Rare Earth Doped Hydroxyapatite Nanoparticles for In Vitro Bioimaging Applications

Author(s): Pranjita Zantye, Fiona Fernandes, Sutapa Roy Ramanan, Meenal Kowshik*.

Journal Name: Current Physical Chemistry

Volume 9 , Issue 2 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Background: Fluorescence based bioimaging is one of the widely used method for obtaining imperative information on life processes.

Objective: Within the expansive spectrum of fluorescent agents being investigated, the trivalent Lanthanide (Ln) ion based nanoparticles have attracted attention due to their intrinsic luminescence property.

Methods: Here we report a modified sol gel assisted synthesis of Europium (Eu) and Samarium (Sm) doped Hydroxyapatite nanoparticles (HAp NPs). Doping Ln ions in the selffluorescent hydroxyapatite lattice contributed towards an increased luminescence in the NPs.

Results: The XRD patterns reveal that the Eu+3 and Sm+3 doped HAp NPs display the characteristic peaks of hydroxyapatite in a hexagonal lattice structure, and the FTIR data confirms presence of characteristic functional groups. The as-synthesized HAp NPs exhibit short rod-shaped morphology with average length less than 60 nm. Upon excitation at representative wavelengths, the doped HAp NPs demonstrated characteristic emission lines of Eu+3 and Sm+3.

Conclusion: The as-synthesized NPs displayed no toxicity towards HeLa cells and are easily internalized, exhibiting their potential as promising live cell bioimaging agents.

Keywords: Bio-imaging, europium, fluorescence, hydroxyapatite nanoparticles, samarium, lanthanide.

Terai, T.; Nagano, T. Fluorescent probes for bioimaging applications. Curr. Opin. Chem. Biol., 2008, 12(5), 515-521.
[http://dx.doi.org/10.1016/j.cbpa.2008.08.007] [PMID: 18771748]
Van Den Berg, P.J.; Daoudi, K.; Steenbergen, W. Review of photoacoustic flow imaging: Its current state and its promises. Photoacoustics, 2015, 3(3), 89-99.
[http://dx.doi.org/10.1016/j.pacs.2015.08.001] [PMID: 26640771]
Melissa, F.; Ramsey, D.B.; Alice, F.; Tarantal, S.R.C. Performance and limitations of Positron Emission Tomography (PET) scanners for imaging very low activity sources. Phys. Med., 2014, 30(1), 1-16.
[http://dx.doi.org/10.1038/jid.2014.371] [PMID: 24055408]
DaCosta, M.V.; Doughan, S.; Han, Y.; Krull, U.J. Lanthanide upconversion nanoparticles and applications in bioassays and bioimaging: A review. Anal. Chim. Acta, 2014, 832, 1-33.
[http://dx.doi.org/10.1016/j.aca.2014.04.030] [PMID: 24890691]
Resch-Genger, U.; Grabolle, M.; Cavaliere-Jaricot, S.; Nitschke, R.; Nann, T. Quantum dots versus organic dyes as fluorescent labels. Nat. Methods, 2008, 5(9), 763-775.
[http://dx.doi.org/10.1038/nmeth.1248] [PMID: 18756197]
Yang, I.; Lee, J.W.; Hwang, S.; Lee, J.E.; Lim, E.; Lee, J.; Hwang, D.; Kim, C.H.; Keum, Y.S.; Kim, S.K. Live bio-imaging with fully bio-compatible organic fluorophores. J. Photochem. Photobiol. B, 2017, 166, 52-57.
[http://dx.doi.org/10.1016/j.jphotobiol.2016.11.009] [PMID: 27866002]
Bhunia, S.K.; Saha, A.; Maity, A.R.; Ray, S.C.; Jana, N.R. Carbon nanoparticle-based fluorescent bioimaging probes. Sci. Rep., 2013, 3, 1473.
[http://dx.doi.org/10.1038/srep01473] [PMID: 23502324]
Xu, C.T.; Zhan, Q.; Liu, H.; Somesfalean, G.; Qian, J.; He, S.; Andersson-Engels, S. Upconverting nanoparticles for pre-clinical diffuse optical imaging, microscopy and sensing: Current trends and future challenges. Laser Photonics Rev., 2013, 7(5), 663-697.
Auzel, F. Upconversion and anti-stokes processes with f and d ions in solids. Chem. Rev., 2004, 104(1), 139-173.
[http://dx.doi.org/10.1021/cr020357g] [PMID: 14719973]
Teo, R.D.; Termini, J.; Gray, H.B. Lanthanides: Applications in cancer diagnosis and therapy. J. Med. Chem., 2016, 59(13), 6012-6024.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01975] [PMID: 26862866]
Cui, Y.; Chen, B.; Qian, G. Lanthanide metal-organic frameworks for luminescent sensing and light-emitting applications. Coord. Chem. Rev., 2014, 273-274, 76-86.
Wei, C.; Ma, L.; Wei, H.B.; Liu, Z.W.; Bian, Z.Q.; Huang, C.H. Advances in luminescent lanthanide complexes and applications. Sci. China Technol. Sci., 2018, 61, 1-21.
Amoroso, A.J.; Pope, S.J.A. Using lanthanide ions in molecular bioimaging. Chem. Soc. Rev., 2015, 44(14), 4723-4742.
[http://dx.doi.org/10.1039/C4CS00293H] [PMID: 25588358]
Tabaković, A.; Kester, M.; Adair, J.H. Calcium phosphate-based composite nanoparticles in bioimaging and therapeutic delivery applications. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2012, 4(1), 96-112.
[http://dx.doi.org/10.1002/wnan.163] [PMID: 21965173]
Mondéjar, S.P.; Kovtun, A.; Epple, M. Lanthanide-doped calcium phosphate nanoparticles with high internal crystallinity and with a shell of DNA as fluorescent probes in cell experiments. J. Mater. Chem., 2007, 17(39), 4153-4159.
Yang, P.; Quan, Z.; Li, C.; Kang, X.; Lian, H.; Lin, J. Bioactive, luminescent and mesoporous europium-doped hydroxyapatite as a drug carrier. Biomaterials, 2008, 29(32), 4341-4347.
[http://dx.doi.org/10.1016/j.biomaterials.2008.07.042] [PMID: 18715638]
Victor, S.P.; Gayathri Devi, M.G.; Paul, W.; Vijayan, V.M.; Muthu, J.; Sharma, C.P. Europium doped calcium deficient hydroxyapatite as theranostic nanoplatforms: Effect of structure and aspect ratio. ACS Biomater. Sci. Eng., 2017, 3(12), 3588-3595.
Ma, B.; Zhang, S.; Qiu, J.; Li, J.; Sang, Y.; Xia, H.; Jiang, H.; Claverie, J.; Liu, H. Eu/Tb codoped spindle-shaped fluorinated hydroxyapatite nanoparticles for dual-color cell imaging. Nanoscale, 2016, 8(22), 11580-11587.
[http://dx.doi.org/10.1039/C6NR02137A] [PMID: 27216704]
Chen, F.; Zhu, Y.J.; Zhang, K.H.; Wu, J.; Wang, K.W.; Tang, Q.L.; Mo, X.M. Europium-doped amorphous calcium phosphate porous nanospheres: Preparation and application as luminescent drug carriers. Nanoscale Res. Lett., 2011, 6(1), 67.
[http://dx.doi.org/10.1186/1556-276X-6-67] [PMID: 21711603]
Victor, S.P.; Paul, W.; Jayabalan, M.; Sharma, C.P. Cucurbituril/hydroxyapatite based nanoparticles for potential use in theranostic applications. CrystEngComm, 2014, 16(30), 6929-6936.
Jadalannagari, S.; More, S.; Kowshik, M.; Ramanan, S.R. Low temperature synthesis of hydroxyapatite nano-rods by a modified sol-gel technique. Mater. Sci. Eng. C, 2011, 31(7), 1534-1538.
Intergovernmental Panel on Climate Change. Summary for Policymakers. In Climate Change 2013 – The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 1-30). Cambridge: Cambridge University Press. , 2014.
Gerlier, D.; Thomasset, N. Use of MTT colorimetric assay to measure cell activation. J. Immunol. Methods, 1986, 94(1-2), 57-63.
[http://dx.doi.org/10.1016/0022-1759(86)90215-2] [PMID: 3782817]
Liu, D.M.; Yang, Q.; Troczynski, T.; Tseng, W.J. Structural evolution of sol-gel-derived hydroxyapatite. Biomaterials, 2002, 23(7), 1679-1687.
[http://dx.doi.org/10.1016/S0142-9612(01)00295-2] [PMID: 11922471]
Deshmukh, K.; Shaik, M.M.; Ramanan, S.R.; Kowshik, M. Self-activated fluorescent hydroxyapatite nanoparticles: A promising agent for bioimaging and biolabeling. ACS Biomater. Sci. Eng., 2016, 2(8), 1257-1264.
Piccirillo, C.; Adamiano, A.; Tobaldi, D.M.; Montalti, M.; Manzi, J.; Castro, P.M.L.; Panseri, S.; Montesi, M.; Sprio, S. Tampieri. Luminescent calcium phosphate bioceramics doped with europium derived from fish industry byproducts. J. Am. Ceram. Soc., 2017, 100(8), 3402-3414.
Cawthray, J.F.; Creagh, A.L.; Haynes, C.A.; Orvig, C. Ion exchange in hydroxyapatite with lanthanides. Inorg. Chem., 2015, 54(4), 1440-1445.
[http://dx.doi.org/10.1021/ic502425e] [PMID: 25594577]
Cengiz, B.; Gokce, Y.; Yildiz, N.; Aktas, Z.; Calimli, A. Colloids and surfaces A: physicochemical and engineering aspects synthesis and characterization of hydroxyapatite nanoparticles. Colloids Surf., 2008, 322, 29-33.
Ciobanu, C.S.; Iconaru, S.L.; Popa, C.L.; Motelica-Heino, M.; Predoi, D. Evaluation of samarium doped hydroxyapatite, ceramics for medical application: Antimicrobial activity. J. Nanomater., 2015, 2015, 1-11.
Kumar, G.S.; Girija, E.K. Flower-like hydroxyapatite nanostructure obtained from eggshell: A candidate for biomedical applications. Ceram. Int., 2013, 39(7), 8293-8299.
Machado, T.R.; Sczancoski, J.C.; Beltrán-Mir, H.; Li, M.S.; Andrés, J.; Cordoncillo, E.; Leite, E.; Longo, E. Structural properties and self-activated photoluminescence emissions in hydroxyapatite with distinct particle shapes. Ceram. Int., 2018, 44(1), 236-245.
Smet, P.F.; Avci, N.; Loos, B.; Van Haecke, J.E.; Poelman, D. Structure and photoluminescence of (Ca,Eu)(2)SiS(4) powders. J. Phys. Condens. Matter, 2007, 19(24), 223-246.
[http://dx.doi.org/10.1088/0953-8984/19/24/246223] [PMID: 21694066]
Al-Kattan, A.; Dufour, P.; Dexpert-Ghys, J.; Drouet, C. Preparation and physicochemical characteristics of luminescent apatite-based colloids. J. Phys. Chem. C, 2010, 114(7), 2918-2924.
Robert, C. Leif; Lidia, M. Vallarino increasing the luminescence of lanthanide complexes. Int. Soc. Anal. Cytol.,, 2006, 69(A), 767-778.
Ermolaev, V.L.; Sveshnikova, E.B. Co-luminescence of ions and molecules in nanoparticles of metal complexes. Russ. Chem. Rev., 2012, 81(9), 769.
Guo, C.; Lang, A.; Wang, L.; Jiang, W. The co-luminescence effect of a europium (III)- lanthanum (III)- gatifloxacin - sodium dodecylbenzene sulfonate system and its application for the determination of trace amount of europium (III). J. Lumin., 2010, 130(4), 591-597.
Giraud, M.; Andreiadis, E.S.; Fisyuk, A.S.; Demadrille, R.; Pécaut, J.; Imbert, D.; Mazzanti, M. Efficient sensitization of lanthanide luminescence by tetrazole-based polydentate ligands. Inorg. Chem., 2008, 47(10), 3952-3954.
[http://dx.doi.org/10.1021/ic8005663] [PMID: 18438982]
Molloy, J.K.; Lincheneau, C.; Karimdjy, M.M.; Agnese, F.; Mattera, L.; Gateau, C.; Reiss, P.; Imbert, D.; Mazzanti, M. Sensitisation of visible and NIR lanthanide emission by InPZnS quantum dots in bi-luminescent hybrids. Chem. Commun. (Camb.), 2016, 52(24), 4577-4580.
[http://dx.doi.org/10.1039/C6CC01182A] [PMID: 26941180]
Tigaa, R.A.; Lucas, G.J.; de Bettencourt-Dias, A. ZnS nanoparticles sensitize luminescence of capping-ligand-bound lanthanide ions. Inorg. Chem., 2017, 56(6), 3260-3268.
[http://dx.doi.org/10.1021/acs.inorgchem.6b02638] [PMID: 28240868]
Ha-Thi, M.H.; Delaire, J.A.; Michelet, V.; Leray, I. Sensitized emission of luminescent lanthanide complexes based on a phosphane oxide derivative. J. Phys. Chem. A, 2010, 114(9), 3264-3269.
[http://dx.doi.org/10.1021/jp909402k] [PMID: 20030382]
Seltzer, M.D.; Fallis, S.; Hollins, R.A.; Prokopuk, N.; Bui, R.N. Curcuminoid ligands for sensitization of near-infrared lanthanide emission. J. Fluoresc., 2005, 15(4), 597-603.
[http://dx.doi.org/10.1007/s10895-005-2832-8] [PMID: 16167217]
Voloshin, A.I.; Shavaleev, N.M.; Kazakov, V.P. Mono-Thio-β-Diketones - a new type of ligands suitable for sensitization of lanthanide luminescence. Infrared luminescence of an intensely colored neodymium and ytterbium mono-thio-β-diketonate chelates. J. Lumin., 2001, 93(2), 115-118.
Hasna, K.; Kumar, S.S.; Komath, M.; Varma, M.R.; Jayaraj, M.K.; Kumar, K.R. Synthesis of chemically pure, luminescent Eu3+ doped HAp nanoparticles: A promising fluorescent probe for in vivo imaging applications. Phys. Chem. Chem. Phys., 2013, 15(21), 8106-8111.
[http://dx.doi.org/10.1039/c3cp42648c] [PMID: 23580129]
Hui, J.; Zhang, X.; Zhang, Z.; Wang, S.; Tao, L.; Wei, Y.; Wang, X. Fluoridated HAp: Ln3+ (Ln = Eu or Tb) nanoparticles for cell-imaging. Nanoscale, 2012, 4(22), 6967-6970.
[http://dx.doi.org/10.1039/c2nr32404k] [PMID: 23076865]
Escudero, A.; Calvo, M.E.; Rivera-Fernández, S.; de la Fuente, J.M.; Ocaña, M. Microwave-assisted synthesis of biocompatible europium-doped calcium hydroxyapatite and fluoroapatite luminescent nanospindles functionalized with poly(acrylic acid). Langmuir, 2013, 29(6), 1985-1994.
[http://dx.doi.org/10.1021/la304534f] [PMID: 23317411]
Han, Y.; Wang, X.; Li, S. Biocompatible europium doped hydroxyapatite nanoparticles as a biological fluorescent probe. Curr. Nanosci., 2010, 6(2), 178-183.
Wagner, D.E.; Eisenmann, K.M.; Nestor-Kalinoski, A.L.; Bhaduri, S.B. A microwave-assisted solution combustion synthesis to produce europium-doped calcium phosphate nanowhiskers for bioimaging applications. Acta Biomater., 2013, 9(9), 8422-8432.
[http://dx.doi.org/10.1016/j.actbio.2013.05.033] [PMID: 23764803]
Sun, R.; Chen, K.; Wu, X.; Zhao, D.; Sun, Z. Controlled synthesis and enhanced luminescence of europium-doped fluorine-substituted hydroxyapatite nanoparticles. CrystEngComm, 2013, 15(17), 3442-3447.
Popa, C.L.; Ciobanu, C.S.; Iconaru, S.L.; Stan, M.; Dinischiotu, A.; Negrila, C.C.; Motelica-Heino, M.; Guegan, R.; Predoi, D. Systematic investigation and in vitro biocompatibility studies on mesoporous europium doped hydroxyapatite. Cent. Eur. J. Chem., 2014, 12(10), 1032-1046.
Hamon, N.; Galland, M.; Le Fur, M.; Roux, A.; Duperray, A.; Grichine, A.; Andraud, C.; Le Guennic, B.; Beyler, M.; Maury, O.; Tripier, R. Combining a pyclen framework with conjugated antenna for the design of europium and samarium luminescent bioprobes. Chem. Commun. (Camb.), 2018, 54(48), 6173-6176.
[http://dx.doi.org/10.1039/C8CC02035C] [PMID: 29845153]
Kharcheva, A.V.; Nikolskiy, K.S.; Borisova, N.E.; Ivanov, A.V. Luminescent solutions and powders of new samarium complexes with N, N ’, O, O ’ -. Chelating Ligands. Proc. SPIE, 2016, 9917, 1-9.

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2019
Page: [94 - 109]
Pages: 16
DOI: 10.2174/1877946809666190828104812

Article Metrics

PDF: 11