Commentary on “Current Challenges in the Development of Vaccines and Drugs Against Emerging Vector-borne Diseases” by Professor Kwang-sun Kim, Pusan National University, Republic of Korea

Author(s): John F. Honek* .

Journal Name: Current Medicinal Chemistry

Volume 26 , Issue 17 , 2019

[1]
Forum on Microbial Threats; Board on Global Health; Health; Medicine, D.; National Academies of Sciences, E.; Medicine. In global health impacts of vector-borne diseases: Workshop Summary; National Academies Press (US): Washington (DC). , 2016.
[http://dx.doi.org/10.17226/21792]
[2]
(WHO), W.H.O. Vector-borne diseases; Geneva 2016.Available at. http://www.who.int/en/news-room/fact-sheets/detail/vector-borne-diseases
[3]
Hotez, P.J. The rise of neglected tropical diseases in the “new Texas”. PLoS Negl. Trop. Dis., 2018, 12(1), e0005581.
[http://dx.doi.org/10.1371/journal.pntd.0005581] [PMID: 29346369]
[4]
Mayer, S.V.; Tesh, R.B.; Vasilakis, N. The emergence of arthropod-borne viral diseases: A global prospective on dengue, chikungunya and zika fevers. Acta Trop., 2017, 166, 155-163.
[http://dx.doi.org/10.1016/j.actatropica.2016.11.020] [PMID: 27876643]
[5]
Tesla, B.; Demakovsky, L.R.; Mordecai, E.A.; Ryan, S.J.; Bonds, M.H.; Ngonghala, C.N.; Brindley, M.A.; Murdock, C.C. Temperature drives Zika virus transmission: evidence from empirical and mathematical models. Proc. Roy. Soc. B: Biol. Sci., 2018, 285(1884), 20180795.
[http://dx.doi.org/10.1098/rspb.2018.0795]
[6]
Caminade, C.; McIntyre, K.M.; Jones, A.E. Impact of recent and future climate change on vector-borne diseases. Ann. N. Y. Acad. Sci., 2019, 1436, 157-173.
[http://dx.doi.org/10.1111/nyas.13950] [PMID: 30120891]
[7]
Liu, Z.; Zhang, Z.; Lai, Z.; Zhou, T.; Jia, Z.; Gu, J.; Wu, K.; Chen, X.G. Temperature increase enhances Aedes albopictus competence to transmit dengue virus. Front. Microbiol., 2017, 8, 2337.
[http://dx.doi.org/10.3389/fmicb.2017.02337] [PMID: 29250045]
[8]
Thomson, M.C.; Muñoz, A.G.; Cousin, R.; Shumake-Guillemot, J. Climate drivers of vector-borne diseases in Africa and their relevance to control programmes. Infect. Dis. Poverty, 2018, 7(1), 81.
[http://dx.doi.org/10.1186/s40249-018-0460-1] [PMID: 30092816]
[9]
Brand, S.P.; Keeling, M.J. The impact of temperature changes on vector-borne disease transmission: Culicoides midges and bluetongue virus. J. R. Soc. Interface, 2017, 14(128), 20160481.
[http://dx.doi.org/10.1098/rsif.2016.0481] [PMID: 28298609]
[10]
Ogden, N.H.; Lindsay, L.R. Effects of climate and climate change on vectors and vector-borne diseases: Ticks are different. Trends Parasitol., 2016, 32(8), 646-656.
[http://dx.doi.org/10.1016/j.pt.2016.04.015] [PMID: 27260548]
[11]
Ridley, D.B.; Moe, J.L.; Hamon, N. A voucher system to speed review could promote a new generation of insecticides to fight vector-borne diseases. Health Aff. (Millwood), 2017, 36(8), 1461-1468.
[http://dx.doi.org/10.1377/hlthaff.2016.1640] [PMID: 28784739]
[12]
Rosenberg, R.; Lindsey, N.P.; Fischer, M.; Gregory, C.J.; Hinckley, A.F.; Mead, P.S.; Paz-Bailey, G.; Waterman, S.H.; Drexler, N.A.; Kersh, G.J.; Hooks, H.; Partridge, S.K.; Visser, S.N.; Beard, C.B.; Petersen, L.R. Vital signs: trends in reported vectorborne disease cases - United States and territories, 2004-2016. MMWR Morb. Mortal. Wkly. Rep., 2018, 67(17), 496-501.
[http://dx.doi.org/10.15585/mmwr.mm6717e1] [PMID: 29723166]
[13]
Kim, K-S. Current challenges in the development of vaccines and drugs against emerging vector-borne diseases. Curr. Med. Chem., 2019, 26(16), 2974-2986.
[http://dx.doi.org/ 10.2174/0929867325666181105121146] [PMID: 30394204]
[14]
Akhoundi, M.; Downing, T.; Votýpka, J.; Kuhls, K.; Lukeš, J.; Cannet, A.; Ravel, C.; Marty, P.; Delaunay, P.; Kasbari, M.; Granouillac, B.; Gradoni, L.; Sereno, D. Leishmania infections: Molecular targets and diagnosis. Mol. Aspects Med., 2017, 57, 1-29.
[http://dx.doi.org/10.1016/j.mam.2016.11.012] [PMID: 28159546]
[15]
Donald, W.; Pasay, C.; Guintran, J.O.; Iata, H.; Anderson, K.; Nausien, J.; Gresty, K.J.; Waters, N.C.; Vestergaard, L.S.; Taleo, G.; Cheng, Q. The utility of malaria rapid diagnostic tests as a tool in enhanced surveillance for malaria elimination in vanuatu. PLoS One, 2016, 11(11), e0167136.
[http://dx.doi.org/10.1371/journal.pone.0167136] [PMID: 27902755]
[16]
Fournet, F.; Jourdain, F.; Bonnet, E.; Degroote, S.; Ridde, V. Effective surveillance systems for vector-borne diseases in urban settings and translation of the data into action: a scoping review. Infect. Dis. Poverty, 2018, 7(1), 99.
[http://dx.doi.org/10.1186/s40249-018-0473-9] [PMID: 30217142]
[17]
Fitzpatrick, C.; Haines, A.; Bangert, M.; Farlow, A.; Hemingway, J.; Velayudhan, R. An economic evaluation of vector control in the age of a dengue vaccine. PLoS Negl. Trop. Dis., 2017, 11(8), e0005785.
[http://dx.doi.org/10.1371/journal.pntd.0005785] [PMID: 28806786]
[18]
Unlu, I.; Faraji, A.; Williams, G.M.; Marcombe, S.; Fonseca, D.M.; Gaugler, R. Truck-mounted areawide applications of larvicides and adulticides for extended suppression of adult Aedes albopictus. Pest Manag. Sci., 2019, 75, 1115-1122.
[http://dx.doi.org/10.1002/ps.5227] [PMID: 30280488]
[19]
Osorio, L.; Garcia, J.A.; Parra, L.G.; Garcia, V.; Torres, L.; Degroote, S.; Ridde, V. A scoping review on the field validation and implementation of rapid diagnostic tests for vector-borne and other infectious diseases of poverty in urban areas. Infect. Dis. Poverty, 2018, 7(1), 87.
[http://dx.doi.org/10.1186/s40249-018-0474-8] [PMID: 30173662]
[20]
Zumaya-Estrada, F.A.; Rodríguez, M.C.; Rodríguez, M.H. Pathogen-insect interaction candidate molecules for transmission-blocking control strategies of vector borne diseases. Salud Publica Mex., 2018, 60(1), 77-85.
[http://dx.doi.org/10.21149/8140] [PMID: 29689660]
[21]
Schorderet-Weber, S.; Noack, S.; Selzer, P.M.; Kaminsky, R. Blocking transmission of vector-borne diseases. Int. J. Parasitol. Drugs Drug Resist., 2017, 7(1), 90-109.
[http://dx.doi.org/10.1016/j.ijpddr.2017.01.004] [PMID: 28189117]
[22]
Murfin, K.E.; Fikrig, E. Tick bioactive molecules as novel therapeutics: beyond vaccine targets. Front. Cell. Infect. Microbiol., 2017, 7, 222.
[http://dx.doi.org/10.3389/fcimb.2017.00222] [PMID: 28634573]
[23]
Marimuthu, P.; Ravinder, J.R. Trends in clinical trials of dengue vaccine. Perspect. Clin. Res., 2016, 7(4), 161-164.
[http://dx.doi.org/10.4103/2229-3485.192035] [PMID: 27843790]
[24]
Graham, B.S.; Sullivan, N.J. Emerging viral diseases from a vaccinology perspective: preparing for the next pandemic. Nat. Immunol., 2018, 19(1), 20-28.
[http://dx.doi.org/10.1038/s41590-017-0007-9] [PMID: 29199281]
[25]
Ramasamy, V.; Arora, U.; Shukla, R.; Poddar, A.; Shanmugam, R.K.; White, L.J.; Mattocks, M.M.; Raut, R.; Perween, A.; Tyagi, P.; de Silva, A.M.; Bhaumik, S.K.; Kaja, M.K.; Villinger, F.; Ahmed, R.; Johnston, R.E.; Swaminathan, S.; Khanna, N. A tetravalent virus-like particle vaccine designed to display domain III of dengue envelope proteins induces multi-serotype neutralizing antibodies in mice and macaques which confer protection against antibody dependent enhancement in AG129 mice. PLoS Negl. Trop. Dis., 2018, 12(1), e0006191.
[http://dx.doi.org/10.1371/journal.pntd.0006191] [PMID: 29309412]
[26]
Abbink, P.; Stephenson, K.E.; Barouch, D.H. Zika virus vaccines. Nat. Rev. Microbiol., 2018, 16(10), 594-600.
[http://dx.doi.org/10.1038/s41579-018-0039-7] [PMID: 29921914]
[27]
Wilder-Smith, A.; Vannice, K.; Durbin, A.; Hombach, J.; Thomas, S.J.; Thevarjan, I.; Simmons, C.P. Zika vaccines and therapeutics: landscape analysis and challenges ahead. BMC Med., 2018, 16(1), 84.
[http://dx.doi.org/10.1186/s12916-018-1067-x] [PMID: 29871628]
[28]
Wardemann, H.; Murugan, R. From human antibody structure and function towards the design of a novel Plasmodium falciparum circumsporozoite protein malaria vaccine. Curr. Opin. Immunol., 2018, 53, 119-123.
[http://dx.doi.org/10.1016/j.coi.2018.04.023] [PMID: 29751213]
[29]
Coelho, C.H.; Doritchamou, J.Y.A.; Zaidi, I.; Duffy, P.E. Advances in malaria vaccine development: report from the 2017 malaria vaccine symposium. NPJ Vaccines, 2017, 2, 34.
[http://dx.doi.org/10.1038/s41541-017-0035-3] [PMID: 29522056]
[30]
Schwameis, M.; Buchtele, N.; Wadowski, P.P.; Schoergenhofer, C.; Jilma, B. Chikungunya vaccines in development. Hum. Vaccin. Immunother., 2016, 12(3), 716-731.
[http://dx.doi.org/10.1080/21645515.2015.1101197] [PMID: 26554522]
[31]
Ratto-Kim, S.; Yoon, I.K.; Paris, R.M.; Excler, J.L.; Kim, J.H.; O’Connell, R.J. The US military commitment to vaccine development: a century of successes and challenges. Front. Immunol., 2018, 9, 1397.
[http://dx.doi.org/10.3389/fimmu.2018.01397] [PMID: 29977239]
[32]
Juraska, M.; Magaret, C.A.; Shao, J.; Carpp, L.N.; Fiore-Gartland, A.J.; Benkeser, D.; Girerd-Chambaz, Y.; Langevin, E.; Frago, C.; Guy, B.; Jackson, N.; Duong Thi Hue, K.; Simmons, C.P.; Edlefsen, P.T.; Gilbert, P.B. Viral genetic diversity and protective efficacy of a tetravalent dengue vaccine in two phase 3 trials. Proc. Natl. Acad. Sci. USA, 2018, 115(36), E8378-E8387.
[http://dx.doi.org/10.1073/pnas.1714250115] [PMID: 30127007]
[33]
Goo, L.; Debbink, K.; Kose, N.; Sapparapu, G.; Doyle, M.P.; Wessel, A.W.; Richner, J.M.; Burgomaster, K.E.; Larman, B.C.; Dowd, K.A.; Diamond, M.S.; Crowe, J.E., Jr; Pierson, T.C. A protective human monoclonal antibody targeting the West Nile virus E protein preferentially recognizes mature virions. Nat. Microbiol., 2019, 4, 71-77.
[http://dx.doi.org/10.1038/s41564-018-0283-7] [PMID: 30455471]
[34]
Shankar, A.; Patil, A.A.; Skariyachan, S. Recent perspectives on genome, transmission, clinical manifestation, diagnosis, therapeutic strategies, vaccine developments, and challenges of zika virus research. Front. Microbiol., 2017, 8, 1761.
[http://dx.doi.org/10.3389/fmicb.2017.01761] [PMID: 28959246]
[35]
Grabowski, J.M.; Hill, C.A. A roadmap for tick-borne flavivirus research in the “Omics” era. Front. Cell. Infect. Microbiol., 2017, 7, 519.
[http://dx.doi.org/10.3389/fcimb.2017.00519] [PMID: 29312896]
[36]
Mottin, M.; Borba, J.V.V.B.; Braga, R.C.; Torres, P.H.M.; Martini, M.C.; Proenca-Modena, J.L.; Judice, C.C.; Costa, F.T.M.; Ekins, S.; Perryman, A.L.; Horta Andrade, C. The A-Z of Zika drug discovery. Drug Discov. Today, 2018, 23(11), 1833-1847.
[http://dx.doi.org/10.1016/j.drudis.2018.06.014] [PMID: 29935345]
[37]
Norcliffe, J.L.; Mina, J.G.; Alvarez, E.; Cantizani, J.; de Dios-Anton, F.; Colmenarejo, G.; Valle, S.G.; Marco, M.; Fiandor, J.M.; Martin, J.J.; Steel, P.G.; Denny, P.W. Identifying inhibitors of the Leishmania inositol phosphorylceramide synthase with antiprotozoal activity using a yeast-based assay and ultra-high throughput screening platform. Sci. Rep., 2018, 8(1), 3938.
[http://dx.doi.org/10.1038/s41598-018-22063-9] [PMID: 29500420]
[38]
Jain, J.; Kumari, A.; Somvanshi, P.; Grover, A.; Pai, S.; Sunil, S. In silico analysis of natural compounds targeting structural and nonstructural proteins of chikungunya virus. F1000 Res., 2017, 6, 1601.
[http://dx.doi.org/10.12688/f1000research.12301.1] [PMID: 29333236]
[39]
Zulfiqar, B.; Jones, A.J.; Sykes, M.L.; Shelper, T.B.; Davis, R.A.; Avery, V.M. Screening a natural product-based library against kinetoplastid parasites. Molecules, 2017, 22(10), 1715.
[http://dx.doi.org/10.3390/molecules22101715] [PMID: 29023425]
[40]
Tchokouaha Yamthe, L.R.; Appiah-Opong, R.; Tsouh Fokou, P.V.; Tsabang, N.; Fekam Boyom, F.; Nyarko, A.K.; Wilson, M.D. Marine algae as source of novel antileishmanial drugs: A review. Mar. Drugs, 2017, 15(11), 323.
[http://dx.doi.org/10.3390/md15110323] [PMID: 29109372]
[41]
Orlov, A.A.; Drenichev, M.S.; Oslovsky, V.E.; Kurochkin, N.N.; Solyev, P.N.; Kozlovskaya, L.I.; Palyulin, V.A.; Karganova, G.G.; Mikhailov, S.N.; Osolodkin, D.I. New tools in nucleoside toolbox of tick-borne encephalitis virus reproduction inhibitors. Bioorg. Med. Chem. Lett., 2017, 27(5), 1267-1273.
[http://dx.doi.org/10.1016/j.bmcl.2017.01.040] [PMID: 28159412]
[42]
Eyer, L.; Zouharová, D.; Širmarová, J.; Fojtíková, M.; Štefánik, M.; Haviernik, J.; Nencka, R.; de Clercq, E.; Růžek, D. Antiviral activity of the adenosine analogue BCX4430 against West Nile virus and tick-borne flaviviruses. Antiviral Res., 2017, 142, 63-67.
[http://dx.doi.org/10.1016/j.antiviral.2017.03.012] [PMID: 28336346]
[43]
Devillers, J. Repurposing drugs for use against Zika virus infection. SAR QSAR Environ. Res., 2018, 29(2), 103-115.
[http://dx.doi.org/10.1080/1062936X.2017.1411642] [PMID: 29299939]
[44]
Chen, Y.; Murillo-Solano, C.; Kirkpatrick, M.G.; Antoshchenko, T.; Park, H.W.; Pizarro, J.C. Repurposing drugs to target the malaria parasite unfolding protein response. Sci. Rep., 2018, 8(1), 10333.
[http://dx.doi.org/10.1038/s41598-018-28608-2] [PMID: 29985421]
[45]
Charlton, R.L.; Rossi-Bergmann, B.; Denny, P.W.; Steel, P.G. Repurposing as a strategy for the discovery of new anti-leishmanials: the-state-of-the-art. Parasitology, 2018, 145(2), 219-236.
[http://dx.doi.org/10.1017/S0031182017000993] [PMID: 28805165]
[46]
Xu, M.; Lee, E.M.; Wen, Z.; Cheng, Y.; Huang, W.K.; Qian, X.; Tcw, J.; Kouznetsova, J.; Ogden, S.C.; Hammack, C.; Jacob, F.; Nguyen, H.N.; Itkin, M.; Hanna, C.; Shinn, P.; Allen, C.; Michael, S.G.; Simeonov, A.; Huang, W.; Christian, K.M.; Goate, A.; Brennand, K.J.; Huang, R.; Xia, M.; Ming, G.L.; Zheng, W.; Song, H.; Tang, H. Identification of small-molecule inhibitors of Zika virus infection and induced neural cell death via a drug repurposing screen. Nat. Med., 2016, 22(10), 1101-1107.
[http://dx.doi.org/10.1038/nm.4184] [PMID: 27571349]
[47]
Baker, N.C.; Ekins, S.; Williams, A.J.; Tropsha, A. A bibliometric review of drug repurposing. Drug Discov. Today, 2018, 23(3), 661-672.
[http://dx.doi.org/10.1016/j.drudis.2018.01.018] [PMID: 29330123]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 26
ISSUE: 17
Year: 2019
Page: [3201 - 3204]
Pages: 4
DOI: 10.2174/092986732617190820145226

Article Metrics

PDF: 10
HTML: 2