Self-assembling Rotavirus VP6 Nanoparticle Vaccines Expressed in Escherichia coli Elicit Systemic and Mucosal Responses in Mice

Author(s): Zhipeng Li, Kuiqing Cui, Kongwei Huang, Fuhang Liu, Deshun Shi*, Qingyou Liu*.

Journal Name: Protein & Peptide Letters

Volume 26 , Issue 12 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Rotavirus is the most common cause of infectious diarrhea in infants and young children around the world. The inner capsid protein VP6 has been discussed as alternative vaccine as it can induce cross-protective immune responses against different RV strai. The use of ferritin nanoparticle may enhance the immunogenicity of the subunit vaccine.

Objective: In this article, our motivation is to design and obtain a self-assemble rotavirus nanoparticle vaccine which can induce efficiency immune response.

Methods: The VP6 protein was fused with ferritin and expressed in the Escherichia coli expression system. The recombinant VP6-ferritin (rVP6-ferritin) protein was purified by His-tag affinity chromatography and fast protein liquid chromatography. Transmission electron micrographic analysis was used to detect the nanostructure of the self-assembled protein. Mice were gavage with the protein and ELISA was used to detect the titer of the VP6 specific antibody.

Results: The recombined VP6-ferritin was expressed in the Escherichia coli as an inclusion body form and the purified protein has similar antigenicity to rotavirus VP6. Transmission electron micrographic analysis of rVP6-ferritin exhibited spherical architecture with a uniform size distribution, which is similar to the ferritin nanocage. Immune response analysis showed that mice immunized by rVP6-ferritin protein induced 8000 (8000±1093) anti-VP6 IgG titers or 1152 (1152±248.8) anti-VP6 IgA titers.

Conclusion: According to the above research, the rotavirus VP6-ferritin protein can be easily express and self-assemble to the nano-vaccine and induce efficiency humoral and mucosal immunity. Our research makes a foundation for the development of oral rotavirus vaccine.

Keywords: Rotavirus VP6, nanoparticle vaccine, ferritin, Escherichia coli, purification, immune response.

[1]
World Health Organization. Rotavirus vaccines. WHO position paper – January 2013. Wkly. Epidemiol. Rec., 2013, 88(5), 49-64.
[PMID: 23424730]
[2]
Rotavirus vaccines WHO position paper: January 2013 - Recommendations. Vaccine, 2013, 31(52), 6170-6171.
[http://dx.doi.org/10.1016/j.vaccine.2013.05.037] [PMID: 23746456]
[3]
Badillo-Godinez, O.; Gutierrez-Xicotencatl, L.; Plett-Torres, T.; Pedroza-Saavedra, A.; Gonzalez-Jaimes, A.; Chihu-Amparan, L.; Maldonado-Gama, M.; Espino-Solis, G.; Bonifaz, L.C.; Esquivel-Guadarrama, F. Targeting of rotavirus VP6 to DEC-205 induces protection against the infection in mice. Vaccine, 2015, 33(35), 4228-4237.
[http://dx.doi.org/10.1016/j.vaccine.2015.03.080] [PMID: 25850020]
[4]
Karch, C.P.; Burkhard, P. Vaccine technologies: from whole organisms to rationally designed protein assemblies. Biochem. Pharmacol., 2016, 120, 1-14.
[http://dx.doi.org/10.1016/j.bcp.2016.05.001] [PMID: 27157411]
[5]
Lappalainen, S.; Pastor, A.R.; Malm, M.; López-Guerrero, V.; Esquivel-Guadarrama, F.; Palomares, L.A.; Vesikari, T.; Blazevic, V. Protection against live rotavirus challenge in mice induced by parenteral and mucosal delivery of VP6 subunit rotavirus vaccine. Arch. Virol., 2015, 160(8), 2075-2078.
[http://dx.doi.org/10.1007/s00705-015-2461-8] [PMID: 26016444]
[6]
Patel, M.; Glass, R.I.; Jiang, B.; Santosham, M.; Lopman, B.; Parashar, U. A systematic review of anti-rotavirus serum IgA antibody titer as a potential correlate of rotavirus vaccine efficacy. J. Infect. Dis., 2013, 208(2), 284-294.
[http://dx.doi.org/10.1093/infdis/jit166] [PMID: 23596320]
[7]
Cheuvart, B.; Neuzil, K.M.; Steele, A.D.; Cunliffe, N.; Madhi, S.A.; Karkada, N.; Han, H.H.; Vinals, C. Association of serum anti-rotavirus immunoglobulin A antibody seropositivity and protection against severe rotavirus gastroenteritis: analysis of clinical trials of human rotavirus vaccine. Hum. Vaccin. Immunother., 2014, 10(2), 505-511.
[http://dx.doi.org/10.4161/hv.27097] [PMID: 24240068]
[8]
Tang, B.; Gilbert, J.M.; Matsui, S.M.; Greenberg, H.B. Comparison of the rotavirus gene 6 from different species by sequence analysis and localization of subgroup-specific epitopes using site-directed mutagenesis. Virology, 1997, 237(1), 89-96.
[http://dx.doi.org/10.1006/viro.1997.8762] [PMID: 9344910]
[9]
Lappalainen, S.; Tamminen, K.; Vesikari, T.; Blazevic, V. Comparative immunogenicity in mice of rotavirus VP6 tubular structures and virus-like particles. Hum. Vaccin. Immunother., 2013, 9(9), 1991-2001.
[http://dx.doi.org/10.4161/hv.25249] [PMID: 23777748]
[10]
Svensson, L.; Sheshberadaran, H.; Vene, S.; Norrby, E.; Grandien, M.; Wadell, G. Serum antibody responses to individual viral polypeptides in human rotavirus infections. J. Gen. Virol., 1987, 68(Pt 3), 643-651.
[http://dx.doi.org/10.1099/0022-1317-68-3-643] [PMID: 3029295]
[11]
Choi, A.H.; McNeal, M.M.; Basu, M.; Flint, J.A.; Stone, S.C.; Clements, J.D.; Bean, J.A.; Poe, S.A.; VanCott, J.L.; Ward, R.L. Intranasal or oral immunization of inbred and outbred mice with murine or human rotavirus VP6 proteins protects against viral shedding after challenge with murine rotaviruses. Vaccine, 2002, 20(27-28), 3310-3321.
[http://dx.doi.org/10.1016/S0264-410X(02)00315-8] [PMID: 12213401]
[12]
Esquivel, F.R.; Lopez, S.; Guitierrez-X, L.; Arias, C. The internal rotavirus protein VP6 primes for an enhanced neutralizing antibody response. Arch. Virol., 2000, 145(4), 813-825.
[http://dx.doi.org/10.1007/s007050050674] [PMID: 10893159]
[13]
Burns, J.W.; Siadat-Pajouh, M.; Krishnaney, A.A.; Greenberg, H.B. Protective effect of rotavirus VP6-specific IgA monoclonal antibodies that lack neutralizing activity. Science, 1996, 272(5258), 104-107.
[http://dx.doi.org/10.1126/science.272.5258.104] [PMID: 8600516]
[14]
Plascencia-Villa, G.; Mena, J.A.; Castro-Acosta, R.M.; Fabián, J.C.; Ramírez, O.T.; Palomares, L.A. Strategies for the purification and characterization of protein scaffolds for the production of hybrid nanobiomaterials. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2011, 879(15-16), 1105-1111.
[http://dx.doi.org/10.1016/j.jchromb.2011.03.027] [PMID: 21474396]
[15]
Castro-Acosta, R.M.; Revilla, A.L.; Ramírez, O.T.; Palomares, L.A. Separation and quantification of double- and triple-layered rotavirus-like particles by CZE. Electrophoresis, 2010, 31(8), 1376-1381.
[http://dx.doi.org/10.1002/elps.200900558] [PMID: 20336682]
[16]
Palacios, C.A.; Claus, J.; Mattion, N. Rotavirus VP6 protein expressed in cell culture by HSV-1-based vectors. Rev. Argent. Microbiol., 2015, 47(1), 80-81.
[http://dx.doi.org/10.1016/j.ram.2014.10.002] [PMID: 25749527]
[17]
Yu, J.; Langridge, W. Expression of rotavirus capsid protein VP6 in transgenic potato and its oral immunogenicity in mice. Transgenic Res., 2003, 12(2), 163-169.
[http://dx.doi.org/10.1023/A:1022912130286] [PMID: 12739884]
[18]
Dong, J.L.; Liang, B.G.; Jin, Y.S.; Zhang, W.J.; Wang, T. Oral immunization with pBsVP6-transgenic alfalfa protects mice against rotavirus infection. Virology, 2005, 339(2), 153-163.
[http://dx.doi.org/10.1016/j.virol.2005.06.004] [PMID: 15992851]
[19]
, J.L.; Zhou, B.; Sheng, G.; Wang, T. Transgenic tobacco expressing a modified VP6 gene protects mice against rotavirus infection. J. Integr. Plant Biol., 2005, 47, 978-987.
[http://dx.doi.org/10.1111/j.1744-7909.2005.00145.x]
[20]
Feng, H.; Li, X.; Song, W.; Duan, M.; Chen, H.; Wang, T.; Dong, J. Oral administration of a seed-based bivalent rotavirus vaccine containing VP6 and NSP4 induces specific immune responses in mice. Front. Plant Sci., 2017, 8, 910.
[http://dx.doi.org/10.3389/fpls.2017.00910] [PMID: 28620404]
[21]
Moyle, P.M.; Toth, I. Modern subunit vaccines: development, components, and research opportunities. ChemMedChem, 2013, 8(3), 360-376.
[http://dx.doi.org/10.1002/cmdc.201200487] [PMID: 23316023]
[22]
Purcell, A.W.; McCluskey, J.; Rossjohn, J. More than one reason to rethink the use of peptides in vaccine design. Nat. Rev. Drug Discov., 2007, 6(5), 404-414.
[http://dx.doi.org/10.1038/nrd2224] [PMID: 17473845]
[23]
Lee, E.J.; Lee, N.K.; Kim, I.S. Bioengineered protein-based nanocage for drug delivery. Adv. Drug Deliv. Rev., , 2016, 106((Pt A)), 157-171.
[http://dx.doi.org/10.1016/j.addr.2016.03.002] [http://dx.doi.org/26994591]
[24]
Li, C.Q.; Soistman, E.; Carter, D.C. Ferritin nanoparticle technology. A new platform for antigen presentation and vaccine development. Ind. Biotechnol., 2006, 2, 143-147.
[http://dx.doi.org/10.1089/ind.2006.2.143]
[25]
Kanekiyo, M.; Wei, C.J.; Yassine, H.M.; McTamney, P.M.; Boyington, J.C.; Whittle, J.R.; Rao, S.S.; Kong, W.P.; Wang, L.; Nabel, G.J. Self-assembling influenza nanoparticle vaccines elicit broadly neutralizing H1N1 antibodies. Nature, 2013, 499(7456), 102-106.
[http://dx.doi.org/10.1038/nature12202] [PMID: 23698367]
[26]
Zheng, Z.; Yang, C.; Yin, R.; Jiang, J.; He, H.; Wang, X.; Kan, M.; Xiao, Y. Expression, purification and characterization of recombinant canine FGF21 in Escherichia coli. Protein Pept. Lett., 2016, 23(9), 785-789.
[http://dx.doi.org/10.2174/0929866523666160628091657] [PMID: 27364161]
[27]
Coligan, J.E.; Dunn, B.M.; Speicher, D.W. Short protocols in protein science; Science Press: Beijing, 2007.
[28]
Greenberg, H.B.; Estes, M.K. Rotaviruses: from pathogenesis to vaccination. Gastroenterology, 2009, 136(6), 1939-1951.
[http://dx.doi.org/10.1053/j.gastro.2009.02.076] [PMID: 19457420]
[29]
Choi, A.H.; Smiley, K.; Basu, M. Induction of immune responses and partial protection in mice after skin immunization with rotavirus VP6 protein and the adjuvant LT(R192G). Vaccine, 2005, 23(17-18), 2290-2293.
[http://dx.doi.org/10.1016/j.vaccine.2005.01.028] [PMID: 15755613]
[30]
Houdebine, L.M. Production of pharmaceutical proteins by transgenic animals. Comp. Immunol. Microbiol. Infect. Dis., 2009, 32(2), 107-121.
[http://dx.doi.org/10.1016/j.cimid.2007.11.005] [PMID: 18243312]
[31]
He, D.; Marles-Wright, J. Ferritin family proteins and their use in bionanotechnology. N. Biotechnol., 2015, 32(6), 651-657.
[http://dx.doi.org/10.1016/j.nbt.2014.12.006] [PMID: 25573765]
[32]
Soler, E.; Le Saux, A.; Guinut, F.; Passet, B.; Cohen, R.; Merle, C.; Charpilienne, A.; Fourgeux, C.; Sorel, V.; Piriou, A.; Schwartz-Cornil, I.; Cohen, J.; Houdebine, L.M. Production of two vaccinating recombinant rotavirus proteins in the milk of transgenic rabbits. Transgenic Res., 2005, 14(6), 833-844.
[http://dx.doi.org/10.1007/s11248-005-1771-0] [PMID: 16315090]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 26
ISSUE: 12
Year: 2019
Page: [904 - 909]
Pages: 6
DOI: 10.2174/0929866526666190820161328
Price: $65

Article Metrics

PDF: 17
HTML: 2
EPUB: 1
PRC: 1