Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Review Article

Novel Strategies for Targeting Prostate Cancer

Author(s): Pritish Kumar Panda, Shivani Saraf, Ankita Tiwari, Amit Verma, Sarjana Raikwar, Ankit Jain and Sanjay K. Jain*

Volume 16, Issue 8, 2019

Page: [712 - 727] Pages: 16

DOI: 10.2174/1567201816666190821143805

Price: $65

Abstract

Prostate cancer (PCa) is a worldwide issue, with a rapid increase in its occurrence and mortality. Over the years, various strategies have been implemented to overcome the hurdles that exist in the treatment of PCa. Consistently, there is a change in opinion about the methodologies in clinical trial that have engrossed towards the treatment of PCa. Currently, there is a need to resolve these newly recognized challenges by developing newer rational targeting systems. The ongoing clinical protocol for the therapy using different targeting systems is undertaken followed by local targeting to cancer site. A number of new drug targeting systems like liposomes, nanoemulsions, magnetic nanoparticles (MNPs), solid lipid nanoparticles, drug-peptide conjugate systems, drug-antibody conjugate systems, epigenetic and gene therapy approaches, and therapeutic aptamers are being developed to suit this protocol. Recent advancements in the treatment of PCa with various nanocarriers have been reported with respect to newly identified biological barriers and intended to solve the contexts. This review encompasses the input of nanotechnology in particular targeting of PCa which might escape the lifethreatening side effects and potentially contribute to bring fruitful clinical outcomes.

Keywords: Prostate cancer (PCa), nanocarrier systems, magnetic nanoparticles (MNPs), nanoemulsion systems, drug-peptide conjugate systems, drug-antibody conjugate systems, therapeutic apatamers.

Graphical Abstract
[1]
(a) Kinsella, N.; Helleman, J.; Bruinsma, S.; Carlsson, S.; Cahill, D.; Brown, C.; Van Hemelrijck, M. Active surveillance for prostate cancer: A systematic review of contemporary worldwide practices. Transl. Androl. Urol., 2018, 7(1), 83-97.
[http://dx.doi.org/10.21037/tau.2017.12.24] [PMID: 29594023]
(b) Guo, X.; Zhang, C.; Guo, Q.; Xu, Y.; Feng, G.; Li, L.; Han, X.; Lu, F.; Ma, Y.; Wang, X.; Wang, G. The homogeneous and heterogeneous risk factors for the morbidity and prognosis of bone metastasis in patients with prostate cancer. Cancer Manag. Res., 2018, 10, 1639-1646.
[http://dx.doi.org/10.2147/CMAR.S168579] [PMID: 29970963]
[2]
Caglic, I.; Barrett, T. Optimising prostate mpMRI: Prepare for success. Clin. Radiol., 2019, Pii: S0009-9260(18)30614-7.
[http://dx.doi.org/10.1016/J.crad.2018.12.003] [PMID: 30611559]
[3]
Mirzaei, M.; Mirzadeh, M.; Mirzaei, M. Mortality rate and years of life lost due to prostate cancer in Yazd Province, Iran: A 10-year study. Sultan Qaboos Univ. Med. J., 2017, 17(4), e424-e429.
[http://dx.doi.org/10.18295/squmj.2017.17.04.008] [PMID: 29372084]
[4]
Zhang, J.; Wang, L.; You, X.; Xian, T.; Wu, J.; Pang, J. Nanoparticle therapy for prostate cancer: Overview and perspectives. Curr. Top. Med. Chem., 2019, 19(1), 57-73.
[http://dx.doi.org/10.2174/1568026619666190125145836] [PMID: 30686255]
[5]
Qin, W.; Zheng, Y.; Qian, B-Z.; Zhao, M. Prostate cancer stem cells and nanotechnology: A focus on wnt signaling. Front. Pharmacol., 2017, 8, 153.
[http://dx.doi.org/10.3389/fphar.2017.00153] [PMID: 28400729]
[6]
Jain, A.K.; Thanki, K.; Jain, S. Solidified self-nanoemulsifying formulation for oral delivery of combinatorial therapeutic regimen: part II in vivo pharmacokinetics, antitumor efficacy and hepatotoxicity. Pharm. Res., 2014, 31(4), 946-958.
[http://dx.doi.org/10.1007/s11095-013-1214-1] [PMID: 24135934]
[7]
Kamble, M.; Borwandkar, V.G.; Mane, S.S.; Omkar, R. Formulation and evaluation of lipid based nanoemulsion of glimepiride using self-emulsifying technology. Indo. Am. J. Pharm. Res., 2012, 2, 1011-1025.
[8]
Kroon, J.; Metselaar, J.M.; Storm, G.; van der Pluijm, G. Liposomal nanomedicines in the treatment of prostate cancer. Cancer Treat. Rev., 2014, 40(4), 578-584.
[http://dx.doi.org/10.1016/j.ctrv.2013.10.005] [PMID: 24216226]
[9]
Shi, J.; Kantoff, P.W.; Wooster, R.; Farokhzad, O.C. Cancer nanomedicine: Progress, challenges and opportunities. Nat. Rev. Cancer, 2017, 17(1), 20-37.
[http://dx.doi.org/10.1038/nrc.2016.108] [PMID: 27834398]
[10]
Fuchs, A.V.; Tse, B.W.; Pearce, A.K.; Yeh, M-C.; Fletcher, N.L.; Huang, S.S.; Heston, W.D.; Whittaker, A.K.; Russell, P.J.; Thurecht, K.J. Evaluation of polymeric nanomedicines targeted to PSMA: Effect of ligand on targeting efficiency. Biomacromolecules, 2015, 16(10), 3235-3247.
[http://dx.doi.org/10.1021/acs.biomac.5b00913] [PMID: 26335533]
[11]
Cifuentes-Rius, A.; Butler, L.M.; Voelcker, N.H. Precision nanomedicines for prostate cancer. Nanomedicine, 2018, 13(4), 803-807.
[http://dx.doi.org/10.2217/nnm-2018-0034]
[12]
Peter, M.; Kamdar, S.; Bapat, B. Integrative Epigenomics of Prostate Cancer. Computational Epigenetics and Diseases; Elsevier, 2019, Vol. 9, pp. 247-263.
[http://dx.doi.org/10.1016/B978-0-12-814513-5.00016-7]
[13]
Baumgart, S.J.; Haendler, B. Exploiting epigenetic alterations in prostate cancer. Int. J. Mol. Sci., 2017, 18(5), 1017.
[http://dx.doi.org/10.3390/ijms18051017] [PMID: 28486411]
[14]
Altwaijry, N.; Somani, S.; Dufès, C. Targeted nonviral gene therapy in prostate cancer. Int. J. Nanomed., 2018, 13, 5753-5767.
[http://dx.doi.org/10.2147/IJN.S139080] [PMID: 30310278]
[15]
Zhou, Y.; Han, X.; Jing, X.; Chen, Y. Construction of silica-based micro/nanoplatforms for ultrasound theranostic biomedicine. Adv. Healthc. Mater., 2017, 6(18)
[http://dx.doi.org/10.1002/adhm.201700646] [PMID: 28795530]
[16]
Moosavian, S.A.; Sahebkar, A. Aptamer-functionalized liposomes for targeted cancer therapy. Cancer Lett., 2019, 448, 144-154.
[http://dx.doi.org/10.1016/j.canlet.2019.01.045] [PMID: 30763718]
[17]
Santoni, M.; Scarpelli, M.; Mazzucchelli, R.; Lopez-Beltran, A.; Cheng, L.; Cascinu, S.; Montironi, R. Targeting prostate-specific membrane antigen for personalized therapies in prostate cancer: morphologic and molecular backgrounds and future promises. J. Biol. Regul. Homeost. Agents, 2014, 28(4), 555-563.
[PMID: 25620167]
[18]
Zhao, G.; Rodriguez, B.L. Molecular targeting of liposomal nanoparticles to tumor microenvironment. Int. J. Nanomedicine, 2013, 8, 61-71.
[PMID: 23293520]
[19]
(a) Nguyen, K.T. Targeted nanoparticles for cancer therapy: promises and challenge. J. Nanomed. Nanotechnol., 2011, 2(5), 1-2.
[http://dx.doi.org/10.4172/2157-7439.1000103e]
(b) Tannock, I.F.; Lee, C.M.; Tunggal, J.K.; Cowan, D.S.; Egorin, M.J. Limited penetration of anticancer drugs through tumor tissue: A potential cause of resistance of solid tumors to chemotherapy. Clin. Cancer Res., 2002, 8(3), 878-884.
[PMID: 11895922]
[20]
Mousa, S.A.; Bharali, D.J. Nanotechnology-based detection and targeted therapy in cancer: Nano-bio paradigms and applications. Cancers (Basel), 2011, 3(3), 2888-2903.
[http://dx.doi.org/10.3390/cancers3032888] [PMID: 24212938]
[21]
(a) Davis, M.E.; Chen, Z.G.; Shin, D.M. Nanoparticle therapeutics: An emerging treatment modality for cancer. Nat. Rev. Drug Discov., 2008, 7(9), 771-782.
[http://dx.doi.org/10.1038/nrd2614] [PMID: 18758474]
(b) Zahreddine, H.; Borden, K.L. Mechanisms and insights into drug resistance in cancer. Front. Pharmacol., 2013, 4, 28.
[http://dx.doi.org/10.3389/fphar.2013.00028] [PMID: 23504227]
[22]
Sasikumar, A.; Kamalasanan, K. Nanomedicine for prostate cancer using nanoemulsion: A review. J. Control. Release, 2017, 260, 111-123.
[http://dx.doi.org/10.1016/j.jconrel.2017.06.001] [PMID: 28583444]
[23]
Mohler, J.; Antonorakis, E.; Armstrong, A. NCCN clinical practice guidelines in oncology: Prostate cancer, version 2; National Comprehensive Cancer Network, 2017, p. 25.
[24]
Ngollo, M.; Dagdemir, A.; Karsli-Ceppioglu, S.; Judes, G.; Pajon, A.; Penault-Llorca, F.; Boiteux, J-P.; Bignon, Y-J.; Guy, L.; Bernard-Gallon, D.J. Epigenetic modifications in prostate cancer. Epigenomics, 2014, 6(4), 415-426.
[http://dx.doi.org/10.2217/epi.14.34] [PMID: 25333850]
[25]
Reik, W. Stability and flexibility of epigenetic gene regulation in mammalian development. Nature, 2007, 447(7143), 425-432.
[http://dx.doi.org/10.1038/nature05918] [PMID: 17522676]
[26]
Jurkowska, R.Z.; Jurkowski, T.P.; Jeltsch, A. Structure and function of mammalian DNA methyltransferases. Chem.Bio.Chem, 2011, 12(2), 206-222.
[http://dx.doi.org/10.1002/cbic.201000195] [PMID: 21243710]
[27]
Gravina, G.L.; Ranieri, G.; Muzi, P.; Marampon, F.; Mancini, A.; Di Pasquale, B.; Di Clemente, L.; Dolo, V.; D’Alessandro, A.M.; Festuccia, C. Increased levels of DNA methyltransferases are associated with the tumorigenic capacity of prostate cancer cells. Oncol. Rep., 2013, 29(3), 1189-1195.
[http://dx.doi.org/10.3892/or.2012.2192] [PMID: 23254386]
[28]
Ehrlich, M. Cancer-linked DNA hypomethylation and its relationship to hypermethylation.Development, Genetic Disease and Cancer; Methylation, D.N.A., Ed.; Springer: USA, 2006, Vol. 310, pp. 251-274.
[http://dx.doi.org/10.1007/3-540-31181-5_12]
[29]
Bhaumik, S.R.; Smith, E.; Shilatifard, A. Covalent modifications of histones during development and disease pathogenesis. Nat. Struct. Mol. Biol., 2007, 14(11), 1008-1016.
[http://dx.doi.org/10.1038/nsmb1337] [PMID: 17984963]
[30]
Dagdemir, A.; Durif, J.; Ngollo, M.; Bignon, Y-J.; Bernard-Gallon, D. Histone lysine trimethylation or acetylation can be modulated by phytoestrogen, estrogen or anti-HDAC in breast cancer cell lines. Epigenomics, 2013, 5(1), 51-63.
[http://dx.doi.org/10.2217/epi.12.74] [PMID: 23414320]
[31]
(a) He, L.; Hannon, G.J. MicroRNAs: small RNAs with a big role in gene regulation. Nat. Rev. Genet., 2004, 5(7), 522-531.
[http://dx.doi.org/10.1038/nrg1379] [PMID: 15211354]
(b) Wang, N.; Li, Q.; Feng, N-H.; Cheng, G.; Guan, Z-L.; Wang, Y.; Qin, C.; Yin, C-J.; Hua, L-X. miR-205 is frequently downregulated in prostate cancer and acts as a tumor suppressor by inhibiting tumor growth. Asian J. Androl., 2013, 15(6), 735-741.
[http://dx.doi.org/10.1038/aja.2013.80] [PMID: 23974361]
[32]
Seo, Y.G.; Kim, D-W.; Cho, K.H.; Yousaf, A.M.; Kim, D.S.; Kim, J.H.; Kim, J.O.; Yong, C.S.; Choi, H-G. Preparation and pharmaceutical evaluation of new tacrolimus-loaded solid self-emulsifying drug delivery system. Arch. Pharm. Res., 2015, 38(2), 223-228.
[http://dx.doi.org/10.1007/s12272-014-0459-5] [PMID: 25134927]
[33]
Radwanski, E.; Perentesis, G.; Symchowicz, S.; Zampaglione, N. Single and multiple dose pharmacokinetic evaluation of flutamide in normal geriatric volunteers. J. Clin. Pharmacol., 1989, 29(6), 554-558.
[http://dx.doi.org/10.1002/j.1552-4604.1989.tb03381.x] [PMID: 2754024]
[34]
Jeevana, J.B.; Sreelakshmi, K. Design and evaluation of self-nanoemulsifying drug delivery system of flutamide. J. Young Pharm., 2011, 3(1), 4-8.
[http://dx.doi.org/10.4103/0975-1483.76413] [PMID: 21607048]
[35]
Seo, H.J.; Kim, J.C. 7-acetoxycoumarin dimer-incorporated and folate-decorated liposomes: Photoresponsive release and in vitro targeting and efficacy. Bioconjug. Chem., 2014, 25(3), 533-542.
[http://dx.doi.org/10.1021/bc400521r] [PMID: 24533729]
[36]
Valicherla, G.R.; Dave, K.M.; Syed, A.A.; Riyazuddin, M.; Gupta, A.P.; Singh, A. Wahajuddin; Mitra, K.; Datta, D.; Gayen, J.R. Formulation optimization of docetaxel loaded self-emulsifying drug delivery system to enhance bioavailability and anti-tumor activity. Sci. Rep., 2016, 6, 26895.
[http://dx.doi.org/10.1038/srep26895] [PMID: 27241877]
[37]
Sambantham, S.; Radha, M.; Paramasivam, A.; Anandan, B.; Malathi, R.; Chandra, S.R.; Jayaraman, G. Molecular mechanism underlying hesperetin-induced apoptosis by in silico analysis and in prostate cancer PC3 cells. Asian Pac. J. Cancer Prev., 2013, 14(7), 4347-4352.
[http://dx.doi.org/10.7314/APJCP.2013.14.7.4347] [PMID: 23992001]
[38]
Arya, A.; Khandelwal, K.; Ahmad, H.; Laxman, T.S.; Sharma, K.; Mittapelly, N.; Agrawal, S.; Bhatta, R.S.; Dwivedi, A.K. Co-delivery of hesperetin enhanced bicalutamide induced apoptosis by exploiting mitochondrial membrane potential via polymeric nanoparticles in a PC3 cell line. RSC Adv., 2016, 6(7), 5925-5935.
[http://dx.doi.org/10.1039/C5RA23067E]
[39]
Shi, J.; Zhou, S.; Kang, L.; Ling, H.; Chen, J.; Duan, L.; Song, Y.; Deng, Y. Evaluation of the antitumor effects of vitamin K2 (menaquinone-7) nanoemulsions modified with sialic acid-cholesterol conjugate. Drug Deliv. Transl. Res., 2018, 8(1), 1-11.
[http://dx.doi.org/10.1007/s13346-017-0424-1] [PMID: 28849577]
[40]
Guan, Y.B.; Zhou, S.Y.; Zhang, Y.Q.; Wang, J.L.; Tian, Y.D.; Jia, Y.Y.; Sun, Y.J. Therapeutic effects of curcumin nanoemulsions on prostate cancer. J. Huazhong Univ. Sci. Technolog. Med. Sci., 2017, 37(3), 371-378.
[http://dx.doi.org/10.1007/s11596-017-1742-8] [PMID: 28585133]
[41]
Ahmad, M.; Sahabjada, J.A.; Akhtar, J.; Hussain, A. Badaruddeen, Arshad, M.; Mishra, A. Development of a new rutin nanoemulsion and its application on prostate carcinoma PC3 cell line. EXCLI J., 2017, 16, 810-823.
[PMID: 28694767]
[42]
Tsai, Y-J.; Chen, B-H. Preparation of catechin extracts and nanoemulsions from green tea leaf waste and their inhibition effect on prostate cancer cell PC3. Int. J. Nanomed., 2016, 11, 1907-1926.
[PMID: 27226712]
[43]
Bharali, D.J.; Sudha, T.; Cui, H.; Mian, B.M.; Mousa, S.A. Anti-CD24 nano-targeted delivery of docetaxel for the treatment of prostate cancer. Nanomedicine (Lond.), 2017, 13(1), 263-273.
[http://dx.doi.org/10.1016/j.nano.2016.08.017] [PMID: 27565690]
[44]
Singh, S.K.; Lillard, J.W., Jr; Singh, R. Reversal of drug resistance by planetary ball milled (PBM) nanoparticle loaded with resveratrol and docetaxel in prostate cancer. Cancer Lett., 2018, 427, 49-62.
[http://dx.doi.org/10.1016/j.canlet.2018.04.017] [PMID: 29678549]
[45]
Nassir, A.M.; Shahzad, N.; Ibrahim, I.A.A.; Ahmad, I.; Md, S.; Ain, M.R. Resveratrol-loaded PLGA nanoparticles mediated programmed cell death in prostate cancer cells. Saudi Pharm. J., 2018, 26(6), 876-885.
[http://dx.doi.org/10.1016/j.jsps.2018.03.009] [PMID: 30202231]
[46]
Wu, M.; Zhao, H.; Guo, L.; Wang, Y.; Song, J.; Zhao, X.; Li, C.; Hao, L.; Wang, D.; Tang, J. Ultrasound-mediated nanobubble destruction (UMND) facilitates the delivery of A10-3.2 aptamer targeted and siRNA-loaded cationic nanobubbles for therapy of prostate cancer. Drug Deliv., 2018, 25(1), 226-240.
[http://dx.doi.org/10.1080/10717544.2017.1422300] [PMID: 29313393]
[47]
Mu, X.; Lu, H.; Fan, L.; Yan, S.; Hu, K. Efficient delivery of therapeutic siRNA with nanoparticles induces apoptosis in prostate cancer cells. J. Nanomater., 2018, 2018 Article ID 4719790
[http://dx.doi.org/10.1155/2018/4719790]
[48]
Hill, E.E.; Kim, J.K.; Jung, Y.; Neeley, C.K.; Pienta, K.J.; Taichman, R.S.; Nor, J.E.; Baker, J.R., Jr; Krebsbach, P.H. Integrin alpha V beta 3 targeted dendrimer-rapamycin conjugate reduces fibroblast-mediated prostate tumor progression and metastasis. J. Cell. Biochem., 2018, 119(10), 8074-8083.
[http://dx.doi.org/10.1002/jcb.26727] [PMID: 29380900]
[49]
Liu, X.; Kang, J.; Wang, H.; Huang, T.; Li, C. Construction of Fluorescein Isothiocyanate-Labeled MSNs/PEG/Lycorine/antibody as drug carrier for targeting prostate cancer cells. J. Nanosci. Nanotechnol., 2018, 18(7), 4471-4477.
[http://dx.doi.org/10.1166/jnn.2018.15292] [PMID: 29442621]
[50]
Calderón-Ortiz, E.; Bailón-Ruiz, S.; Martínez-Ferrer, M.; Rodríguez-Orengo, J.; Perales-Pérez, O. Evaluation of ZnSe(S) quantum dots on the cell viability of prostate cancer cell (PC3). J. Electron. Mater., 2018, 1-5.
[http://dx.doi.org/10.1007/s11664-018-6309-3]
[51]
Ikemoto, K.; Shimizu, K.; Ohashi, K.; Takeuchi, Y.; Shimizu, M.; Oku, N. Bauhinia purprea agglutinin-modified liposomes for human prostate cancer treatment. Cancer Sci., 2016, 107(1), 53-59.
[http://dx.doi.org/10.1111/cas.12839] [PMID: 26495901]
[52]
Kumar, A.; Huo, S.; Zhang, X.; Liu, J.; Tan, A.; Li, S.; Jin, S.; Xue, X.; Zhao, Y.; Ji, T.; Han, L.; Liu, H.; Zhang, X.; Zhang, J.; Zou, G.; Wang, T.; Tang, S.; Liang, X.J. Neuropilin-1-targeted gold nanoparticles enhance therapeutic efficacy of platinum(IV) drug for prostate cancer treatment. ACS Nano, 2014, 8(5), 4205-4220.
[http://dx.doi.org/10.1021/nn500152u] [PMID: 24730557]
[53]
Vaillant, O.; El Cheikh, K.; Warther, D.; Brevet, D.; Maynadier, M.; Bouffard, E.; Salgues, F.; Jeanjean, A.; Puche, P.; Mazerolles, C.; Maillard, P.; Mongin, O.; Blanchard-Desce, M.; Raehm, L.; Rébillard, X.; Durand, J.O.; Gary-Bobo, M.; Morère, A.; Garcia, M. Mannose-6-phosphate receptor: A target for theranostics of prostate cancer. Angew. Chem. Int. Ed. Engl., 2015, 54(20), 5952-5956.
[http://dx.doi.org/10.1002/anie.201500286] [PMID: 25802144]
[54]
Huang, B.; Otis, J.; Joice, M.; Kotlyar, A.; Thomas, T.P. PSMA-targeted stably linked “dendrimer-glutamate urea-methotrexate” as a prostate cancer therapeutic. Biomacromolecules, 2014, 15(3), 915-923.
[http://dx.doi.org/10.1021/bm401777w] [PMID: 24392665]
[55]
Lee, S.J.; Yook, S.; Yhee, J.Y.; Yoon, H.Y.; Kim, M-G.; Ku, S.H.; Kim, S.H.; Park, J.H.; Jeong, J.H.; Kwon, I.C.; Lee, S.; Lee, H.; Kim, K. Co-delivery of VEGF and Bcl-2 dual-targeted siRNA polymer using a single nanoparticle for synergistic anti-cancer effects in vivo. J. Control. Release, 2015, 220(Pt B), 631-641.
[http://dx.doi.org/10.1016/j.jconrel.2015.08.032] [PMID: 26307351]
[56]
Gao, Y.; Zhou, Y.; Zhao, L.; Zhang, C.; Li, Y.; Li, J.; Li, X.; Liu, Y. Enhanced antitumor efficacy by cyclic RGDyK-conjugated and paclitaxel-loaded pH-responsive polymeric micelles. Acta Biomater., 2015, 23, 127-135.
[http://dx.doi.org/10.1016/j.actbio.2015.05.021] [PMID: 26013038]
[57]
Boddu, S.H.; Vaishya, R.; Jwala, J.; Vadlapudi, A.; Pal, D.; Mitra, A. Preparation and characterization of folate conjugated nanoparticles of doxorubicin using PLGA-PEG-FOL polymer. Med. Chem., 2012, 2(4), 68-75.
[58]
Zhao, L.; Li, N.; Wang, K.; Shi, C.; Zhang, L.; Luan, Y. A review of polypeptide-based polymersomes. Biomaterials, 2014, 35(4), 1284-1301.
[http://dx.doi.org/10.1016/j.biomaterials.2013.10.063] [PMID: 24211077]
[59]
Zhang, W.; Zheng, X.; Shen, S.; Wang, X. Doxorubicin-loaded magnetic nanoparticle clusters for chemo-photothermal treatment of the prostate cancer cell line PC3. Biochem. Biophys. Res. Commun., 2015, 466(2), 278-282.
[http://dx.doi.org/10.1016/j.bbrc.2015.09.036] [PMID: 26362176]
[60]
Nagesh, P.K.B.; Johnson, N.R.; Boya, V.K.N.; Chowdhury, P.; Othman, S.F.; Khalilzad-Sharghi, V.; Hafeez, B.B.; Ganju, A.; Khan, S.; Behrman, S.W.; Zafar, N.; Chauhan, S.C.; Jaggi, M.; Yallapu, M.M. PSMA targeted docetaxel-loaded superparamagnetic iron oxide nanoparticles for prostate cancer. Colloids Surf. B Biointerfaces, 2016, 144, 8-20.
[http://dx.doi.org/10.1016/j.colsurfb.2016.03.071] [PMID: 27058278]
[61]
Zhu, Y.; Sun, Y.; Chen, Y.; Liu, W.; Jiang, J.; Guan, W.; Zhang, Z.; Duan, Y. In vivo molecular MRI imaging of prostate cancer by targeting PSMA with polypeptide-labeled superparamagnetic iron oxide nanoparticles. Int. J. Mol. Sci., 2015, 16(5), 9573-9587.
[http://dx.doi.org/10.3390/ijms16059573] [PMID: 25927579]
[62]
Menon, J.U.; Tumati, V.; Hsieh, J.T.; Nguyen, K.T.; Saha, D. Polymeric nanoparticles for targeted radiosensitization of prostate cancer cells. J. Biomed. Mater. Res. A, 2015, 103(5), 1632-1639.
[http://dx.doi.org/10.1002/jbm.a.35300] [PMID: 25088162]
[63]
Dayyani, N.; Khoee, S.; Ramazani, A. Design and synthesis of pH-sensitive polyamino-ester magneto-dendrimers: Surface functional groups effect on viability of human prostate carcinoma cell lines DU145. Eur. J. Med. Chem., 2015, 98, 190-202.
[http://dx.doi.org/10.1016/j.ejmech.2015.05.028] [PMID: 26021708]
[64]
(a) Sundaresan, V.; Menon, J.U.; Rahimi, M.; Nguyen, K.T.; Wadajkar, A.S. Dual-responsive polymer-coated iron oxide nanoparticles for drug delivery and imaging applications. Int. J. Pharm., 2014, 466(1-2), 1-7.
[http://dx.doi.org/10.1016/j.ijpharm.2014.03.016] [PMID: 24607216]
(b) Chowdhury, P.; Roberts, A.M.; Khan, S.; Hafeez, B.B.; Chauhan, S.C.; Jaggi, M.; Yallapu, M.M. Magnetic nanoformulations for prostate cancer. Drug Discov. Today, 2017, 22(8), 1233-1241.
[http://dx.doi.org/10.1016/j.drudis.2017.04.018] [PMID: 28526660]
[65]
Huang, W-Y.; Lin, J-N.; Hsieh, J-T.; Chou, S-C.; Lai, C-H.; Yun, E-J.; Lo, U-G.; Pong, R-C.; Lin, J-H.; Lin, Y-H. Nanoparticle targeting CD44-positive cancer cells for site-specific drug delivery in prostate cancer therapy. ACS Appl. Mater. Interfaces, 2016, 8(45), 30722-30734.
[http://dx.doi.org/10.1021/acsami.6b10029] [PMID: 27786455]
[66]
Akanda, M.H.; Rai, R.; Slipper, I.J.; Chowdhry, B.Z.; Lamprou, D.; Getti, G.; Douroumis, D. Delivery of retinoic acid to LNCap human prostate cancer cells using solid lipid nanoparticles. Int. J. Pharm., 2015, 493(1-2), 161-171.
[http://dx.doi.org/10.1016/j.ijpharm.2015.07.042] [PMID: 26200751]
[67]
Lee, J.B.; Zhang, K.; Tam, Y.Y.C.; Quick, J.; Tam, Y.K.; Lin, P.J.; Chen, S.; Liu, Y.; Nair, J.K.; Zlatev, I.; Rajeev, K.G.; Manoharan, M.; Rennie, P.S.; Cullis, P.R. A glu-urea-lys ligand-conjugated lipid nanoparticle/siRNA system inhibits androgen receptor expression in vivo. Mol. Ther. Nucleic Acids, 2016, 5e348.
[http://dx.doi.org/10.1038/mtna.2016.43] [PMID: 28131285]
[68]
Saralkar, P.; Dash, A.K. Alginate nanoparticles containing curcumin and resveratrol: Preparation, characterization, and in vitro evaluation against DU145 prostate cancer cell line. AAPS PharmSciTech, 2017, 18(7), 2814-2823.
[http://dx.doi.org/10.1208/s12249-017-0772-7] [PMID: 28397161]
[69]
Zhang, W.; Song, Y.; Eldi, P.; Guo, X.; Hayball, J.D.; Garg, S.; Albrecht, H. Targeting prostate cancer cells with hybrid elastin-like polypeptide/liposome nanoparticles. Int. J. Nanomed, 2018, 13, 293-305.
[http://dx.doi.org/10.2147/IJN.S152485] [PMID: 29391790]
[70]
Patil, Y.; Shmeeda, H.; Amitay, Y.; Ohana, P.; Kumar, S.; Gabizon, A. Targeting of folate-conjugated liposomes with co-entrapped drugs to prostate cancer cells via prostate-specific membrane antigen (PSMA). Nanomedicine (Lond.), 2018, 14(4), 1407-1416.
[http://dx.doi.org/10.1016/j.nano.2018.04.011] [PMID: 29680672]
[71]
Peres-Filho, M.J.; Dos Santos, A.P.; Nascimento, T.L.; de Ávila, R.I.; Ferreira, F.S.; Valadares, M.C.; Lima, E.M. Antiproliferative activity and VEGF expression reduction in MCF7 and PC3 cancer cells by paclitaxel and imatinib co-encapsulation in folate-targeted liposomes. AAPS PharmSciTech, 2018, 19(1), 201-212.
[http://dx.doi.org/10.1208/s12249-017-0830-1] [PMID: 28681330]
[72]
Jayawardana, K.W.; Jyotsana, N.; Zhang, Z.; King, M. Loading of piperlongumine to liposomes after complexation with β-cyclodextrin and its effect on viability of colon and prostate cancer cells. bioRxiv, 2018, 1-3.
[http://dx.doi.org/10.1101/314161]
[73]
Cross, D.; Burmester, J.K. Gene therapy for cancer treatment: Past, present and future. Clin. Med. Res., 2006, 4(3), 218-227.
[http://dx.doi.org/10.3121/cmr.4.3.218] [PMID: 16988102]
[74]
Grozescu, T.; Popa, F. Immunotherapy and gene therapy in prostate cancer treatment. J. Med. Life, 2017, 10(1), 54-55.
[PMID: 28255378]
[75]
Pieczonka, C.M.; Telonis, D.; Mouraviev, V.; Albala, D. Sipuleucel-T for the treatment of patients with metastatic castrate-resistant prostate cancer: Considerations for clinical practice. Rev. Urol., 2015, 17(4), 203-210.
[PMID: 26839517]
[76]
Health, U.N.I.O. ClinicalTrials. gov. 2012.
[77]
Geary, S.M.; Salem, A.K. Prostate cancer vaccines: Update on clinical development. OncoImmunology, 2013, 2(5)e24523
[http://dx.doi.org/10.4161/onci.24523] [PMID: 23762812]
[78]
Patel, D.J.; Suri, A.K.; Jiang, F.; Jiang, L.; Fan, P.; Kumar, R.A.; Nonin, S. Structure, recognition and adaptive binding in RNA aptamer complexes. J. Mol. Biol., 1997, 272(5), 645-664.
[http://dx.doi.org/10.1006/jmbi.1997.1281] [PMID: 9368648]
[79]
Jeong, S.; Eom, T.; Kim, S.; Lee, S.; Yu, J. In vitro selection of the RNA aptamer against the Sialyl Lewis X and its inhibition of the cell adhesion. Biochem. Biophys. Res. Commun., 2001, 281(1), 237-243.
[http://dx.doi.org/10.1006/bbrc.2001.4327] [PMID: 11178986]
[80]
(a) Hicke, B.J.; Stephens, A.W.; Gould, T.; Chang, Y.F.; Lynott, C.K.; Heil, J.; Borkowski, S.; Hilger, C.S.; Cook, G.; Warren, S.; Schmidt, P.G. Tumor targeting by an aptamer. J. Nucl. Med., 2006, 47(4), 668-678. PMID: 16595502
(b) Bagalkot, V.; Farokhzad, O.C.; Langer, R.; Jon, S. An aptamer-doxorubicin physical conjugate as a novel targeted drug-delivery platform. Angew. Chem. Int. Ed. Engl., 2006, 45(48), 8149-8152.
[http://dx.doi.org/10.1002/anie.200602251] [PMID: 17099918]
[81]
Xiang, D.; Shigdar, S.; Qiao, G.; Wang, T.; Kouzani, A.Z.; Zhou, S-F.; Kong, L.; Li, Y.; Pu, C.; Duan, W. Nucleic acid aptamer-guided cancer therapeutics and diagnostics: The next generation of cancer medicine. Theranostics, 2015, 5(1), 23-42.
[http://dx.doi.org/10.7150/thno.10202] [PMID: 25553096]
[82]
Ilgu, M.; Nilsen-Hamilton, M. Aptamers in analytics. Analyst (Lond.), 2016, 141(5), 1551-1568.
[http://dx.doi.org/10.1039/C5AN01824B] [PMID: 26864075]
[83]
Abnous, K.; Danesh, N.M.; Ramezani, M.; Yazdian-Robati, R.; Alibolandi, M.; Taghdisi, S.M. A novel chemotherapy drug-free delivery system composed of three therapeutic aptamers for the treatment of prostate and breast cancers in vitro and in vivo. Nanomedicine (Lond.), 2017, 13(6), 1933-1940.
[http://dx.doi.org/10.1016/j.nano.2017.04.002] [PMID: 28414074]
[84]
Ireson, C.R.; Kelland, L.R. Discovery and development of anticancer aptamers. Mol. Cancer Ther., 2006, 5(12), 2957-2962.
[http://dx.doi.org/10.1158/1535-7163.MCT-06-0172] [PMID: 17172400]
[85]
Reyes-Reyes, E.M.; Šalipur, F.R.; Shams, M.; Forsthoefel, M.K.; Bates, P.J. Mechanistic studies of anticancer aptamer AS1411 reveal a novel role for nucleolin in regulating Rac1 activation. Mol. Oncol., 2015, 9(7), 1392-1405.
[http://dx.doi.org/10.1016/j.molonc.2015.03.012] [PMID: 25911416]
[86]
a) Granton, J.; Langleben, D.; Kutryk, M.B.; Camack, N.; Galipeau, J.; Courtman, D.W.; Stewart, D.J. Endothelial NO-Synthase gene-enhanced progenitor cell therapy for pulmonary arterial hypertension: The PHACeT trial. Circ. Res., 2015, 117(7), 645-654.
[http://dx.doi.org/10.1161/CIRCRESAHA.114.305951] [PMID: 26195220]
(b) Berg, K.; Lange, T.; Mittelberger, F.; Schumacher, U.; Hahn, U. Selection and Characterization of an α6β4 Integrin blocking DNA Aptamer. Mol. Ther. Nucleic Acids, 2016, 5.
[http://dx.doi.org/10.1038/mtna.2016.10]
[87]
Farokhzad, O.C.; Jon, S.; Khademhosseini, A.; Tran, T-N.T.; Lavan, D.A.; Langer, R. Nanoparticle-aptamer bioconjugates: A new approach for targeting prostate cancer cells. Cancer Res., 2004, 64(21), 7668-7672.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-2550] [PMID: 15520166]
[88]
Dhar, S.; Gu, F.X.; Langer, R.; Farokhzad, O.C.; Lippard, S.J. Targeted delivery of cisplatin to prostate cancer cells by aptamer functionalized Pt (IV) prodrug-PLGA-PEG nanoparticles. Proceed. Natl. Acad. Sci., 2008, 105(45), 17356-17367.
[http://dx.doi.org/10.1073/pnas.0809154105]
[89]
Jemal, A.; Siegel, R.; Ward, E.; Hao, Y.; Xu, J.; Murray, T.; Thun, M. J. Cancer statistics, 2008. CA Cancer J. Clin., 2008, 58(2), 71-96.
[http://dx.doi.org/10.3322/CA.2007.0010] [PMID: 18287387]
[90]
Chu, T.C.; Marks, J.W., III; Lavery, L.A.; Faulkner, S.; Rosenblum, M.G.; Ellington, A.D.; Levy, M. Aptamer: Toxin conjugates that specifically target prostate tumor cells. Cancer Res., 2006, 66(12), 5989-5992.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-4583] [PMID: 16778167]
[91]
Kavosi, B.; Salimi, A.; Hallaj, R.; Moradi, F. Ultrasensitive electrochemical immunosensor for PSA biomarker detection in prostate cancer cells using gold nanoparticles/PAMAM dendrimer loaded with enzyme linked aptamer as integrated triple signal amplification strategy. Biosens. Bioelectron., 2015, 74, 915-923.
[http://dx.doi.org/10.1016/j.bios.2015.07.064] [PMID: 26257183]
[92]
Dharmasiri, U.; Balamurugan, S.; Adams, A.A.; Okagbare, P.I.; Obubuafo, A.; Soper, S.A. Highly efficient capture and enumeration of low abundance prostate cancer cells using prostate-specific membrane antigen aptamers immobilized to a polymeric microfluidic device. Electrophoresis, 2009, 30(18), 3289-3300.
[http://dx.doi.org/10.1002/elps.200900141] [PMID: 19722212]
[93]
Vrettos, E.I.; Mező, G.; Tzakos, A.G. On the design principles of peptide-drug conjugates for targeted drug delivery to the malignant tumor site. Beilstein J. Org. Chem., 2018, 14, 930-954.
[http://dx.doi.org/10.3762/bjoc.14.80] [PMID: 29765474]
[94]
Kanwar, R.K.; Kanwar, J.R. Immunomodulatory lactoferrin in the regulation of apoptosis modulatory proteins in cancer. Protein Pept. Lett., 2013, 20(4), 450-458.
[PMID: 23016584]
[95]
Shankaranarayanan, J.S.; Kanwar, J.R.; Al-Juhaishi, A.J.A.; Kanwar, R.K. Doxorubicin conjugated to immunomodulatory anticancer lactoferrin displays improved cytotoxicity overcoming prostate cancer chemo resistance and inhibits tumour development in TRAMP mice. Sci. Rep., 2016, 6, 32062.
[http://dx.doi.org/10.1038/srep32062] [PMID: 27576789]
[96]
Salaam, A.D.; Hwang, P.; McIntosh, R.; Green, H.N.; Jun, H-W.; Dean, D. Nanodiamond-DGEA peptide conjugates for enhanced delivery of doxorubicin to prostate cancer. Beilstein J. Nanotechnol., 2014, 5, 937-945.
[http://dx.doi.org/10.3762/bjnano.5.107] [PMID: 25161829]
[97]
Simpson, E.J.; Gobbo, P.; Bononi, F.C.; Murrell, E.; Workentin, M.S.; Luyt, L.G. Bombesin-functionalized water-soluble gold nanoparticles for targeting prostate cancer. J. Interdiscip. Nanomed., 2017, 2(4), 174-187.
[http://dx.doi.org/10.1002/jin2.33]
[98]
Tai, W.; Shukla, R.S.; Qin, B.; Li, B.; Cheng, K. Development of a peptide-drug conjugate for prostate cancer therapy. Mol. Pharm., 2011, 8(3), 901-912.
[http://dx.doi.org/10.1021/mp200007b] [PMID: 21510670]
[99]
Yeh, C-Y.; Hsiao, J-K.; Wang, Y-P.; Lan, C-H.; Wu, H-C. Peptide-conjugated nanoparticles for targeted imaging and therapy of prostate cancer. Biomaterials, 2016, 99, 1-15.
[http://dx.doi.org/10.1016/j.biomaterials.2016.05.015] [PMID: 27209258]
[100]
(a) Hai, T.; Wan, X.; Yu, D-G.; Wang, K.; Yang, Y.; Liu, Z-P. Electrospun lipid-coated medicated nanocomposites for an improved drug sustained-release profile. Mater. Des., 2019, 162, 70-79. http://10.1016/j.matdes.2018.11.036
b) Yu, D-G.; Zheng, X-L.; Yang, Y.; Li, X-Y.; Williams, G.R.; Zhao, M. Immediate release of helicid from nanoparticles produced by modified coaxial electrospraying. Appl. Surf. Sci., 2019, 473, 148-155.
[http://dx.doi.org/10.1016/j.apsusc.2018.12.147]
[101]
Kajdič, S.; Planinšek, O.; Gašperlin, M.; Kocbek, P. Electrospun nanofibers for customized drug-delivery systems. J. Drug Deliv. Sci. Technol., 2019, 9(4), 532.
[http://dx.doi.org/dx.doi.10.3390/nano9040532] [PMID: 30987129]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy