019666190828150625
Price: $58

Article Metrics

PDF: 29
HTML: 1