Surface Modification: Approaches and Utilities

Author(s): Anand Mahalwar*.

Journal Name: Current Applied Polymer Science

Volume 3 , Issue 2 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Surface modification is the modification of the surface (either of carrier, drug or targeting moiety) by which solubility, opsonization, adhesion, longer circulation, and bioconjugation of an object can be achieved.

Techniques which modify surface properties of carriers, drugs, ligands, excipients, coating materials, etc. by introducing random, non-specific groups or selected, specific groups can be used to alter the surface properties of the object. Through this review, a small attempt is made to understand the surface modification techniques. In this review, several methods (surface modification by solid dispersion technique, surfactants, polaxamer and polaxamine coating, PEG (polyethylene glycol), Vitamin E, Dextran derivatives, Chitosan coating, chemicals, gas and through layer by layer techniques) are discussed for surface modification. A concise review was done to explore the availability of techniques and agents available to introduce a specific group into the object.

Keywords: Ethylene Oxide (EO), Mononuclear Phagocytic System (MPS), nanoparticle, Poly(Ethylene Oxide) (PEO), Polyethylene Glycol (PEG), Propylene Oxide (PO), Reticuloendothelial System (RES), surface.

[1]
Crommelin DJA, Storm G. Drug targeting. In: P.G. Sammes, J.D. Taylor, Eds. Comprehensive Medicinal Chemistry. UK: Pergamon Press Oxford 1990; pp. 661-701.
[2]
Juliano RL. Factors affecting the clearance kinetics and tissue distribution of liposomes. Microspheres and emulsions. Adv Drug Deliv Rev 1988; (2): 3l-54.
[http://dx.doi.org/10.1016/0169-409X(88)90004-X]
[3]
Poznansky MJ, Juliano RL. Biological approaches to the controlled delivery of drugs: A critical review. Pharmacol Rev 1984; 36(4): 277-336.
[PMID: 6395142]
[4]
Senior JH. Fate and behavior of liposomes in vivo: A review of controlling factors. Crit Rev Ther Drug Carrier Syst 1987; 3(2): 123-93.
[PMID: 3542245]
[5]
Abra RM, Bosworth ME, Hunt CA. Liposome disposition in vivo: Effects of pre-dosing with lipsomes. Res Commun Chem Pathol Pharmacol 1980; 29(2): 349-60.
[PMID: 7414053]
[6]
Di Luzio NR, Wooles WR. Depression of phagocytic activity and immune response by methyl palmitate. Am J Physiol 1964; 206(206): 939-43.
[http://dx.doi.org/10.1152/ajplegacy.1964.206.5.939] [PMID: 14208965]
[7]
Husztik E, Lázár G, Párducz A. Electron microscopic study of Kupffer-cell phagocytosis blockade induced by gadolinium chloride. Br J Exp Pathol 1980; 61(6): 624-30.
[PMID: 7459256]
[8]
Storm G, Oussoren C, Peetcrs PAM, Barenholz Y. Tolerability of liposomes in vivo. In: G. Grcgoriadis, Ed. Liposome technology. 2nd ed. Boca Raton, FL: CRC Press 1993; Vol. III: pp. 345-83.
[9]
Davis SS, Douglas SJ, Illum L, Jones PDE, Mak E, Miiller RH. Targeting of colloidal carriers and the role of surface properties. In: G. Gregoriadis, J, Senior, G. Posten Eds. Targeting of drugs with synthetic systems. NATO AS1 Series Vol. 113, Plenum Press, New York 1986; pp. 123-46. In:
[http://dx.doi.org/10.1007/978-1-4684-5185-6_10]
[10]
Davis SS, Illum L. Polymeric microspheres as drug carriers. Biomaterials 1988; 9(1): 111-5.
[http://dx.doi.org/10.1016/0142-9612(88)90081-6] [PMID: 3280037]
[11]
DeGennes PG. Polymer solutions near an interface. Adsorption and depletion layers. Macromolecules 1981; (14): 1637-44.
[http://dx.doi.org/10.1021/ma50007a007]
[12]
Everet DH. Basic principles of colloid science. Royal Sot Chem London 1988.
[http://dx.doi.org/10.1039/9781847550200]
[13]
Napper DH. Polymeric stabilization of colloidal dispersions. London: Academic Press 1983.
[14]
Needham D, Hristova K, McIntosh TJ, Dewhirst M, Wu N, Lasic DD. Polymer-grafted liposomes: Physical basis for the stealth property. J Liposome Res 1992; 41(2): l-439.
[http://dx.doi.org/10.3109/08982109209010218]
[15]
Needham D, McIntosh TJ, Lasic DD. Repulsive interactions and mechanical stability of polymer-grafted lipid membranes. Biochim Biophys Acta 1992; 1108(1): 40-8.
[http://dx.doi.org/10.1016/0005-2736(92)90112-Y] [PMID: 1643080]
[16]
Torchillin VP, Omelyanenko VG, Papisov MI, et al. Poly(ethylenc glycol) on the liposome surface: On the mechanism of polymer coated liposome longevity. Biochim Biophys Acta 1994; 1(1195): I-20.
[http://dx.doi.org/10.1016/0005-2736(94)90003-5] [PMID: 7918551]
[17]
Woodle MC, Lasic DD. Sterically stabilized liposomes. Biochim Biophys Acta 1992; 1113(2): 171-99.
[http://dx.doi.org/10.1016/0304-4157(92)90038-C] [PMID: 1510996]
[18]
Rouchotas C, Cassidy OE, Rowley G. Comparison of surface modification and solid dispersion techniques for drug dissolution. Int J Pharm 2000; 195(1-2): 1-6.
[http://dx.doi.org/10.1016/S0378-5173(99)00350-6] [PMID: 10675674]
[19]
Brown S, Rowley G, Pearson JT. Surface treatment of the hydrophobic drug danazol to improve drug dissolution. Int J Pharm 1998; (165): 227-37.
[http://dx.doi.org/10.1016/S0378-5173(98)00020-9]
[20]
Maestrelli F, Garcia-Fuentes M, Mura P, Alonso MJ, Alonso B. A new drug nanocarrier consisting of chitosan and hydoxypropylcyclodextrin. Eur J Pharm Biopharm 2006; 63(2): 79-86.
[http://dx.doi.org/10.1016/j.ejpb.2005.12.006] [PMID: 16527473]
[21]
Storm G, Belliot S, Daemenb T, Lasic DD. Surface modification of nanoparticles to oppose uptake by the mononuclear phagocyte system. Adv Drug Deliv Rev 1995; (17): 31-48.
[http://dx.doi.org/10.1016/0169-409X(95)00039-A]
[22]
Dunn SE, Brindley A, Davis SS, Davies MC, Illum L. Polystyrene–poly(ethylene glycol) particles as model sys- tems for site-specific drug delivery. Part 2. The effect of PEG surface density on in vitro and in vivo biodistribution. Pharm Res 1994; (11): 1016-22.
[http://dx.doi.org/10.1023/A:1018939521589] [PMID: 7937542]
[23]
Scholes PD, Coombes AGA, Illum L, et al. Detection and determination of surface levels of poloxamer and PVA surfactant on biodegradable nanospheres using SSIMS and XPS. J Control Release 1999; 59(3): 261-78.
[http://dx.doi.org/10.1016/S0168-3659(98)00138-2] [PMID: 10332059]
[24]
Owens DE III, Peppas NA. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm 2006; 307(1): 93-102.
[http://dx.doi.org/10.1016/j.ijpharm.2005.10.010] [PMID: 16303268]
[25]
Li C, Price JE, Milas L, et al. Antitumour activity of poly (L glutamic acid) – paclitaxal on synergeneic and xenografted tumors. Clin Cancer Res 1999; (54): 891-7.
[PMID: 10213226]
[26]
Vasey PA, Twelves C, Kaye SB, Wilson P. Phase I clinical and pharmacokinetic study of PKI (HPMA co-polymer- doxorubicine): First member of a new class of chemotherapeutic agent –drug-polymer conjugate. Clin Cancer Res 1999; (5): 83-94.
[PMID: 9918206]
[27]
Van Vlerken LE, Vyas TK, Amiji MM. Poly (ethylene glycol) modified nanocarriers for tumor- targeted and intracellular delivery. Pharm Res 2007; (24): 8.
[http://dx.doi.org/10.1007/s11095-007-9284-6]
[28]
Fustin CA, Colard C, Filali M, et al. Tuning the hydrophilicity of gold nanoparticles templated in star block copolymers. Langmuir 2006; 22(15): 6690-5.
[http://dx.doi.org/10.1021/la060758h] [PMID: 16831014]
[29]
Hiemstra C, Zhong Z, Li L, Dijkstra PJ, Feijen J. In-situ formation of biodegradable hydrogels by stereocomplexation of PEG-(PLLA) (8) and PEG-(PDLA) (8) star block copolymers. Biomacromolecules 2006; (7): 2790-5.
[http://dx.doi.org/https://doi.org/10.1021/bm060630e]
[30]
Satomi T, Ueno K, Fujita Y, et al. Synthesis of polypyridine-graft-PEG copolymer for protein repellent and stable interface. J Nanosci Nanotechnol 2006; 6(6): 1792-6.
[http://dx.doi.org/10.1166/jnn.2006.234] [PMID: 17025085]
[31]
Forrest ML, Zhao A, Won CY, Malick AW, Kwon GS. Lipophilic prodrugs of Hsp90 inhibitor geldanamycin for nanoencapsulation in poly(ethylene glycol)-b-poly(epsilon-caprolactone) micelles. J Control Release 2006; 116(2): 139-49.
[http://dx.doi.org/10.1016/j.jconrel.2006.07.003] [PMID: 16926059]
[32]
Sezgin Z, Yüksel N, Baykara T. Preparation and characterization of polymeric micelles for solubilization of poorly soluble anticancer drugs. Eur J Pharm Biopharm 2006; 64(3): 261-8.
[http://dx.doi.org/10.1016/j.ejpb.2006.06.003] [PMID: 16884896]
[33]
Hatakeyama H, Akita H, Kogure K, et al. Development of a novel systemic gene delivery system for cancer therapy with a tumor-specific cleavable PEG-lipid. Gene Ther 2007; 14(1): 68-77.
[http://dx.doi.org/10.1038/sj.gt.3302843] [PMID: 16915290]
[34]
Kushibiki T, Tabata Y. Preparation of poly(ethylene glycol)-introduced cationized gelatin as a non-viral gene carrier. J Biomater Sci Polym Ed 2005; 16(11): 1447-61.
[http://dx.doi.org/10.1163/156856205774472326] [PMID: 16370244]
[35]
Kleemann E, Neu M, Jekel N, et al. Nano-carriers for DNA delivery to the lung based upon a TAT-derived peptide covalently coupled to PEG-PEI. J Control Release 2005; 109(1-3): 299-316.
[http://dx.doi.org/10.1016/j.jconrel.2005.09.036] [PMID: 16298009]
[36]
Murakami Y, Yokohama M, Okano T, Nishida H, Tomizawa Y, Endo M. A novel synthetic tissue-adhesive hydrogel using a crooslinkable polymeric micelle. J Biomed Mater Res 2006; (80): 421-7.
[37]
Prabhutendolkar A, Liu X, Mathias EV, Ba Y, Kornfield JA. Synthesis of chlorambucil-tempol adduct and its delivery using fluoroalkyl double-ended poly (ethylene glycol) micelles. Drug Deliv 2006; (13): 433-40.
[38]
Jongpaiboonkit L, Zhou Z, Ni X, Wang YZ, Li J. Self-association and micelle formation of biodegradable poly(ethylene glycol)-poly(L-lactic acid) amphiphilic di-block co-polymers. J Biomater Sci Polym Ed 2006; 17(7): 747-63.
[http://dx.doi.org/10.1163/156856206777656553] [PMID: 16909943]
[39]
Park TG, Yoo HS. Dexamethasone nano-aggregates composed of PEG-PLA-PEG triblock copolymers for anti-proliferation of smooth muscle cells. Int J Pharm 2006; 326(1-2): 169-73.
[http://dx.doi.org/10.1016/j.ijpharm.2006.06.041] [PMID: 16889913]
[40]
Bae Y, Jang WD, Nishiyama N, Fukushima S, Kataoka K. Multifunctional polymeric micelles with folate-mediated cancer cell targeting and pH-triggered drug releasing properties for active intracellular drug delivery. Mol Biosyst 2005; 1(3): 242-50.
[http://dx.doi.org/10.1039/b500266d] [PMID: 16880988]
[41]
Gryparis EC, Hatziapostolou M, Papadimitriou E, Avgoustakis K. Anticancer activity of cisplatin-loaded PLGA-mPEG nanoparticles on LNCaP prostate cancer cells. Eur J Pharm Biopharm 2007; 67(1): 1-8.
[http://dx.doi.org/10.1016/j.ejpb.2006.12.017] [PMID: 17303395]
[42]
Zhao H, Yung LYL. Selectivity of folate conjugated polymer micelles against different tumor cells. Int J Pharm 2008; 349(1-2): 256-68.
[http://dx.doi.org/10.1016/j.ijpharm.2007.07.040] [PMID: 17850996]
[43]
Win KY, Feng SS. Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs. Biomaterials 2005; 26(15): 2713-22.
[http://dx.doi.org/10.1016/j.biomaterials.2004.07.050] [PMID: 15585275]
[44]
Aumelas A, Serrero A, Durand A, Dellacherie E, Leonard M. Nanoparticles of hydrophobically modified dextrans as potential drug carrier systems. Colloids Surf B Biointerfaces 2007; 59(1): 74-80.
[http://dx.doi.org/10.1016/j.colsurfb.2007.04.021] [PMID: 17560095]
[45]
Rouzes C, Leonard M, Durand A, Dellacherie E. Influence of polymeric surfactants on the properties of drug-loaded PLA nanospheres. Colloids Surf B Biointerfaces 2003; 32(2): 125-35.
[http://dx.doi.org/10.1016/S0927-7765(03)00152-8]
[46]
Chen H, Yang W, Chen H, et al. Surface modification of mitoxantrone-loaded PLGA nanospheres with chitosan. Colloids Surf B Biointerfaces 2009; 73(2): 212-8.
[http://dx.doi.org/10.1016/j.colsurfb.2009.05.020] [PMID: 19545985]
[47]
Eriksson JC, Golander CG, Baszkin A, Terminassiansaraga L. Characterization of KMnO4 H2SO4-oxidized polyethylene surfaces by means of Esca and Ca-45(2+) adsorption. J Colloid Interface Sci 1984; (100): 381-92.
[http://dx.doi.org/10.1016/0021-9797(84)90443-0]
[48]
Kong JS, Lee DJ, Kim HD. Surface modification of low density polyethylene (LDPE) film and improvement of adhesion between evaporated copper metal film and LDPE. J Appl Polym Sci 2001; (82): 1677-90.
[http://dx.doi.org/10.1002/app.2008]
[49]
Rasmussen JR, Stedronsky ER, Whitesides GM. Introduction, modification, and characterization of functional groups on surface of low-density polyethylene film. J Am Chem Soc 1977; (99): 4736-45.
[http://dx.doi.org/10.1021/ja00456a035]
[50]
Bag DS, Kumar VP, Maiti S. Chemical modification of LDPE film. J Appl Polym Sci 1999; (71): 1041-8.
[http://dx.doi.org/10.1002/(SICI)1097-4628(19990214)71:7<1041:AID-APP1>3.0.CO;2-R]
[51]
Tao GL, Gong AJ, Lu JJ, Sue HJ, Bergbreiter DE. Surface functionalized polypropylene: Synthesis, characterization, and adhesion properties. Macromolecules 2001; (34): 7672-9.
[http://dx.doi.org/10.1021/ma010941b]
[52]
Sheng E, Sutherland I, Brewis DM, Heath RJ. Effects of the chromic-acid etching on propylene polymer surfaces. J Adhes Sci Technol 1995; (9): 47-60.
[http://dx.doi.org/10.1163/156856195X00284]
[53]
Goddard JM, Talbert JN, Hotchkiss JH. Covalent attachment of lactase to low density polyethylene films. J Food Sci 2007; (72): 36-41.
[54]
Holmberg K, Hydén H. Methods of immobilization of proteins to polymethylmethacrylate. Prep Biochem 1985; 15(5): 309-19.
[http://dx.doi.org/10.1080/00327488508062448] [PMID: 3938844]
[55]
Tanahashi M, Yao T, Kokubo T, et al. Apatite coated on organic polymers by biomimetic process: Improvement in its adhesion to substrate by NaOH treatment. J Appl Biomater 1994; 5(4): 339-47.
[http://dx.doi.org/10.1002/jab.770050409] [PMID: 8580541]
[56]
Varma HK, Sreenivasan K, Yokogawa Y, Hosumi A. In vitro calcium phosphate growth over surface modified PMMA film. Biomaterials 2003; 24(2): 297-303.
[http://dx.doi.org/10.1016/S0142-9612(02)00318-6] [PMID: 12419631]
[57]
Hermanson-Hermanson GT. Bioconjugate techniques. New York: Academic Press 1996.
[58]
Yamamoto K, Matsukuma D, Nanasetani K, Aoyagi T. Effective surface modification by stimuli-responsive polymers onto the magnetite nanoparticles by layer-by-layer method App Surf Sci 2008 (255): 384-7
[59]
Chauvierre C, Marden MC, Vauthier C, Labarre D, Couvreur P, Leclerc L. Heparin coated poly(alkylcyanoacrylate) nanoparticles coupled to hemoglobin: a new oxygen carrier. Biomaterials 2004; 25(15): 3081-6.
[http://dx.doi.org/10.1016/j.biomaterials.2003.09.097] [PMID: 14967542]
[60]
Kim KS, Lee KH, Cho K, Park CE. Surface modification of polysulfone ultrafiltration membrane by oxygen plasma treatment. J Membr Sci 2002; 199(1-2): 135-45.
[61]
Jung SH, Park SH, Lee DH, Kim SD. Surface modification of HDPE powders by oxygen plasma in a circulating fluidized bed reactor. Polym Bull 2001; (47): 2.
[http://dx.doi.org/10.1007/s002890170012]
[62]
Dattatray S. Wavhal, Fisher E.R. Modification of polysulfone ultrafiltration membranes by CO2 plasma treatment. Desalination 2005; 172(2): 189-205.
[http://dx.doi.org/10.1016/j.desal.2004.06.201]
[63]
Pal S, Ghatak SK, De S, Gupta SD. Characterization of CO2 plasma treated polymeric membranes and quantification of flux enhancement. J Membr Sci 2008; 323(1): 1-10.
[http://dx.doi.org/10.1016/j.memsci.2008.05.058]
[64]
He X, Yu X, Tang Z, et al. Reducing protein fouling of a polypropylene microporous membrane by CO2 plasma surface modification. Desalination 2009; 244(1-3): 80-9.
[http://dx.doi.org/10.1016/j.desal.2008.04.038]
[65]
Pal S, Ghatak SK, De S, Gupta SD. Evaluation of surface roughness of a plasma treated polymeric membrane by wavelet analysis and quantification of its enhanced performance. Appl Surf Sci 2008; 5(1): 2504-11.
[http://dx.doi.org/10.1016/j.apsusc.2008.07.184]
[66]
Yu H, Xie Y, Hu M, Wang J, Wang S, Xu Z. Surface modification of polypropylene microporous membrane to improve its antifouling property in MBR: CO2 plasma treatment. J Membrane Sci 2005; 254(1-2): 219-27.
[http://dx.doi.org/10.1016/j.memsci.2005.01.010]
[67]
Médard N, Soutif J, Poncin-Epaillard F. Characterization of CO2 plasma-treated polyethylene surface bearing carboxylic groups. Surf Coat Tech 2002; 160(2-3): 197-205.
[http://dx.doi.org/10.1016/S0257-8972(02)00407-3]
[68]
Dupont-Gillain C, Adriaensen Y, Derclaye S, Rouxhet PG. Plasma oxidized polystyrene: Wetting properties and surface reconstruction. Langmuir 2000; 16(21): 8194-200.
[http://dx.doi.org/10.1021/la000326l]
[69]
Dhayal M, Parry K, Short RD, Bradley JW. Investigating the plasma surface modification of polystyrene at low ion power densities. J Phys Chem B 2004; 108(37): 14000-4.
[http://dx.doi.org/10.1021/jp0477046]
[70]
Kou RQ, Xu Z, Deng H, Liu Z, Seta P, Xu Y. Surface modification of microporous polypropylene membranes by plasma-induced graft polymerization of α-Allyl glucoside. Langmuir 2003; 19(17): 6869-75.
[http://dx.doi.org/10.1021/la0345486]
[71]
Alyautdin RN, Petrov VE, Langer K, Berthold A, Kharkevich DA, Kreuter J. Delivery of loperamide across the blood-brain barrier with polysorbate 80-coated polybutylcyanoacrylate nanoparticles. Pharm Res 1997; 14(3): 325-8.
[http://dx.doi.org/10.1023/A:1012098005098] [PMID: 9098875]
[72]
Alyautdin RN, Tezikov EB, Ramge P, Kharkevich DA, Begley DJ, Kreuter J. Significant entry of tubocurarine into the brain of rats by adsorption to polysorbate 80-coated polybutylcyanoacrylate nanoparticles: An in situ brain perfusion study. J Microencapsul 1998; 15(1): 67-74.
[http://dx.doi.org/10.3109/02652049809006836] [PMID: 9463808]
[73]
Friese A, Seiller E, Quack G, Lorenz B, Kreuter J. Increase of the duration of the anticonvulsive activity of a novel NMDA receptor antagonist using poly(butylcyanoacrylate) nanoparticles as a parenteral controlled release system. Eur J Pharm Biopharm 2000; 49(2): 103-9.
[http://dx.doi.org/10.1016/S0939-6411(99)00073-9] [PMID: 10704892]
[74]
Göppert TM, Müller RH. Plasma protein adsorption of Tween 80- and poloxamer 188-stabilized solid lipid nanoparticles. J Drug Target 2003; 11(4): 225-31.
[http://dx.doi.org/10.1080/10611860310001615956] [PMID: 14578109]
[75]
Gulyaev AE, Gelperina SE, Skidan IN, Antropov AS, Kivman GY, Kreuter J. Significant transport of doxorubicin into the brain with polysorbate 80-coated nanoparticles. Pharm Res 1999; 16(10): 1564-9.
[http://dx.doi.org/10.1023/A:1018983904537] [PMID: 10554098]
[76]
Kreuter J, Alyautdin RN, Kharkevich DA, Ivanov AA. Passage of peptides through the blood-brain barrier with colloidal polymer particles (nanoparticles). Brain Res 1995; 674(1): 171-4.
[http://dx.doi.org/10.1016/0006-8993(95)00023-J] [PMID: 7773690]
[77]
Kreuter J, Shamenkov D, Petrov V, et al. Apolipoprotein-mediated transport of nanoparticle-bound drugs across the blood-brain barrier. J Drug Target 2002; 10(4): 317-25.
[http://dx.doi.org/10.1080/10611860290031877] [PMID: 12164380]
[78]
Garcia-Garcia E, Gil S, Andrieux K, et al. A relevant in vitro rat model for the evaluation of blood-brain barrier translocation of nanoparticles. Cell Mol Life Sci 2005; 62(12): 1400-8.
[http://dx.doi.org/10.1007/s00018-005-5094-3] [PMID: 15905957]
[79]
Lockman PR, Oyewumi MO, Koziara JM, Roder KE, Mumper RJ, Allen DD. Brain uptake of thiamine-coated nanoparticles. J Control Release 2003; 93(3): 271-82.
[http://dx.doi.org/10.1016/j.jconrel.2003.08.006] [PMID: 14644577]
[80]
Souto EB, Almeida AJ, Müller RH. Lipid nanoparticles (SLN, NLC) for cutaneous drug delivery: Structure, protection and skin effects. J Biomed Nanotech 2007; (3): 317-31.
[81]
Reddy LH, Sharma RK, Chuttani K, Mishra AK, Murthy RR. Etoposide-incorporated tripalmitin nanoparticles with different surface charge: Formulation, characterization, radiolabeling, and biodistribution studies. AAPS J 2004; 6(3)e23
[http://dx.doi.org/10.1208/aapsj060323] [PMID: 15760108]
[82]
Harivardhan RL, Sharma RK, Chuttani K, Mishra AK, Murthy RSR. Influence of administration route on tumor uptake and biodistribution of etoposide loaded solid lipid nanoparticles in Dalton’s lymphoma tumor bearing mice. J Control Release 2005; 105(3): 185-98.
[http://dx.doi.org/10.1016/j.jconrel.2005.02.028] [PMID: 15921775]
[83]
Müller RH, Petersen RD, Hommoss A, Pardeike J. Nanostructured lipid carriers (NLC) in cosmetic dermal products. Adv Drug Deliv Rev 2007; 59(6): 522-30.
[http://dx.doi.org/10.1016/j.addr.2007.04.012] [PMID: 17602783]
[84]
Moraes Silva S, Tavallaie R, Sandiford L, Tilley RD, Gooding JJ. Gold coated magnetic nanoparticles: From preparation to surface modification for analytical and biomedical applications. Chem Commun (Camb) 2016; 52(48): 7528-40.
[http://dx.doi.org/10.1039/C6CC03225G] [PMID: 27182032]
[85]
Sunoqrot S, Al-Shalabi E, Messersmith PB. Facile synthesis and surface modification of bioinspired nanoparticles from quercetin for drug delivery. Biomater Sci 2018; 6(10): 2656-66.
[http://dx.doi.org/10.1039/C8BM00587G] [PMID: 30140818]
[86]
Conover CD, Greenwald RB, Pendri A, Gilbert CW, Shum KL. Camptothecin delivery systems: Enhanced efficacy and tumor accumulation of camptothecin to polyethylene glycol via a glycine linker. Cancer Chemother Pharmacol 1998; (42): 407-14.
[http://dx.doi.org/10.1007/s002800050837] [PMID: 9771956]
[87]
Thompson AH, Vasey PA, Murray LS, et al. Population pharmacokinetics in phase I drug development: A phase I study of PK1 in patients with solid tumors. Br J Cancer 1999; (81): 99-107.
[http://dx.doi.org/10.1038/sj.bjc.6690657]
[88]
Hershfield MS. Biochemistry and immunology of poly- (ethylene glycol) modified adenosine deaminase (PEG- ADA). Poly (Ethylene Glycol) chemistry and biological applications, ACS Symposium Series 680. Washington, DC: Am Chem Soc 1997; pp. 145-54.
[http://dx.doi.org/10.1021/bk-1997-0680.ch010]
[89]
Holle LM. Pegaspargase: An alternative? Ann Pharmacother 1997; 31(5): 616-24.
[http://dx.doi.org/10.1177/106002809703100517] [PMID: 9161659]
[90]
Goebel FD, Goldstein D, Goos M, Jablonowski H, Stewart JS. The international SL-DOX study group. Efficacy and safety of stealth liposomal doxorubicin in AIDS-related Kaposi’s sarcoma. Br J Cancer 1996; 73(8): 989-94.
[http://dx.doi.org/10.1038/bjc.1996.193] [PMID: 8611437]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 3
ISSUE: 2
Year: 2019
Page: [98 - 111]
Pages: 14
DOI: 10.2174/2452271603666190822091208

Article Metrics

PDF: 7
HTML: 2
EPUB: 1
PRC: 1