Mini Review on Antimicrobial Peptides, Sources, Mechanism and Recent Applications

Author(s): Jaspreet Kaur Boparai, Pushpender Kumar Sharma*.

Journal Name: Protein & Peptide Letters

Volume 27 , Issue 1 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Antimicrobial peptides in recent years have gained increased interest among scientists, health professionals and the pharmaceutical companies owing to their therapeutic potential. These are low molecular weight proteins with broad range antimicrobial and immuno modulatory activities against infectious bacteria (Gram positive and Gram negative), viruses and fungi. Inability of micro-organisms to develop resistance against most of the antimicrobial peptide has made them as an efficient product which can greatly impact the new era of antimicrobials. In addition to this these peptides also demonstrates increased efficacy, high specificity, decreased drug interaction, low toxicity, biological diversity and direct attacking properties. Pharmaceutical industries are therefore conducting appropriate clinical trials to develop these peptides as potential therapeutic drugs. More than 60 peptide drugs have already reached the market and several hundreds of novel therapeutic peptides are in preclinical and clinical development. Rational designing can be used further to modify the chemical and physical properties of existing peptides. This mini review will discuss the sources, mechanism and recent therapeutic applications of antimicrobial peptides in treatment of infectious diseases.

Keywords: Antimicrobial peptides, antibiotic resistance, therapeutic drugs, infectious diseases, clinical trials, immuno modulatory activities.

[1]
Bardan, A.; Nizet, V.; Gallo, R.L. Antimicrobial peptides and the skin. Expert Opin. Biol. Ther., 2004, 4(4), 543-549.
[http://dx.doi.org/10.1517/14712598.4.4.543] [PMID: 15102603]
[2]
Elias, P.M.; Choi, E.H. Interactions among stratum corneum defensive functions. Exp. Dermatol., 2005, 14(10), 719-726.
[http://dx.doi.org/10.1111/j.1600-0625.2005.00363.x] [PMID: 16176279]
[3]
Bahar, A.A. Controlling biofilm and persister cells by targeting cell membranes. Dissertations - ALL, 2015.
[4]
Hancock, R.E.; Rozek, A. Role of membranes in the activities of antimicrobial cationic peptides. FEMS Microbiol. Lett., 2002, 206(2), 143-149.
[http://dx.doi.org/10.1111/j.1574-6968.2002.tb11000.x] [PMID: 11814654]
[5]
Kuroda, K.; Okumura, K.; Isogai, H.; Isogai, E. The human cathelicidin antimicrobial peptide LL-37 and mimics are potential anticancer drugs. Front. Oncol., 2015, 5, 144.
[http://dx.doi.org/10.3389/fonc.2015.00144] [PMID: 26175965]
[6]
Sun, E.; Belanger, C.R.; Haney, E.F.; Hancock, R.E. Host defense (antimicrobial) peptides. In: Peptide Applications in Biomedicine, Biotechnology and Bioengineering; Koutsopoulos, S., Ed.; Woodhead Publishing: Sawston, United Kingdom, 2018, pp. 253-285.
[http://dx.doi.org/10.1016/C2015-0-02002-0]
[7]
Kosikowska, P.; Lesner, A. Antimicrobial peptides (AMPs) as drug candidates: a patent review (2003-2015). Expert Opin. Ther. Pat., 2016, 26(6), 689-702.
[http://dx.doi.org/10.1080/13543776.2016.1176149] [PMID: 27063450]
[8]
Haney, E.F.; Mansour, S.C.; Hancock, R.E. Antimicrobial peptides: an introduction. Methods Mol. Biol., 2017, 1548, 3-22.
[http://dx.doi.org/10.1007/978-1-4939-6737-7_1]
[9]
Segev-Zarko, L.A.; Mangoni, M.L.; Shai, Y. Antimicrobial peptides: multiple mechanisms against a variety of targets. In: Antimicrobial Peptides: Discovery, Design and Novel Therapeutic Strategies; Wang, G., Ed.; CAB Inhternational: UK, 2017, p. 119.
[10]
Haney, E.F.; Pletzer, D.; Hancock, R.E. Impact of Host Defense Peptides on Chronic Wounds and Infections.Recent Clinical Techniques, Results, and Research in Wounds; Springer: Cham, 2018, pp. 1-17.
[http://dx.doi.org/10.1007/15695_2017_88]
[11]
Li, W.; Tailhades, J.; O’Brien-Simpson, N.M.; Separovic, F.; Otvos, L., Jr; Hossain, M.A.; Wade, J.D. Proline-rich antimicrobial peptides: potential therapeutics against antibiotic-resistant bacteria. Amino Acids, 2014, 46(10), 2287-2294.
[http://dx.doi.org/10.1007/s00726-014-1820-1] [PMID: 25141976]
[12]
Graf, M.; Mardirossian, M.; Nguyen, F.; Seefeldt, A.C.; Guichard, G.; Scocchi, M.; Innis, C.A.; Wilson, D.N. Proline-rich antimicrobial peptides targeting protein synthesis. Nat. Prod. Rep., 2017, 34(7), 702-711.
[http://dx.doi.org/10.1039/C7NP00020K] [PMID: 28537612]
[13]
Harris, F.; Dennison, S.R.; Phoenix, D.A. Anionic antimicrobial peptides from eukaryotic organisms. Curr. Protein Pept. Sci., 2009, 10(6), 585-606.
[http://dx.doi.org/10.2174/138920309789630589] [PMID: 19751192]
[14]
Nelson, K.E.; Fleischmann, R.D.; DeBoy, R.T.; Paulsen, I.T.; Fouts, D.E.; Eisen, J.A.; Daugherty, S.C.; Dodson, R.J.; Durkin, A.S.; Gwinn, M.; Haft, D.H.; Kolonay, J.F.; Nelson, W.C.; Mason, T.; Tallon, L.; Gray, J.; Granger, D.; Tettelin, H.; Dong, H.; Galvin, J.L.; Duncan, M.J.; Dewhirst, F.E.; Fraser, C.M. Complete genome sequence of the oral pathogenic Bacterium Porphyromonas gingivalis strain W83. J. Bacteriol., 2003, 185(18), 5591-5601.
[http://dx.doi.org/10.1128/JB.185.18.5591-5601.2003] [PMID: 12949112]
[15]
Da Costa, J.P.; Cova, M.; Ferreira, R.; Vitorino, R. Antimicrobial peptides: an alternative for innovative medicines? Appl. Microbiol. Biotechnol., 2015, 99(5), 2023-2040.
[http://dx.doi.org/10.1007/s00253-015-6375-x] [PMID: 25586583]
[16]
Santos, R.S.; Figueiredo, C.; Azevedo, N.F.; Braeckmans, K.; De Smedt, S.C. Nanomaterials and molecular transporters to overcome the bacterial envelope barrier: towards advanced delivery of antibiotics. Adv. Drug Deliv. Rev., 2018, 136-137, 28-48.
[http://dx.doi.org/10.1016/j.addr.2017.12.010] [PMID: 29248479]
[17]
Sun, E.; Belanger, C.R.; Haney, E.F.; Hancock, R.E. Overview of host defense peptides. In: Peptide Applications in Biomedicine, Biotechnology and Bioengineering; Koutsopoulos, S., Ed.; Woodhead Publishing: Sawston, United Kingdom, 2018, p. 253.
[18]
Le, C.F.; Fang, C.M.; Sekaran, S.D. Intracellular targeting mechanisms by antimicrobial peptides. Antimicrob. Agents Chemother., 2017, 61(4), e02340-e16.
[http://dx.doi.org/10.1128/AAC.02340-16] [PMID: 28167546]
[19]
Kumar, P.; Kizhakkedathu, J.N.; Straus, S.K. Antimicrobial peptides: diversity, mechanism of action and strategies to improve the activity and biocompatibility in vivo. Biomolecules, 2018, 8(1), 4.
[http://dx.doi.org/10.3390/biom8010004] [PMID: 29351202]
[20]
Travkova, O.G.; Moehwald, H.; Brezesinski, G. The interaction of antimicrobial peptides with membranes. Adv. Colloid Interface Sci., 2017, 247, 521-532.
[http://dx.doi.org/10.1016/j.cis.2017.06.001] [PMID: 28606715]
[21]
Persico, M.; Mikhaylin, S.; Doyen, A.; Firdaous, L.; Hammami, R.; Chevalier, M.; Flahaut, C.; Dhulster, P.; Bazinet, L. Formation of peptide layers and adsorption mechanisms on a negatively charged cation-exchange membrane. J. Colloid Interface Sci., 2017, 508, 488-499.
[http://dx.doi.org/10.1016/j.jcis.2017.08.029] [PMID: 28865343]
[22]
Wang, G. Antimicrobial peptides: discovery, design and novel therapeutic strategies; CAB Inhternational: UK, 2017.
[http://dx.doi.org/10.1079/9781786390394.0000]
[23]
Bednarska, N.G.; Wren, B.W.; Willcocks, S.J. The importance of the glycosylation of antimicrobial peptides: natural and synthetic approaches. Drug Discov. Today, 2017, 22(6), 919-926.
[http://dx.doi.org/10.1016/j.drudis.2017.02.001] [PMID: 28212948]
[24]
Conlon, B.P.; Nakayasu, E.S.; Fleck, L.E.; LaFleur, M.D.; Isabella, V.M.; Coleman, K.; Leonard, S.N.; Smith, R.D.; Adkins, J.N.; Lewis, K. Activated ClpP kills persisters and eradicates a chronic biofilm infection. Nature, 2013, 503(7476), 365-370.
[http://dx.doi.org/10.1038/nature12790] [PMID: 24226776]
[25]
Andrä, J.; Berninghausen, O.; Leippe, M. Cecropins, antibacterial peptides from insects and mammals, are potently fungicidal against Candida albicans. Med. Microbiol. Immunol. (Berl.), 2001, 189(3), 169-173.
[http://dx.doi.org/10.1007/s430-001-8025-x] [PMID: 11388616]
[26]
Sekiya, Y.; Shimizu, K.; Kitahashi, Y.; Ohyama, A.; Kawamura, I.; Kawano, R. Electrophysiological analysis of membrane disruption by bombinin and its isomer using lipid bilayer system. ACS Applied Bio Mater., 2019, 2(4), 1542-1548.
[http://dx.doi.org/10.1021/acsabm.8b00835]
[27]
Hirsch, J.G. Phagocytin: a bactericidal substance from polymorphonuclear leucocytes. J. Exp. Med., 1956, 103(5), 589-611.
[http://dx.doi.org/10.1084/jem.103.5.589] [PMID: 13319580]
[28]
Groves, M.L.; Peterson, R.F.; Kiddy, C.A. Poliomorphism in the red protein isolated from milk of individual cows. Nature, 1965, 207(5000), 1007-1008.
[http://dx.doi.org/10.1038/2071007a0] [PMID: 5886923]
[29]
Zeya, H.I.; Spitznagel, J.K. Antibacterial and enzymic basic proteins from leukocyte lysosomes: separation and identification. Science, 1963, 142(3595), 1085-1087.
[http://dx.doi.org/10.1126/science.142.3595.1085] [PMID: 14068232]
[30]
Sharma, S.; Sethi, S.; Prasad, R.; Samanta, P.; Rajwanshi, A.; Malhotra, S. Characterization of low molecular weight antimicrobial peptide from human female reproductive tract. Indian J. Med. Res., 2011, 134(5), 679-687.
[http://dx.doi.org/10.4103/0971-5916.90996] [PMID: 22199108]
[31]
Mora, C.; Tittensor, D.P.; Adl, S.; Simpson, A.G.; Worm, B. How many species are there on Earth and in the ocean? PLoS Biol., 2011, 9(8)e1001127
[http://dx.doi.org/10.1371/journal.pbio.1001127] [PMID: 21886479]
[32]
Baindara, P.; Mandal, S.M.; Chawla, N.; Singh, P.K.; Pinnaka, A.K.; Korpole, S. Characterization of two antimicrobial peptides produced by a halotolerant Bacillus subtilis strain SK.DU.4 isolated from a rhizosphere soil sample. AMB Express, 2013, 3(1), 2.
[http://dx.doi.org/10.1186/2191-0855-3-2] [PMID: 23289832]
[33]
Hadinegoro, S.R.; Arredondo-García, J.L.; Capeding, M.R.; Deseda, C.; Chotpitayasunondh, T.; Dietze, R.; Muhammad Ismail, H.I.; Reynales, H.; Limkittikul, K.; Rivera-Medina, D.M.; Tran, H.N.; Bouckenooghe, A.; Chansinghakul, D.; Cortés, M.; Fanouillere, K.; Forrat, R.; Frago, C.; Gailhardou, S.; Jackson, N.; Noriega, F.; Plennevaux, E.; Wartel, T.A.; Zambrano, B.; Saville, M. CYD-TDV Dengue Vaccine Working Group. Efficacy and long-term safety of a dengue vaccine in regions of endemic disease. N. Engl. J. Med., 2015, 373(13), 1195-1206.
[http://dx.doi.org/10.1056/NEJMoa1506223] [PMID: 26214039]
[34]
Naimah, A.K.; Al-Manhel, A.J.A.; Al-Shawi, M.J. Isolation, purification and characterization of antimicrobial peptides produced from Saccharomyces boulardii. Int. J. Pept. Res. Ther., 2018, 24(3), 455-461.
[http://dx.doi.org/10.1007/s10989-017-9632-2]
[35]
Holo, H.; Faye, T.; Brede, D.A.; Nilsen, T.; Ødegård, I.; Langsrud, T. Bacteriocins of propionic acid bacteria. Lait, 2002, 82(1), 59-68.
[http://dx.doi.org/10.1051/lait:2001005]
[36]
De Zoysa, G.H.; Cameron, A.J.; Hegde, V.V.; Raghothama, S.; Sarojini, V. Antimicrobial peptides with potential for biofilm eradication: synthesis and structure activity relationship studies of battacin peptides. J. Med. Chem., 2015, 58(2), 625-639.
[http://dx.doi.org/10.1021/jm501084q] [PMID: 25495219]
[37]
Mishra, S.K.; Acharya, J.; Kattel, H.P.; Koirala, J.; Rijal, B.P.; Pokhrel, B.M. Metallo-beta-lactamase producing gram-negative bacterial isolates. J. Nepal Health Res. Counc., 2012, 10(22), 208-213.
[PMID: 23281453]
[38]
Zhu, M.; Liu, P.; Niu, Z.W. A perspective on general direction and challenges facing antimicrobial peptides. Chin. Chem. Lett., 2017, 28(4), 703-708.
[http://dx.doi.org/10.1016/j.cclet.2016.10.001]
[39]
Kaunietis, A.; Buivydas, A.; Čitavičius, D.J.; Kuipers, O.P. Heterologous biosynthesis and characterization of a glycocin from a thermophilic bacterium. Nat. Commun., 2019, 10(1), 1115.
[http://dx.doi.org/10.1038/s41467-019-09065-5] [PMID: 30846700]
[40]
Vogel, H.; Badapanda, C.; Knorr, E.; Vilcinskas, A. RNA-sequencing analysis reveals abundant developmental stage-specific and immunity-related genes in the pollen beetle Meligethes aeneus. Insect Mol. Biol., 2014, 23(1), 98-112.
[http://dx.doi.org/10.1111/imb.12067] [PMID: 24252113]
[41]
Abry, M.F.; Kimenyi, K.M.; Masiga, D.; Kulohoma, B.W. Comparative genomics identifies male accessory gland proteins in five Glossina species. Wellcome Open Res., 2017, 2, 73.
[http://dx.doi.org/10.12688/wellcomeopenres.12445.2] [PMID: 29260004]
[42]
Farouk, A.E.; Ahamed, N.T.; AlZahrani, O.; Alghamdi, A.; Bahobail, A. (2)23-29. Inducible antimicrobial compounds (Halal) production in Honey Bee Larvae (Apis mellifera) from Rumaida, Taif by injecting of various dead microorganisms extracts. J. Appl. Biol. Biotechnol., 2017, 5(02), 23-29.
[http://dx.doi.org/10.7324/JABB.2017.50204]
[43]
Lee, J.; Lee, D.G. Antimicrobial peptides (AMPs) with dual mechanisms: membrane disruption and apoptosis. J. Microbiol. Biotechnol., 2015, 25(6), 759-764.
[http://dx.doi.org/10.4014/jmb.1411.11058] [PMID: 25537721]
[44]
Price, D.P.; Schilkey, F.D.; Ulanov, A.; Hansen, I.A. Small mosquitoes, large implications: crowding and starvation affects gene expression and nutrient accumulation in Aedes aegypti. Parasit. Vectors, 2015, 8(1), 252.
[http://dx.doi.org/10.1186/s13071-015-0863-9] [PMID: 25924822]
[45]
Allocca, M.; Zola, S.; Bellosta, P. The Fruit Fly, Drosophila melanogaster: Modeling of Human Diseases (Part II). In: Drosophila melanogaster-Model for Recent Advances in Genetics and Therapeutics, In: InTech open; , 2018.
[http://dx.doi.org/10.5772/intechopen.73199]
[46]
Thiyonila, B.; Reneeta, N.P.; Kannan, M.; Shantkriti, S.; Krishnan, M. Dung beetle gut microbes: Diversity, metabolic and immunity related roles in host system. Int. J. Sci. Innovs, 2018, 1(2), 84-91.
[47]
Manabe, T.; Kawasaki, K. D-form KLKLLLLLKLK-NH2 peptide exerts higher antimicrobial properties than its L-form counterpart via an association with bacterial cell wall components. Sci. Rep., 2017, 7, 43384.
[http://dx.doi.org/10.1038/srep43384] [PMID: 28262682]
[48]
Yang, Y.T.; Lee, M.R.; Lee, S.J.; Kim, S.; Nai, Y.S.; Kim, J.S. Tenebrio molitor Gram-negative-binding protein 3 (TmGNBP3) is essential for inducing downstream antifungal Tenecin 1 gene expression against infection with Beauveria bassiana JEF-007. Insect Sci., 2017, 25(6), 969-977.
[PMID: 28544681]
[49]
Duwadi, D.; Shrestha, A.; Yilma, B.; Kozlovski, I.; Sa-Eed, M.; Dahal, N.; Jukosky, J. Identification and screening of potent antimicrobial peptides in arthropod genomes. Peptides, 2018, 103, 26-30.
[http://dx.doi.org/10.1016/j.peptides.2018.01.017] [PMID: 29501691]
[50]
Sheehan, G.; Bergsson, G.; McElvaney, N.G.; Reeves, E.P.; Kavanagh, K. The human cathelicidin antimicrobial peptide LL-37 promotes the growth of the pulmonary pathogen Aspergillus fumigatus. Infect. Immun., 2018, 86(7)e00097
[http://dx.doi.org/10.1128/IAI.00097-18] [PMID: 29712727]
[51]
Schaal, J.B.; Maretzky, T.; Tran, D.Q.; Tran, P.A.; Tongaonkar, P.; Blobel, C.P. Macrocyclic θ-defensins suppress tumor necrosis factor-α (TNF-α) shedding by inhibition of TNF-α converting enzyme. J. Biol. Chem., 2018, 293(8), 2725-2734.
[http://dx.doi.org/10.1074/jbc.RA117.000793] [PMID: 29317500]
[52]
Khurshid, Z.; Najeeb, S.; Mali, M.; Moin, S.F.; Raza, S.Q.; Zohaib, S. Histatin peptides: Pharmacological functions and their applications in dentistry. Saudi Pharm. J., 2017, 25(1), 25-31.
[http://dx.doi.org/10.1016/j.jsps.2016.04.027] [PMID: 28223859]
[53]
Baxter, A.A.; Lay, F.T.; Poon, I.K.H.; Kvansakul, M.; Hulett, M.D. Tumor cell membrane-targeting cationic antimicrobial peptides: novel insights into mechanisms of action and therapeutic prospects. Cell. Mol. Life Sci., 2017, 74(20), 3809-3825.
[http://dx.doi.org/10.1007/s00018-017-2604-z] [PMID: 28770291]
[54]
Panteleev, P.V.; Balandin, S.V.; Ivanov, V.T.; Ovchinnikova, T.V. A therapeutic potential of animal β-hairpin antimicrobial peptides. Curr. Med. Chem., 2017, 24(17), 1724-1746.
[http://dx.doi.org/10.2174/0929867324666170424124416] [PMID: 28440185]
[55]
Young-Speirs, M.; Drouin, D.; Cavalcante, P.A.; Barkema, H.W.; Cobo, E.R. Host defense cathelicidins in cattle: types, production, bioactive functions and potential therapeutic and diagnostic applications. Int. J. Antimicrob. Agents, 2018, 51(6), 813-821.
[http://dx.doi.org/10.1016/j.ijantimicag.2018.02.006] [PMID: 29476808]
[56]
Savelyeva, A.; Ghavami, S.; Davoodpour, P.; Asoodeh, A.; Łos, M.J. An overview of Brevinin superfamily: structure, function and clinical perspectives. In: Anticancer Genes; Springer: London, UK, 2014, pp. 197-212.
[http://dx.doi.org/10.1007/978-1-4471-6458-6_10]
[57]
Sun, T.; Zhan, B.; Gao, Y. A novel cathelicidin from Bufo bufo gargarizans Cantor showed specific activity to its habitat bacteria. Gene, 2015, 571(2), 172-177.
[http://dx.doi.org/10.1016/j.gene.2015.06.034] [PMID: 26091834]
[58]
Upadhyay, R.K. Spider venom toxins, its purification, solubilization, and antimicrobial activity. Int. J. Green Pharmacy, 2018, 12(Suppl. 1), S200-S2014.
[http://dx.doi.org/10.22377/ijgp.v12i01.1620]
[59]
Belmadani, A.; Semlali, A.; Rouabhia, M. Dermaseptin‐S1 decreases Candida albicans growth, biofilm formation and the expression of hyphal wall protein 1 and aspartic protease genes. J. Appl. Microbiol., 2018, 125(1), 72-83.
[http://dx.doi.org/10.1111/jam.13745]
[60]
Tahir, H.M.; Zaheer, A.; Khan, A.A.; Abbas, M. Antibacterial potential of venom extracted from wolf spider, Lycosa terrestris (Araneae: Lycosiade). Indian J. Anim. Sci., 2018, 52(2), 286-290.
[http://dx.doi.org/10.18805/ijar.v0iOF.8484]
[61]
Kuzmin, D.V.; Emelianova, A.A.; Kalashnikova, M.B.; Panteleev, P.V.; Ovchinnikova, T.V. Effect of N- and C-terminal modifications on cytotoxic properties of antimicrobial peptide tachyplesin I. Bull. Exp. Biol. Med., 2017, 162(6), 754-757.
[http://dx.doi.org/10.1007/s10517-017-3705-2] [PMID: 28429216]
[62]
Coulen, S.C.; Sanders, J.P.; Bruins, M.E. Valorisation of proteins from rubber tree. Waste Biomass Valoriz., 2017, 8(4), 1027-1041.
[http://dx.doi.org/10.1007/s12649-016-9688-9]
[63]
Thao, H.T.; Lan, N.T.N.; Mau, C.H. Overexpression of VrPDF1 gene confers resistance to weevils in transgenic mung bean plant. Peer J. Preprints,, 2017, 5e3264v2
[64]
Mills, S.; Griffin, C.; O’Connor, P.M.; Serrano, L.M.; Meijer, W.C.; Hill, C.; Ross, R.P. A multibacteriocin cheese starter system, comprising nisin and lacticin 3147 in Lactococcus lactis, in combination with plantaricin from Lactobacillus plantarum. Appl. Environ. Microbiol., 2017, 83(14), e00799-e17.
[http://dx.doi.org/10.1128/AEM.00799-17] [PMID: 28476774]
[65]
Su, Z.; Leitch, J.J.; Abbasi, F.; Faragher, R.J.; Schwan, A.L.; Lipkowski, J. EIS and PM-IRRAS studies of alamethicin ion channels in a tethered lipid bilayer. J. Electroanal. Chem. (Lausanne Switz.), 2018, 812, 213-220.
[66]
Braïek, O.B.; Morandi, S.; Cremonesi, P.; Smaoui, S.; Hani, K.; Ghrairi, T. Biotechnological potential, probiotic and safety properties of newly isolated enterocin-producing Enterococcus lactis strains. LWT, 2018, 92, 361-370.
[http://dx.doi.org/10.1016/j.lwt.2018.02.045]
[67]
Ebrahimipour, G.H.; Khosravibabadi, Z.; Sadeghi, H.; Aliahmadi, A. Isolation, partial purification and characterization of an antimicrobial compound, produced by Bacillus atrophaeus. Jundishapur J. Microbiol., 2014, 7(9)e11802
[68]
Sharma, G.; Dang, S.; Gupta, S.; Gabrani, R. Antibacterial activity, cytotoxicity, and the mechanism of action of bacteriocin from Bacillus subtilis GAS101. Med. Princ. Pract., 2018, 27(2), 186-192.
[http://dx.doi.org/10.1159/000487306] [PMID: 29402863]
[69]
Jiang, H.; Tang, X.; Zhou, Q.; Zou, J.; Li, P.; Breukink, E.; Gu, Q. Plantaricin NC8 from Lactobacillus plantarum causes cell membrane disruption to Micrococcus luteus without targeting lipid II. Appl. Microbiol. Biotechnol., 2018, 102(17), 7465-7473.
[http://dx.doi.org/10.1007/s00253-018-9182-3] [PMID: 29982926]
[70]
Hammi, I.; Delalande, F.; Belkhou, R.; Marchioni, E.; Cianferani, S.; Ennahar, S. Maltaricin CPN, a new class IIa bacteriocin produced by Carnobacterium maltaromaticum CPN isolated from mould-ripened cheese. J. Appl. Microbiol., 2016, 121(5), 1268-1274.
[http://dx.doi.org/10.1111/jam.13248] [PMID: 27489131]
[71]
Chen, Y.S.; Wu, H.C.; Kuo, C.Y.; Chen, Y.W.; Ho, S.; Yanagida, F. Leucocin C-607, a novel bacteriocin from the multiple-bacteriocin-producing Leuconostoc pseudomesenteroides 607 isolated from Persimmon. Probiotics Antimicrob. Proteins, 2018, 10(2), 148-156.
[http://dx.doi.org/10.1007/s12602-017-9359-6] [PMID: 29177756]
[72]
Singh, R.; Miriyala, S.S.; Giri, L.; Mitra, K.; Kareenhalli, V.V. Identification of unstructured model for subtilin production through Bacillus subtilis using hybrid genetic algorithm. Process Biochem., 2017, 60, 1-12.
[http://dx.doi.org/10.1016/j.procbio.2017.06.005]
[73]
Guzmán-Rodríguez, J.J.; Ochoa-Zarzosa, A.; López-Gómez, R.; López-Meza, J.E. Plant antimicrobial peptides as potential anticancer agents. BioMed Res. Int., 2015, •••2015735087
[http://dx.doi.org/10.1155/2015/735087] [PMID: 25815333]
[74]
Zhao, N.; Pan, Y.; Cheng, Z.; Liu, H. Lasso peptide, a highly stable structure and designable multifunctional backbone. Amino Acids, 2016, 48(6), 1347-1356.
[http://dx.doi.org/10.1007/s00726-016-2228-x] [PMID: 27074719]
[75]
Muhammad, S.A.; Ali, A.; Naz, A.; Hassan, A.; Riaz, N. Saeed-ul-Hassan, S. A new broad-spectrum peptide antibiotic produced by Bacillus brevis strain MH9 isolated from Margalla Hills of Islamabad, Pakistan. Int. J. Pept. Res. Ther., 2016, 22(2), 271-279.
[http://dx.doi.org/10.1007/s10989-015-9508-2]
[76]
Araújo, C.; Muñoz-Atienza, E.; Poeta, P.; Igrejas, G.; Hernández, P.E.; Herranz, C.; Cintas, L.M. Characterization of Pediococcus acidilactici strains isolated from rainbow trout (Oncorhynchus mykiss) feed and larvae: safety, DNA fingerprinting, and bacteriocinogenicity. Dis. Aquat. Organ., 2016, 119(2), 129-143.
[http://dx.doi.org/10.3354/dao02992] [PMID: 27137071]
[77]
Arakawa, K.; Yoshida, S.; Aikawa, H.; Hano, C.; Bolormaa, T.; Burenjargal, S.; Miyamoto, T. Production of a bacteriocin-like inhibitory substance by Leuconostoc mesenteroides subsp. dextranicum 213M0 isolated from Mongolian fermented mare milk, Airag. Anim. Sci. J., 2016, 87(3), 449-456.
[http://dx.doi.org/10.1111/asj.12445] [PMID: 26388181]
[78]
Tulini, F.L.; Lohans, C.T.; Bordon, K.C.; Zheng, J.; Arantes, E.C.; Vederas, J.C.; De Martinis, E.C. Purification and characterization of antimicrobial peptides from fish isolate Carnobacterium maltaromaticum C2: Carnobacteriocin X and carnolysins A1 and A2. Int. J. Food Microbiol., 2014, 173, 81-88.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2013.12.019] [PMID: 24412962]
[79]
Bosma, T.U.S. Bacterial surface display and screening of thioetherbridge- containing peptides. U.S. Patent No. 9,651,558, 2017.
[80]
Gajalakshmi, P. Selective isolation and characterization of rare actinomycetes adopted in glacier soil of Manali ice point and its activity against Mycobacterium spp. J. Microbiol. Biotechnol. Res., 2017, 7(5), 1-10.
[http://dx.doi.org/10.24896/jmbr.2017751]
[81]
Maldonado-Barragán, A.; Caballero-Guerrero, B.; Martín, V.; Ruiz-Barba, J.L.; Rodríguez, J.M. Purification and genetic characterization of gassericin E, a novel co-culture inducible bacteriocin from Lactobacillus gasseri EV1461 isolated from the vagina of a healthy woman. BMC Microbiol., 2016, 16(1), 37.
[http://dx.doi.org/10.1186/s12866-016-0663-1] [PMID: 26969428]
[82]
Perez, R.H.; Ishibashi, N.; Inoue, T.; Himeno, K.; Masuda, Y.; Sawa, N. Functional analysis of genes involved in the biosynthesis of enterocin NKR-5-3B, a novel circular bacteriocin. J. Bacteriol., 2016, 198(2), 291-300.
[http://dx.doi.org/10.1128/JB.00692-15]
[83]
Brillet-Viel, A.; Pilet, M.F.; Courcoux, P.; Prévost, H.; Leroi, F. Optimization of growth and bacteriocin activity of the food bioprotective Carnobacterium divergens V41 in an animal origin protein free medium. Front. Mar. Sci., 2016, 3, 128.
[http://dx.doi.org/10.3389/fmars.2016.00128]
[84]
Wan, X.; Li, R.; Saris, P.E.; Takala, T.M. Genetic characterisation and heterologous expression of leucocin C, a class IIa bacteriocin from Leuconostoc carnosum 4010. Appl. Microbiol. Biotechnol., 2013, 97(8), 3509-3518.
[http://dx.doi.org/10.1007/s00253-012-4406-4] [PMID: 23053070]
[85]
Wang, Y.; Shang, N.; Qin, Y.; Zhang, Y.; Zhang, J.; Li, P. The complete genome sequence of Lactobacillus plantarum LPL-1, a novel antibacterial probiotic producing class IIa bacteriocin. J. Biotechnol., 2018, 266, 84-88.
[http://dx.doi.org/10.1016/j.jbiotec.2017.12.006] [PMID: 29229543]
[86]
Le, T.N.; Do, T.H.; Nguyen, T.N.; Tran, N.T.; Enfors, S.O.; Truong, H. Expression and simple purification strategy for the generation of anti-microbial active Enterocin P from Enterococcus faecium expressed in Escherichia coli ER2566. Iranian J. Biotechnol., 2014, 12(4), 17-25.
[http://dx.doi.org/10.15171/ijb.1154]
[87]
Venturina, D.H.; Villegas, L.C.; Perez, M.T.M.; Elegado, F.B. Isolation and identification of subtilosin A-producing Bacillus subtilis from mongo sprouts, silage and soil samples in the Philippines. Asia Life Sci., 2016, 25(1), 123-136.
[88]
Bhat, S.G. Modelling and computational sequence analysis of a bacteriocin Isolated from Bacillus licheniformis strain BTHT. Int. J. Comp. Biol, 2018, 7(1), 29-34.
[http://dx.doi.org/10.34040/IJCB.7.1.2018.93]
[89]
Hollmann, A.; Martinez, M.; Maturana, P.; Semorile, L.C.; Maffia, P.C. Antimicrobial peptides: Interaction with model and biological membranes and synergism with chemical antibiotics. Front Chem., 2018, 6, 204.
[http://dx.doi.org/10.3389/fchem.2018.00204] [PMID: 29922648]
[90]
Pfalzgraff, A.; Brandenburg, K.; Weindl, G. Antimicrobial peptides and their therapeutic potential for bacterial skin infections and wounds. Front. Pharmacol., 2018, 9, 281.
[http://dx.doi.org/10.3389/fphar.2018.00281] [PMID: 29643807]
[91]
Hancock, R.E.W.; Patrzykat, A. Clinical development of cationic antimicrobial peptides: from natural to novel antibiotics. Curr. Drug Targets Infect. Disord., 2002, 2(1), 79-83.
[http://dx.doi.org/10.2174/1568005024605855] [PMID: 12462155]
[92]
Shafee, T.M.; Lay, F.T.; Phan, T.K.; Anderson, M.A.; Hulett, M.D. Convergent evolution of defensin sequence, structure and function. Cell. Mol. Life Sci., 2017, 74(4), 663-682.
[93]
Sun, D.; Forsman, J.; Woodward, C.E. Molecular simulations of melittin-induced membrane pores. J. Phys. Chem. B, 2017, 121(44), 10209-10214.
[http://dx.doi.org/10.1021/acs.jpcb.7b07126] [PMID: 29035531]
[94]
Strandberg, E.; Zerweck, J.; Wadhwani, P.; Reichert, J.; Bürck, J.; Ulrich, A.S. Molecular mechanism of synergy between the antimicrobial peptides PGLa and magainin 2 in membranes. Biophys. J., 2018, 114(3), 452a-453a.
[http://dx.doi.org/10.1016/j.bpj.2017.11.2502]
[95]
Xhindoli, D.; Pacor, S.; Benincasa, M.; Scocchi, M.; Gennaro, R.; Tossi, A. The human cathelicidin LL-37--A pore-forming antibacterial peptide and host-cell modulator. Biochim. Biophys. Acta, 2016, 1858(3), 546-566.
[http://dx.doi.org/10.1016/j.bbamem.2015.11.003] [PMID: 26556394]
[96]
Belmadani, A.; Semlali, A.; Rouabhia, M. Dermaseptin‐S1 decreases Candida albicans growth, biofilm formation and the expression of hyphal wall protein 1 and aspartic protease genes. J. Appl. Microbiol., 2018, 125(1), 72-83.
[http://dx.doi.org/10.1111/jam.13745] [PMID: 29476689]
[97]
Beadell, B.; Powell, T.R.; Berton, R.; Porter, E. In: The antimicrobial peptides HNP-1 and HBD-2 act against Mycobacterium smegmatis independent from their chirality.Southern California Conferences for Undergraduate Research, 2017.
[98]
Zhang, M.; Wei, W.; Sun, Y.; Jiang, X.; Ying, X.; Tao, R.; Ni, L. Pleurocidin congeners demonstrate activity against Streptococcus and low toxicity on gingival fibroblasts. Arch. Oral Biol., 2016, 70, 79-87.
[http://dx.doi.org/10.1016/j.archoralbio.2016.06.008] [PMID: 27341459]
[99]
Tsai, C.W.; Lin, Z.W.; Chang, W.F.; Chen, Y.F.; Hu, W.W. Development of an indolicidin-derived peptide by reducing membrane perturbation to decrease cytotoxicity and maintain gene delivery ability. Colloids Surf. B Biointerfaces, 2018, 165, 18-27.
[http://dx.doi.org/10.1016/j.colsurfb.2018.02.007] [PMID: 29448216]
[100]
Wuerth, K. Combating Pseudomonas aeruginosa lung infections using synthetic host defense peptides, Doctoral dissertation:. University of British Columbia. 2017.
[101]
Baindara, P.; Kapoor, A.; Korpole, S.; Grover, V. Cysteine-rich low molecular weight antimicrobial peptides from Brevibacillus and related genera for biotechnological applications. World J. Microbiol. Biotechnol., 2017, 33(6), 124.
[http://dx.doi.org/10.1007/s11274-017-2291-9] [PMID: 28534113]
[102]
Lohner, K. Membrane-active antimicrobial peptides as template structures for novel antibiotic agents. Curr. Top. Med. Chem., 2017, 17(5), 508-519.
[http://dx.doi.org/10.2174/1568026616666160713122404] [PMID: 28117020]
[103]
Sani, M.A.; Separovic, F. How membrane-active peptides get into lipid membranes. Acc. Chem. Res., 2016, 49(6), 1130-1138.
[http://dx.doi.org/10.1021/acs.accounts.6b00074] [PMID: 27187572]
[104]
Haney, E.F.; Mansour, S.C.; Hancock, R.E. Antimicrobial peptides: an introduction. Antimicrobial Peptides; Humana Press: New York, NY, 2017, pp. 3-22.
[http://dx.doi.org/10.1007/978-1-4939-6737-7_1]
[105]
Mingeot-Leclercq, M.P.; Décout, J.L. Bacterial lipid membranes as promising targets to fight antimicrobial resistance, molecular foundations and illustration through the renewal of aminoglycoside antibiotics and emergence of amphiphilic aminoglycosides. MedChemComm, 2016, 7(4), 586-611.
[http://dx.doi.org/10.1039/C5MD00503E]
[106]
Cudic, M.; Otvos, L., Jr Intracellular targets of antibacterial peptides. Curr. Drug Targets, 2002, 3(2), 101-106.
[http://dx.doi.org/10.2174/1389450024605445] [PMID: 11958294]
[107]
Krizsan, A.; Volke, D.; Weinert, S.; Sträter, N.; Knappe, D.; Hoffmann, R. Insect-derived proline-rich antimicrobial peptides kill bacteria by inhibiting bacterial protein translation at the 70S ribosome. Angew. Chem. Int. Ed. Engl., 2014, 53(45), 12236-12239.
[http://dx.doi.org/10.1002/anie.201407145] [PMID: 25220491]
[108]
Mansour, S.C.; Pena, O.M.; Hancock, R.E. Host defense peptides: front-line immunomodulators. Trends Immunol., 2014, 35(9), 443-450.
[http://dx.doi.org/10.1016/j.it.2014.07.004] [PMID: 25113635]
[109]
Claro, B.; Bastos, M.; Garcia-Fandino, R. Design and applications of cyclic peptides. In: Peptide Applications in Biomedicine, Biotechnology and Bioengineering; Koutsopoulos, S., Ed.; Woodhead Publishing: Sawston, United Kingdom, 2018, pp. 87-129.
[http://dx.doi.org/10.1016/B978-0-08-100736-5.00004-1]
[110]
Malanovic, N.; Lohner, K. Antimicrobial peptides targeting gram-positive bacteria. Pharmaceuticals (Basel), 2016, 9(3), 59.
[http://dx.doi.org/10.3390/ph9030059] [PMID: 27657092]
[111]
Shagaghi, N.; Palombo, E.A.; Clayton, A.H.A.; Bhave, M. Antimicrobial peptides: biochemical determinants of activity and biophysical techniques of elucidating their functionality. World J. Microbiol. Biotechnol., 2018, 34(4), 62.
[http://dx.doi.org/10.1007/s11274-018-2444-5] [PMID: 29651655]
[112]
Matsuzaki, K. Why and how are peptide-lipid interactions utilized for self-defense? Magainins and tachyplesins as archetypes. Biochim. Biophys. Acta, 1999, 1462(1-2), 1-10.
[http://dx.doi.org/10.1016/S0005-2736(99)00197-2] [PMID: 10590299]
[113]
Falanga, A.; Galdiero, S. Emerging therapeutic agents on the basis of naturally occurring antimicrobial peptides. In: Amino Acids, Peptides Proteins; Ryadnov, M.; Hudecz, F.; Royal Society of Chemistry: London, UK . , 2017, 42, pp. 190-227.
[http://dx.doi.org/10.1039/9781788010627]
[114]
Savini, F.; Bobone, S.; Roversi, D.; Mangoni, M.L.; Stella, L. From liposomes to cells: Filling the gap between physicochemical and microbiological studies of the activity and selectivity of host‐defense peptides. Peptide Sci., 2018, 110(5)e24041
[http://dx.doi.org/10.1002/pep2.24041]
[115]
Shabir, U.; Ali, S.; Magray, A.R.; Ganai, B.A.; Firdous, P.; Hassan, T.; Nazir, R. Fish antimicrobial peptides (AMP’s) as essential and promising molecular therapeutic agents: A review. Microb. Pathog., 2018, 114, 50-56.
[http://dx.doi.org/10.1016/j.micpath.2017.11.039] [PMID: 29180291]
[116]
Han, J.; Zhao, S.; Ma, Z.; Gao, L.; Liu, H.; Muhammad, U. The antibacterial activity and modes of LI–F type antimicrobial peptides against Bacillus cereus in vitro. J. Appl. Microbiol., 2017, 123(3), 602-614.
[http://dx.doi.org/10.1111/jam.13526]
[117]
Phoenix, D.A.; Dennison, S.R.; Harris, F. Bacterial resistance to host defence peptides. In: Host Defense Peptides and Their Potential as Therapeutic Agents; Epand, R.M., Ed.; Springer: Switzerland, 2016, pp. 161-204.
[http://dx.doi.org/10.1007/978-3-319-32949-9_7]
[118]
Carrera, M.; Böhme, K.; Gallardo, J.M.; Barros-Velázquez, J.; Cañas, B.; Calo-Mata, P. Characterization of foodborne strains of Staphylococcus aureus by shotgun proteomics: functional networks, virulence factors and species-specific peptide biomarkers. Front. Microbiol., 2017, 8, 2458.
[http://dx.doi.org/10.3389/fmicb.2017.02458] [PMID: 29312172]
[119]
Nagarajan, K.; Marimuthu, S.K.; Palanisamy, S.; Subbiah, L. Peptide therapeutics versus superbugs: highlight on current research and advancements. Int. J. Pept. Res. Ther., 2018, 24(1), 19-33.
[http://dx.doi.org/10.1007/s10989-017-9650-0]
[120]
Gordon, Y.J.; Romanowski, E.G.; McDermott, A.M. A review of antimicrobial peptides and their therapeutic potential as anti-infective drugs. Curr. Eye Res., 2005, 30(7), 505-515.
[http://dx.doi.org/10.1080/02713680590968637] [PMID: 16020284]
[121]
Mirski, T.; Niemcewicz, M.; Bartoszcze, M.; Gryko, R.; Michalski, A. Utilisation of peptides against microbial infections - a review. Ann. Agric. Environ. Med., 2017, 25(2), 205-210.
[http://dx.doi.org/10.26444/aaem/74471] [PMID: 29936826]
[122]
Levy, O. Antimicrobial proteins and peptides: anti-infective molecules of mammalian leukocytes. J. Leukoc. Biol., 2004, 76(5), 909-925.
[http://dx.doi.org/10.1189/jlb.0604320] [PMID: 15292276]
[123]
Warnke, P.H.; Voss, E.; Russo, P.A.; Stephens, S.; Kleine, M.; Terheyden, H.; Liu, Q. Antimicrobial peptide coating of dental implants: biocompatibility assessment of recombinant human beta defensin-2 for human cells. Int. J. Oral Maxillofac. Implants, 2013, 28(4), 982-988.
[http://dx.doi.org/10.11607/jomi.2594] [PMID: 23869355]
[124]
Conlon, J.M.; Sonnevend, A. Clinical applications of amphibian antimicrobial peptides. J. Med. Sci., 2011, 4(2), 62-72.
[http://dx.doi.org/10.2174/1996327001104020062]
[125]
Shin, S.H.; Lee, Y.S.; Shin, Y.P.; Kim, B.; Kim, M.H.; Chang, H.R.; Jang, W.S.; Lee, I.H. Therapeutic efficacy of halocidin-derived peptide HG1 in a mouse model of Candida albicans oral infection. J. Antimicrob. Chemother., 2013, 68(5), 1152-1160.
[http://dx.doi.org/10.1093/jac/dks513] [PMID: 23302580]
[126]
Migoń, D.; Neubauer, D.; Kamysz, W. Hydrocarbon stapled antimicrobial peptides. Protein J., 2018, 37(1), 2-12.
[http://dx.doi.org/10.1007/s10930-018-9755-0] [PMID: 29330644]
[127]
Yu, K.; Lo, J.C.; Yan, M.; Yang, X.; Brooks, D.E.; Hancock, R.E.; Lange, D.; Kizhakkedathu, J.N. Anti-adhesive antimicrobial peptide coating prevents catheter associated infection in a mouse urinary infection model. Biomaterials, 2017, 116, 69-81.
[http://dx.doi.org/10.1016/j.biomaterials.2016.11.047] [PMID: 27914268]
[128]
Greber, K.E.; Dawgul, M. Antimicrobial peptides under clinical trials. Curr. Top. Med. Chem., 2017, 17(5), 620-628.
[http://dx.doi.org/10.2174/1568026616666160713143331] [PMID: 27411322]
[129]
Sachdeva, S. Peptides as ‘Drugs’: the journey so far. Int. J. Pept. Res. Ther., 2017, 23(1), 49-60.
[http://dx.doi.org/10.1007/s10989-016-9534-8]
[130]
Mohammad, H.; Thangamani, S.; Seleem, M.N. Antimicrobial peptides and peptidomimetics - potent therapeutic allies for staphylococcal infections. Curr. Pharm. Des., 2015, 21(16), 2073-2088.
[http://dx.doi.org/10.2174/1381612821666150310102702] [PMID: 25760338]
[131]
Dawgul, M.; Maciejewska, M.; Jaskiewicz, M.; Karafova, A.; Kamysz, W. Antimicrobial peptides as potential tool to fight bacterial biofilm. Acta Pol. Pharm., 2014, 71(1), 39-47.
[PMID: 24779193]
[132]
Tsou, Y.A.; Tung, Y.T.; Wu, T.F.; Chang, G.R.L.; Chen, H.C.; Lin, C.D.; Lai, C.H.; Chen, H.L.; Chen, C.M. Lactoferrin interacts with SPLUNC1 to attenuate lipopolysaccharide-induced inflammation of human nasal epithelial cells via down-regulated MEK1/2-MAPK signaling. Biochem. Cell Biol., 2017, 95(3), 394-399.
[http://dx.doi.org/10.1139/bcb-2016-0047] [PMID: 28178421]
[133]
Samad, T.; Co, J.Y.; Witten, J.; Ribbeck, K. Mucus and mucin environments reduce the efficacy of polymyxin and fluoroquinolone antibiotics against Pseudomonas aeruginosa. ACS Biomater. Sci. Eng., 2019, 5(3), 1189-1194.
[http://dx.doi.org/10.1021/acsbiomaterials.8b01054]
[134]
Daliri, E.B.M.; Lee, B.H.; Oh, D.H. Current trends and perspectives of bioactive peptides. Crit. Rev. Food Sci. Nutr., 2018, 58(13), 2273-2284.
[http://dx.doi.org/10.1080/10408398.2017.1319795] [PMID: 28604060]
[135]
Kumar, P.; Kizhakkedathu, J.N.; Straus, S.K. Antimicrobial peptides: Diversity, mechanism of action and strategies to improve the activity and biocompatibility in vivo. Biomolecules, 2018, 8(1), 4.
[http://dx.doi.org/10.3390/biom8010004] [PMID: 29351202]
[136]
Woodburn, K.W.; Chiang, C.M.; Jaynes, J.; Clemens, L.E. Designed Antimicrobial Peptides: A New Horizon. In: Cosmetic Formulation. Principles and Practice, ; Benson, H.A.E.; Roberts, M.S.; Leite-Silva, V.R.; Walters K.; CRC Press: USA,. , 2019, p. 251 .
[137]
Kolar, S.S.N.; Luca, V.; Baidouri, H.; Mannino, G.; McDermott, A.M.; Mangoni, M.L. Esculentin-1a (1-21) NH 2: a frog skin-derived peptide for microbial keratitis. Cell. Mol. Life Sci., 2015, 72(3), 617-627.
[http://dx.doi.org/10.1007/s00018-014-1694-0] [PMID: 25086859]
[138]
Bach, H. A New Era without. Antibiotics , 2018, 1.
[139]
Lau, J.L.; Dunn, M.K. Therapeutic peptides: Historical perspectives, current development trends, and future directions. Bioorg. Med. Chem., 2018, 26(10), 2700-2707.
[http://dx.doi.org/10.1016/j.bmc.2017.06.052] [PMID: 28720325]
[140]
Raucher, D.; Ryu, J.S. Cell-penetrating peptides: strategies for anticancer treatment. Trends Mol. Med., 2015, 21(9), 560-570.
[http://dx.doi.org/10.1016/j.molmed.2015.06.005] [PMID: 26186888]
[141]
Ben Lagha, A.; Haas, B.; Gottschalk, M.; Grenier, D. Antimicrobial potential of bacteriocins in poultry and swine production. Vet. Res. (Faisalabad), 2017, 48(1), 22.
[http://dx.doi.org/10.1186/s13567-017-0425-6] [PMID: 28399941]
[142]
Garbacz, K.; Kamysz, W.; Piechowicz, L. Activity of antimicrobial peptides, alone or combined with conventional antibiotics, against Staphylococcus aureus isolated from the airways of cystic fibrosis patients. Virulence, 2017, 8(1), 94-100.
[http://dx.doi.org/10.1080/21505594.2016.1213475] [PMID: 27450039]
[143]
Huque, M.; Röhmel, J. Multiplicity problems in clinical trials: a regulatory perspective. In: Multiple testing problems in pharmaceutical statistics; Bretz, F.; Tamhane, A.C., Eds.; CRC Press: USA, 2009, pp. 1-34.
[http://dx.doi.org/10.1201/9781584889854-c1]
[144]
Sandreschi, S.; Piras, A.M.; Batoni, G.; Chiellini, F. Perspectives on polymeric nanostructures for the therapeutic application of antimicrobial peptides. Nanomedicine (Lond.), 2016, 11(13), 1729-1744.
[http://dx.doi.org/10.2217/nnm-2016-0057] [PMID: 27348155]
[145]
Riool, M.; de Breij, A.; Drijfhout, J.W.; Nibbering, P.H.; Zaat, S.A.J. Antimicrobial peptides in biomedical device manufacturing. Front Chem., 2017, 5, 63.
[http://dx.doi.org/10.3389/fchem.2017.00063] [PMID: 28971093]
[146]
Żelechowska, P.; Agier, J.; Brzezińska-Błaszczyk, E. Endogenous antimicrobial factors in the treatment of infectious diseases. Cent. Eur. J. Immunol., 2016, 41(4), 419-425.
[http://dx.doi.org/10.5114/ceji.2016.65141] [PMID: 28450805]
[147]
Mohamed, M.F.K. Targeting multi-drug resistant pathogens with novel antimicrobial peptides., Doctoral dissertation, Purdue University: USA. 2016.
[148]
Mealy, N.E.; Bayes, M. Annual Update 2003/2004-Treatment of Dermatological Disorders. Drugs Future, 2004, 29(4), 393.
[149]
Tasiemski, A.; Salzet, M.; Gaill, F.U.S. Antimicrobial peptides., Patent No. 8,652,514. 2014.
[150]
Cal, P.M.; Matos, M.J.; Bernardes, G.J. Trends in therapeutic drug conjugates for bacterial diseases: a patent review. Expert Opin. Ther. Pat., 2017, 27(2), 179-189.
[http://dx.doi.org/10.1080/13543776.2017.1259411] [PMID: 27828733]
[151]
Ostroumova, O.S.; Efimova, S.S.; Malev, V.V. Modifiers of membrane dipole potentials as tools for investigating ion channel formation and functioning. Int. Rev. Cell Mol. Biol., 2015, 315, 245-297.
[http://dx.doi.org/10.1016/bs.ircmb.2014.12.001] [PMID: 25708465]
[152]
Deslouches, B.; Di, Y.P. Antimicrobial peptides with selective antitumor mechanisms: prospect for anticancer applications. Oncotarget, 2017, 8(28), 46635-46651.
[http://dx.doi.org/10.18632/oncotarget.16743] [PMID: 28422728]
[153]
Felício, M.R.; Silva, O.N.; Gonçalves, S.; Santos, N.C.; Franco, O.L. Peptides with dual antimicrobial and anticancer activities. Front Chem., 2017, 5, 5.
[http://dx.doi.org/10.3389/fchem.2017.00005] [PMID: 28271058]
[154]
Wade, H.M.; Darling, L.E.; Elmore, D.E. Systematic analysis of hybrid antimicrobial peptides. Biophys. J., 2018, 114(3), 453.
[http://dx.doi.org/10.1016/j.bpj.2017.11.2503]
[155]
Ghosh, C.; Haldar, J. Membrane-active small molecules: designs inspired by antimicrobial peptides. ChemMedChem, 2015, 10(10), 1606-1624.
[http://dx.doi.org/10.1002/cmdc.201500299] [PMID: 26386345]
[156]
Cortes-Penfield, N.; Oliver, N.T.; Hunter, A.; Rodriguez-Barradas, M. Daptomycin and combination daptomycin-ceftaroline as salvage therapy for persistent methicillin-resistant Staphylococcus aureus bacteremia. Infect. Dis. (Lond.), 2018, 50(8), 643-647.
[http://dx.doi.org/10.1080/23744235.2018.1448110] [PMID: 29508663]
[157]
Gagliardini, E.; Benigni, A.; Perico, N. Pharmacological induction of kidney regeneration. In: Kidney Transplantation, Bioengineering and Regeneration; Orlando, G.; Remuzzi, G.; Williams, D.F., Eds.; Academic Press: Cambridge, MA, United States, 2017, pp. 1025-1037.
[http://dx.doi.org/10.1016/B978-0-12-801734-0.00074-6]
[158]
Jepson, A.K.; Schwarz-Linek, J.; Ryan, L.; Ryadnov, M.G.; Poon, W.C. What Is the ‘Minimum Inhibitory Concentration’(MIC) of Pexiganan Acting on Escherichia coli?-A Cautionary Case Study. Adv. Exp. Med. Biol., 2016, 915, 33-48.
[http://dx.doi.org/10.1007/978-3-319-32189-9_4] [PMID: 27193536]
[159]
Ng, S.M.S.; Teo, S.W.; Yong, Y.E.; Ng, F.M.; Lau, Q.Y.; Jureen, R.; Hill, J.; Chia, C.S.B. Preliminary investigations into developing all-D Omiganan for treating Mupirocin-resistant MRSA skin infections. Chem. Biol. Drug Des., 2017, 90(6), 1155-1160.
[http://dx.doi.org/10.1111/cbdd.13035] [PMID: 28581672]
[160]
Ross, J.E.; Jones, R.N.; Rhomberg, P.R.; Fritsche, T.R. In: In vitro activity of omiganan pentahydrochloride against> 1,600 clinical trial isolates, 45th Infectious Diseases Society of America Annual Meeting, San Diego, . 2007. 433
[161]
Morici, P.; Fais, R.; Rizzato, C.; Tavanti, A.; Lupetti, A. Inhibition of Candida albicans biofilm formation by the synthetic lactoferricin derived peptide hLF1-11. PLoS One, 2016, 11(11)e0167470
[http://dx.doi.org/10.1371/journal.pone.0167470] [PMID: 27902776]
[162]
Javia, A.; Amrutiya, J.; Lalani, R.; Patel, V.; Bhatt, P.; Misra, A. Antimicrobial peptide delivery: an emerging therapeutic for the treatment of burn and wounds. Ther. Deliv., 2018, 9(5), 375-386.
[http://dx.doi.org/10.4155/tde-2017-0061] [PMID: 29681237]
[163]
De Lorenzi, E.; Chiari, M.; Colombo, R.; Cretich, M.; Sola, L.; Vanna, R. Evidence that the human innate immune peptide LL-37 may be a binding partner of Abeta and inhibitor of fibril assembly. Biophys. J., 2018, 114(3), 393a.
[http://dx.doi.org/10.1016/j.bpj.2017.11.2174]
[164]
Menko, A.S. Method to treat and prevent posterior capsule opacification. Patent. 8,999,370,. 2015.
[165]
Moorthy, N.S.H.N.; Pratheepa, V.; Manivannan, E. Natural product derived drugs for immunological and inflammatory diseases. Nat. Prod. Clin. Trials, 2018, 1, 1-31.
[166]
Döşler, S. Antimicrobial peptides: Coming to the end of antibiotic era, the most promising agents. Ist. J. Pharm., 2017, 47(2), 72-76.
[http://dx.doi.org/10.5152/IstanbulJPharm.2017.0012]
[167]
Mangoni, M.L.; McDermott, A.M.; Zasloff, M. Antimicrobial peptides and wound healing: biological and therapeutic considerations. Exp. Dermatol., 2016, 25(3), 167-173.
[http://dx.doi.org/10.1111/exd.12929] [PMID: 26738772]
[168]
Krutetskaya, Z.I.; Melnitskaya, A.V.; Antonov, V.G.; Nozdrachev, A.D. Lipoxygenases modulate the effect of glutoxim on Na+ transport in the frog skin epithelium. Dokl. Biochem. Biophys., 2017, 474(1), 193-195.
[http://dx.doi.org/10.1134/S1607672917030073] [PMID: 28726099]
[169]
Harvey, A.; Edrada-Ebel, R.; Quinn, R.J. The re-emergence of natural products for drug discovery in the genomics era. Nat. Rev. Drug Discov., 2015, 14, 111-129.
[http://dx.doi.org/10.1038/nrd4510]
[170]
Butler, M.S.; Blaskovich, M.A.; Cooper, M.A. Antibiotics in the clinical pipeline at the end of 2015. J. Antibiot. (Tokyo), 2017, 70(1), 3-24.
[http://dx.doi.org/10.1038/ja.2016.72] [PMID: 27353164]
[171]
Giuliani, A.; Pirri, G.; Nicoletto, S. Antimicrobial peptides: an overview of a promising class of therapeutics. Open Life Sci., 2007, 2(1), 1-33.
[http://dx.doi.org/10.2478/s11535-007-0010-5]
[172]
Feng, Q.; Huang, Y.; Chen, M.; Li, G.; Chen, Y. Functional synergy of α-helical antimicrobial peptides and traditional antibiotics against Gram-negative and Gram-positive bacteria in vitro and in vivo. Eur. J. Clin. Microbiol. Infect. Dis., 2015, 34(1), 197-204.
[http://dx.doi.org/10.1007/s10096-014-2219-3] [PMID: 25169965]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 27
ISSUE: 1
Year: 2020
Page: [4 - 16]
Pages: 13
DOI: 10.2174/0929866526666190822165812
Price: $65

Article Metrics

PDF: 21
HTML: 6
EPUB: 2
PRC: 2

Special-new-year-discount