Comprehension of the α-Arylation of Nitroalkanes

Author(s): Peng-Fei Zheng, Yang An, Zuo-Yi Jiao*, Zhou-Bao Shi, Fu-Min Zhang*.

Journal Name: Current Organic Chemistry

Volume 23 , Issue 14 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: α-Aryl substituted nitroalkanes are important synthetic intermediates for the preparation of pharmaceutical molecules, natural products, and functional materials. Due to their scare existence in Nature, synthesis of these compounds has attracted the attention of synthetic and medicinal chemists, rendering α-arylation of nitroalkanes of an important research topic. This article summarizes the important advances of α- arylation of nitroalkanes since 1963.

Results: After a brief introduction of the synthetic application and the reactions of nitroalkanes, this article reviewed the synthetic methods for the α-arylated aliphatic nitro compound. The amount of research on α-arylation of nitroalkanes using various arylation reagents and the discovery of elegant synthetic approaches towards such skeleton have been discussed. This review described these advances in two sections. One is the arylation of non-activated nitroalkanes, with an emphasis on the application of diverse arylation reagents; the other focuses on the arylation of activated nitroalkanes, including dinitroalkanes, trinitroalkanes, α-nitrosulfones, α-nitroesters, α-nitrotoluenes, and α-nitroketones. The synthetic application of these methods has also been presented in some cases.

Conclusion: In this review, we described the progress of α-arylation of nitroalkanes. Although the immense amount of research on α-arylation of aliphatic nitro compounds has been achieved, many potential issues still need to be addressed, especially the asymmetric transformation and its wide application in organic synthesis.

Keywords: Comprehension, nitroalkane, α-arylation, synthesis, advance, asymmetric.

[1]
Ding, X-B.; Furkert, D.P.; Brimble, M.A. General synthesis of the nitropyrrolin family of natural products via regioselective CO2-mediated alkyne hydration. Org. Lett., 2017, 19(19), 5418-5421.
[http://dx.doi.org/10.1021/acs.orglett.7b02687] [PMID: 28898092]
[2]
Parry, R.; Nishino, S.; Spain, J. Naturally-occurring nitro compounds. Nat. Prod. Rep., 2011, 28(1), 152-167.
[http://dx.doi.org/10.1039/C0NP00024H] [PMID: 21127810]
[3]
Winkler, R.; Hertweck, C. Biosynthesis of nitro compounds. ChemBioChem, 2007, 8(9), 973-977.
[http://dx.doi.org/10.1002/cbic.200700042] [PMID: 17477464]
[4]
Nepali, K.; Lee, H-Y.; Liou, J-P. Nitro-group-containing drugs. J. Med. Chem., 2019, 62(6), 2851-2893.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00147] [PMID: 30295477]
[5]
Wilkinson, S.R.; Bot, C.; Kelly, J.M.; Hall, B.S. Trypanocidal activity of nitroaromatic prodrugs: Current treatments and future perspectives. Curr. Top. Med. Chem., 2011, 11(16), 2072-2084.
[http://dx.doi.org/10.2174/156802611796575894] [PMID: 21619510]
[6]
Boelsterli, U.A.; Ho, H.K.; Zhou, S.; Leow, K.Y. Bioactivation and hepatotoxicity of nitroaromatic drugs. Curr. Drug Metab., 2006, 7(7), 715-727.
[http://dx.doi.org/10.2174/138920006778520606] [PMID: 17073576]
[7]
Chyan, M-K.; Norton, S.J. Synthesis and biological evaluation of new pyrethroids having halogen, keto, or nitro group-containing substituents. J. Agric. Food Chem., 1995, 43, 2286-2290.
[http://dx.doi.org/10.1021/jf00056a060]
[8]
Bai, D.; Lummis, S.C.R.; Leicht, W.; Breer, H.; Sattelle, D.B. Actions of imidacloprid and a related nitromethylene on cholinergic receptors of an identified insect motor neurone. Pestic. Sci., 1991, 33, 197-204.
[http://dx.doi.org/10.1002/ps.2780330208]
[9]
Didukh, N.O.; Yakubovskyi, V.P.; Zatsikha, Y.V.; Nemykin, V.N.; Kovtun, Y.P. meso-nitromethyl-substituted BODIPYs – a new type of water switchable fluorogenic dyes useful for further core modifications. Dyes Pigm., 2018, 149, 774-782.
[http://dx.doi.org/10.1016/j.dyepig.2017.11.037]
[10]
Pomogaev, V.A.; Barachevsky, V.A.; Tuktarov, A.R.; Avramov, P.V.; Artyukhov, V.Y. Inheritance of photochromic properties of nitro-substituted and halogenated spiropyrans containing the pyrrolidino[60]fullerene. J. Phys. Chem. A, 2018, 122(2), 505-515.
[http://dx.doi.org/10.1021/acs.jpca.7b08374] [PMID: 29257862]
[11]
Zhang, M-X.; Eaton, P.E.; Gilardi, R. Hepta- and octanitrocubanes. Angew. Chem. Int. Ed. Engl., 2000, 39(2), 401-404.
[http://dx.doi.org/10.1002/(SICI)1521-3773(20000117)39:2<401:AID-ANIE401>3.0.CO;2-P] [PMID: 10649425]
[12]
Yan, C.; Qi, X.; Wang, K.; Jin, Y.; Cheng, G.; Liu, T.; Yang, H.; Zhang, Q. Revisiting the reactive chemistry of FOX-7: cyclization of FOX-7 affords the fused-ring polynitro compounds. Chem. Commun. (Camb.), 2019, 55(24), 3497-3500.
[http://dx.doi.org/10.1039/C8CC10178G] [PMID: 30834905]
[13]
Yang, J.; Gong, X.; Mei, H.; Li, T.; Zhang, J.; Gozin, M. Design of zero oxygen balance energetic materials on the basis of diels-alder chemistry. J. Org. Chem., 2018, 83(23), 14698-14702.
[http://dx.doi.org/10.1021/acs.joc.8b02000] [PMID: 30388371]
[14]
Liu, X.; Su, Z.; Ji, W.; Chen, S.; Wei, Q.; Xie, G.; Yang, X.; Gao, S. Structure, physicochemical properties, and density functional theory calculation of high-energy-density materials constructed with intermolecular interaction: nitro group charge determines sensitivity. J. Phys. Chem. C, 2014, 118, 23487-23498.
[http://dx.doi.org/10.1021/jp5062418]
[15]
Thottempudi, V.; Gao, H.; Shreeve, J.M. Trinitromethyl-substituted 5-nitro- or 3-azo-1,2,4-triazoles: Synthesis, characterization, and energetic properties. J. Am. Chem. Soc., 2011, 133(16), 6464-6471.
[http://dx.doi.org/10.1021/ja2013455] [PMID: 21449560]
[16]
Hager, A.; Vrielink, N.; Hager, D.; Lefranc, J.; Trauner, D. Synthetic approaches towards alkaloids bearing α-tertiary amines. Nat. Prod. Rep., 2016, 33(3), 491-522.
[http://dx.doi.org/10.1039/C5NP00096C] [PMID: 26621771]
[17]
Li, C.; Deng, H.; Li, C.; Jia, X.; Li, J. Palladium-catalyzed synthesis of δ(2)-isoxazoline from toluene derivatives enabled by the triple role of silver nitrate. Org. Lett., 2015, 17(22), 5718-5721.
[http://dx.doi.org/10.1021/acs.orglett.5b03059] [PMID: 26555344]
[18]
Volkova, Y.A.; Averina, E.B.; Vasilenko, D.A.; Sedenkova, K.N.; Grishin, Y.K.; Bruheim, P.; Kuznetsova, T.S.; Zefirov, N.S. Unexpected heterocyclization of electrophilic alkenes by tetranitromethane in the presence of triethylamine. synthesis of 5-nitroisoxazoles. J. Org. Chem., 2019, 84(6), 3192-3200.
[http://dx.doi.org/10.1021/acs.joc.8b03086] [PMID: 30726081]
[19]
Orlandi, M.; Brenna, D.; Harms, R.; Jost, S.; Benaglia, M. recent developments in the reduction of aromatic and aliphatic nitro compounds to amines. Org. Process Res. Dev., 2018, 22, 430-445.
[http://dx.doi.org/10.1021/acs.oprd.6b00205]
[20]
Armarego, W.L.F. Purification of Laboratory Chemicals; Elesiver, 2017.
[21]
Lu, S-C.; Li, H-S.; Gong, Y-L.; Zhang, S-P.; Zhang, J-G.; Xu, S. Combination of PhI(OAc)2 and 2-nitropropane as the source of methyl radical in room-temperature metal-free oxidative decarboxylation/cyclization: construction of 6-methyl phenanthridines and 1-methyl isoquinolines. J. Org. Chem., 2018, 83(24), 15415-15425.
[http://dx.doi.org/10.1021/acs.joc.8b02701] [PMID: 30463409]
[22]
Mudithanapelli, C.; Dhorma, L.P.; Kim, M-H. PIFA-promoted, solvent-controlled selective functionalization of C(sp2)-H or C(sp3)-H: Nitration via C-N bond cleavage of CH3NO2, cyanation, or oxygenation in water. Org. Lett., 2019, 21(9), 3098-3102.
[http://dx.doi.org/10.1021/acs.orglett.9b00751] [PMID: 30986072]
[23]
Horakova, E.; Valtr, J.; Dostalova, K.; Drabina, P.; Vaňa, J.; Růžička, A.; Hanusek, J. A kinetic study of the intramolecular nitroaldol (Henry) reaction giving 2-nitroindan-1-ols. ChemistrySelect, 2019, 4, 3973-3979.
[http://dx.doi.org/10.1002/slct.201900481]
[24]
Li, P.; Sun, D.W.; Jiang, M.; Liu, J.T. Asymmetric aza-Henry reaction of fluoromethylated imines catalyzed by cinchona-derived bifunctional thiourea. Tetrahedron, 2019, 75, 603-607.
[http://dx.doi.org/10.1016/j.tet.2018.12.055]
[25]
Messire, G.; Massicot, F.; Vallée, A.; Vasse, J.L.; Behr, J.B. Aza-Henry reaction with nitrones, an under-explored transformation. Eur. J. Org. Chem., 2019, 7, 1659-1668.
[http://dx.doi.org/10.1002/ejoc.201801823]
[26]
Liu, S.; Gao, W.C.; Miao, Y.H.; Wang, M.C. Dinuclear Zinc-AzePhenol catalyzed asymmetric aza-henry reaction of N-Boc imines and nitroalkanes under ambient conditions. J. Org. Chem., 2019, 84(5), 2652-2659.
[http://dx.doi.org/10.1021/acs.joc.8b02943] [PMID: 30707574]
[27]
Wang, J.D.; Liu, Y.; Liu, Y.X.; Wei, Z.L.; Cao, J.G.; Liang, D.P.; Lin, Y.J.; Duan, H.F. L-tert-Leucine derived urea-ammonium salts: Efficient bifunctional phase transfer catalysts for highly diastereo and enantioselective aza-Henry reaction of isatinderived N-Boc ketimines with α-aryl nitromethanes. Tetrahedron, 2019, 75, 2883-2892.
[http://dx.doi.org/10.1016/j.tet.2019.04.015]
[28]
Liu, W-X.; Chen, S-K.; Tian, J-M.; Tu, Y-Q.; Wang, S-H.; Zhang, F-M. A triazole organocatalyst with spiropyrrolidine framework and its application to the catalytic asymmetric addition of nitromethane to α,β-unsaturated aldehydes. Adv. Synth. Catal., 2015, 357, 3831-3835.
[http://dx.doi.org/10.1002/adsc.201500582]
[29]
Lurrio, F.A. The Henry reaction: recent examples. Tetrahedron, 2001, 57, 915-945.
[http://dx.doi.org/10.1016/S0040-4020(00)00965-0]
[30]
Ignatiuka, Ż.A.; Janickib, M.J.; Górab, R.W.; Koniecznyc, K.; Kowalczyka, R. Applications of thermal activation, ball-milling and aqueous medium in stereoselective michael addition of nitromethane to enynones catalyzed by chiral squaramides. Adv. Synth. Catal., 2019, 361, 1108-1116.
[http://dx.doi.org/10.1002/adsc.201801498]
[31]
Bao, L.; Liu, J.L.; Xu, L.; Hu, Z.Y.; Xu, X.X. Divergent synthesis of quinoline derivatives via [5+1] annulation of 2-isocyanochalcones with nitroalkanes. Adv. Synth. Catal., 2018, 360, 1870-1875.
[http://dx.doi.org/10.1002/adsc.201800152]
[32]
Cholewiak, A.; Adamczyk, K.; Kopyt, M.; Kasztelan, A.; Kwiatkowski, P. High pressure-assisted low-loading asymmetric organocatalytic conjugate addition of nitroalkanes to chalcones. Org. Biomol. Chem., 2018, 16(23), 4365-4371.
[http://dx.doi.org/10.1039/C8OB00561C] [PMID: 29850721]
[33]
Tan, Y.; Harms, K.; Meggers, E. A chiral-at-metal iridium catalyst with two simple but sterically demanding cyclometalated n-heterocyclic carbene ligands. Eur. J. Org. Chem., 2018, 22, 2500-2504.
[http://dx.doi.org/10.1002/ejic.201800450]
[34]
Weng, J.; Li, J.M.; Li, F.Q.; Xie, Z.S.; Lua, G. Asymmetric domino nitro-michael/horner–wadsworth–emmons reaction for disubstituted cyclohexene- carboxylate annulation: efficient synthesis of dipeptidyl peptidase IV inhibitor ABT-341 and influenza neuraminidase inhibitor. Adv. Synth. Catal., 2012, 354, 1961-1967.
[http://dx.doi.org/10.1002/adsc.201200093]
[35]
Ihara, M.; Fukumoto, K. Syntheses of polycyclic natural products employing the intramolecular double michael reaction. Angew. Chem. Int. Ed. Engl., 1993, 32, 1010-1022.
[http://dx.doi.org/10.1002/anie.199310101]
[36]
Katsuta, R.; Ichijo, H.; Oouchi, G.; Yajima, A.; Ishigami, K.; Nukada, T. Nitro-Mannich reaction and intramolecular 1,3-dipolar cycloaddition route to acylpyrrolidinones: Synthesis of a tetramic acid and (+)-laccarin. Tetrahedron Lett., 2018, 59, 2352-2355.
[http://dx.doi.org/10.1016/j.tetlet.2018.05.014]
[37]
Liu, Y.; Wang, J.; Wei, Z.; Cao, J.; Liang, D.; Lin, Y.; Duan, H. Diastereo- and enantioselective nitro-Mannich reaction of isatin-derived N-Boc ketimines catalyzed by chiral phase-transfer catalysts. N J. Chem., 2018, 42, 1608-1611.
[http://dx.doi.org/10.1039/C7NJ04527A]
[38]
Dudek, A.; Mlynarski, J. Iron-catalyzed asymmetric nitro-mannich reaction. J. Org. Chem., 2017, 82(20), 11218-11224.
[http://dx.doi.org/10.1021/acs.joc.7b01786] [PMID: 28968086]
[39]
Barber, D.M.; Duriš, A.; Thompson, A.L.; Sanganee, H.J.; Dixon, D.J. One-pot asymmetric nitro-mannich/hydroamination cascades for the synthesis of pyrrolidine derivatives: combining organocatalysis and gold catalysis. ACS Catal., 2014, 4(2), 634-638.
[http://dx.doi.org/10.1021/cs401008v] [PMID: 24563809]
[40]
Núñez, M.G.; Farley, A.J.M.; Dixon, D.J. Bifunctional iminophosphorane organocatalysts for enantioselective synthesis: application to the ketimine nitro-Mannich reaction. J. Am. Chem. Soc., 2013, 135(44), 16348-16351.
[http://dx.doi.org/10.1021/ja409121s] [PMID: 24107070]
[41]
Noble, A.; Anderson, J.C. Nitro-Mannich reaction. Chem. Rev., 2013, 113(5), 2887-2939.
[http://dx.doi.org/10.1021/cr300272t] [PMID: 23461586]
[42]
Liu, W.; Ali, S.Z.; Ammann, S.E.; White, M.C. Asymmetric allylic C-H alkylation via palladium(II)/cis-ArSOX catalysis. J. Am. Chem. Soc., 2018, 140(34), 10658-10662.
[http://dx.doi.org/10.1021/jacs.8b05668] [PMID: 30091907]
[43]
Chang, C.Y.; Wu, Y.K. Palladium-catalyzed α-allylation of secondary nitroalkanes with allylic alcohols and strategic exploitation of seebach’s reagent for the total synthesis of (±)-adalinine. J. Org. Chem., 2018, 83(11), 6217-6224.
[http://dx.doi.org/10.1021/acs.joc.8b00710] [PMID: 29767507]
[44]
Soengas, R.G.; Acúrcio, R.; Silva, A.M.S. Preparation of indium nitronates and their Henry reactions. Org. Biomol. Chem., 2014, 12(43), 8593-8597.
[http://dx.doi.org/10.1039/C4OB01468E] [PMID: 25260108]
[45]
Gildner, P.G.; Gietter, A.A.S.; Cui, D.; Watson, D.A. Benzylation of nitroalkanes using copper-catalyzed thermal redox catalysis: Toward the facile C-alkylation of nitroalkanes. J. Am. Chem. Soc., 2012, 134(24), 9942-9945.
[http://dx.doi.org/10.1021/ja304561c] [PMID: 22691127]
[46]
Giorgi, G.; Maiti, S.; López-Alvarado, P.; Menéndez, J.C. Synthesis of benzo- and naphtho-fused bicyclo[n.3.1]alkane frameworks with a bridgehead nitrogen function by palladium-catalyzed intramolecular α′-arylation of α-nitroketones. Org. Biomol. Chem., 2011, 9(8), 2722-2730.
[http://dx.doi.org/10.1039/c0ob00526f] [PMID: 21359298]
[47]
Katritzky, A.R.; Abdel-Fattah, A.A.A.; Gromova, A.V.; Witek, R.; Steel, P.J. α-nitro ketone synthesis using N-acylbenzotriazoles. J. Org. Chem., 2005, 70(23), 9211-9214.
[http://dx.doi.org/10.1021/jo051231x] [PMID: 16268592]
[48]
Ballini, R.; Bosica, G.; Parrini, M. A One pot, solvent-free synthesis of acyclic α-nitro ketones through the nitroaldol reaction. Tetrahedron Lett., 1998, 39, 7963-7964.
[http://dx.doi.org/10.1016/S0040-4039(98)01730-4]
[49]
Baker, D.C.; Pull, S.R. α-Acylation of nitromethane. A synthetic route to α-nitroketones. Synthesis, 1979, 4, 295-296.
[50]
Zhang, J.; Ling, Y.F.; Wang, G.X.; Zhang, L.; Luo, J. Synthesis of two new gem-fluoronitro containing tetranitroadamantanes and property comparison with their nitro and gem-dinitro analogues. Org. Biomol. Chem., 2018, 16(26), 4784-4788.
[http://dx.doi.org/10.1039/C8OB01140K] [PMID: 29926052]
[51]
Wade, P.A.; Paparoidamisa, N.; Liao, J.; Manorb, B.C.; DeBolt, K. Synthesis and conjugate addition reactions of N-(β-nitroalkyl)amides. Tetrahedron Lett., 2015, 56, 6722-6725.
[http://dx.doi.org/10.1016/j.tetlet.2015.10.055]
[52]
Trost, B.M.; Bringley, D.A.; Seng, P.S. Enantioselective palladium-catalyzed [3 + 2] cycloadditions of trimethylenemethane with nitroalkenes. Org. Lett., 2012, 14(1), 234-237.
[http://dx.doi.org/10.1021/ol2030179] [PMID: 22176260]
[53]
Rozen, S.; Bar-Haim, A.; Mishani, E. Fluorination of nitro compounds with acetyl hypofluorite. J. Org. Chem., 1994, 59, 6800-6803.
[http://dx.doi.org/10.1021/jo00101a047]
[54]
Rosini, G.; Ballini, R. Synthesis, 1988, 833-847.
[http://dx.doi.org/10.1055/s-1988-27726]
[55]
Ono, N. The Nitro Group in Organic Synthesis; Wiley-VCH: New York, 2001.
[http://dx.doi.org/10.1002/0471224480]
[56]
Feuer, H.; Nielsen, A.T., Eds.; In Nitro Compounds: Recent Advances in Synthesis and Chemistry; VCH Publishers: New York, 1990.
[57]
Aitken, R.A.; Aitken, K.M. Nitroalkanes.Science of Synthesis; Banert, K., Ed.; Thieme: Stuttgart, 2010, Vol. 41, pp. 9-258.
[58]
Zard, S.Z. Some aspects of the chemistry of nitro compounds. Helv. Chim. Acta, 2012, 95, 1730-1757.
[http://dx.doi.org/10.1002/hlca.201200324]
[59]
Kornblum, N.; Taylor, H.J. The phenylation of nitroparaffins. J. Org. Chem., 1963, 28, 1424-1425.
[http://dx.doi.org/10.1021/jo01040a529]
[60]
Hoffmann, A.K.; Hodgson, W.G.; Maricle, D.L.; Jura, W.H. Cleavage reactions of tertiary nitro anion radicals. J. Am. Chem. Soc., 1964, 86, 631-639.
[http://dx.doi.org/10.1021/ja01058a019]
[61]
Singh, P.R.; Khanna, R.K. Simultaneous occurrence of electron transfer initiated radical cage collapse and chain mechanisms in the reactions of diaryliodonium cations with 2-nitropropanate anion. Tetrahedron Lett., 1982, 23, 5355-5358.
[http://dx.doi.org/10.1016/S0040-4039(00)85837-2]
[62]
Dey, C.; Lindstedt, E.; Olofsson, B. Metal-free C-arylation of nitro compounds with diaryliodonium salts. Org. Lett., 2015, 17(18), 4554-4557.
[http://dx.doi.org/10.1021/acs.orglett.5b02270] [PMID: 26352796]
[63]
Barton, D.H.R.; Blazejewski, J.C.; Charpiot, B.; Lester, D.J.; Papoula, M.T.B.; Motherwell, W.B. Comparative arylatiom reactions with pentaphenylbismuth and with triphenylbismuth carbonate. J. Chem. Soc. Chem. Commun., 1980, 827-829.
[http://dx.doi.org/10.1039/c39800000827]
[64]
Barton, D.H.R.; Blazejewski, J-C.; Charpiot, B.; Finet, J-P.; Motherwell, W.B.; Papoula, M.T.B.; Stanforth, S.P. Pentavalent organobismuth reagents. Part 3. Phenylation of enols and of enolate and other anions. J. Chem. Soc. Perkin Trans., 1985, 1, 2667-2675.
[http://dx.doi.org/10.1039/p19850002667]
[65]
Kozyrod, R.P.; Pinhey, J.T. The arylation of nitroalkanes and nitronate salts with aryllead triacetates. Tetrahedron Lett., 1981, 22, 783-784.
[http://dx.doi.org/10.1016/0040-4039(81)80151-7]
[66]
Kosyrod, R.P.; Pinhey, J.T. Arylation with aryllead triacetates produced insitu by mercury-lead exchange. Tetrahedron Lett., 1982, 23, 5365-5366.
[http://dx.doi.org/10.1016/S0040-4039(00)85840-2]
[67]
Kozyrod, R.P.; Pinhey, J.T. The chemistry of aryllead(IV) tricarboxylates. The C-arylation of nitroalkanes and nitronate salts with aryllead triacetates. Aust. J. Chem., 1985, 38, 713-721.
[http://dx.doi.org/10.1071/CH9850713]
[68]
Kozyrod, R.P.; Pinhey, J.T. Arylation with aryllead triacetates produced insitu by mercury-lead exchange. Aust. J. Chem., 1985, 38, 1155-1161.
[http://dx.doi.org/10.1071/CH9851155]
[69]
Kurosawa, H.; Sato, M.; Okada, H. Carbon-alkylation, arylation and vinylation of nitronate ions with organothallium(III) compounds: Electron-transfer activation of the Tl-C bond. Tetrahedron Lett., 1982, 23, 2965-2968.
[http://dx.doi.org/10.1016/S0040-4039(00)87507-3]
[70]
Kurosawa, H.; Okada, H.; Sato, M.; Hattori, T. Reaction of organo-thallium(III) and -mercury(II) compounds with nitronate ion and N-benzyl-1,4-dihydronicotinamide: Reductive electron-transfer activation of the metalcarbon bond toward homolysis. J. Organomet. Chem., 1983, 250, 83-97.
[http://dx.doi.org/10.1016/0022-328X(83)85041-4]
[71]
Cheng, L.; Kerber, R.C.; Kestner, M.M.; Newton, B.N.; Pinnick, H.W.; Smith, R.G.; Wade, P.A.; Kornblum, N. Displacement of the Nitro Group of Substituted Nitrobenzenes a Synthetically Useful Process. J. Org. Chem., 1976, 41, 1560-1564.
[http://dx.doi.org/10.1021/jo00871a016]
[72]
Burt, B.L.; Freeman, D.J.; Gray, P.G.; Norris, R.K.; Randles, D. Radical and ionic reactions of tetrabutylammonium aci-nitronates. Tetrahedron Lett., 1977, 18, 3063-3066.
[http://dx.doi.org/10.1016/S0040-4039(01)83158-0]
[73]
Norris, R.K.; Randles, D. Nucleophilic substitution reactions of tetrabutylammonium aci-nitronates with p-substituted nitrobenzenes. Aust. J. Chem., 1979, 32, 2413-2422.
[http://dx.doi.org/10.1071/CH9792413]
[74]
Danikiewicz, W.; Makosza, M. Direct nitromethylation of nitronaphthalene and its heteroanalogues: A new method for functionalization of nitroarenes. Tetrahedron Lett., 1985, 26, 3599-3600.
[http://dx.doi.org/10.1016/S0040-4039(00)89200-X]
[75]
Kawakamami, T.; Suzuki, H. Masked acylation of m-dinitrobenene and derivatives with nitroalkanes under basic conditions: Nitromethylation and α-(Hydroxyimino) alkylation. Tetrahedron Lett., 1999, 40, 1157-1160.
[http://dx.doi.org/10.1016/S0040-4039(98)02552-0]
[76]
Vaidyanathaswamy, R.; Radha, K.; Dharani, M.; Raguraman, T.S.; Anand, R. Reaction of nitroalkanes with polyfluoroaromatic compounds. J. Fluor. Chem., 2012, 144, 33-37.
[http://dx.doi.org/10.1016/j.jfluchem.2012.09.004]
[77]
Day, J.I.; Weaver, J.D. Selective and Scalable Perfluoroarylation of Nitroalkanes. J. Org. Chem., 2017, 82(13), 6801-6810.
[http://dx.doi.org/10.1021/acs.joc.7b00962] [PMID: 28598158]
[78]
Muratake, H.; Nakai, H. Intramolecular cyclization using palladium-catalyzed arylation toward formyl and nitro groups. Tetrahedron Lett., 1999, 40, 2355-2358.
[http://dx.doi.org/10.1016/S0040-4039(99)00185-9]
[79]
Fox, J.M.; Huang, X.H.; Chieffi, A.; Buchwald, S.L. Highly active and selective catalysts for the formation of α-aryl ketones. J. Am. Chem. Soc., 2000, 122, 1360-1370.
[http://dx.doi.org/10.1021/ja993912d]
[80]
Vogl, E.M.; Buchwald, S.L. Palladium-catalyzed monoarylation of nitroalkanes. J. Org. Chem., 2002, 67(1), 106-111.
[http://dx.doi.org/10.1021/jo010953v] [PMID: 11777446]
[81]
Walvoord, R.R.; Berritt, S.; Kozlowski, M.C. Palladium-catalyzed nitromethylation of aryl halides: An orthogonal formylation equivalent. Org. Lett., 2012, 14(16), 4086-4089.
[http://dx.doi.org/10.1021/ol301713j] [PMID: 22839593]
[82]
Walvoord, R.R.; Kozlowski, M.C. Minimizing the amount of nitromethane in palladium-catalyzed cross-coupling with aryl halides. J. Org. Chem., 2013, 78(17), 8859-8864.
[http://dx.doi.org/10.1021/jo401249y] [PMID: 23895411]
[83]
Xu, J.J.; Li, X.Y.; Wu, J.L.; Dai, W.M. Synthesis of 5-alkyl-5-aryl-γ-lactams from 1-aryl-substituted nitroalkanes and methyl acrylate via Michael addition and reductive lactamization. Tetrahedron, 2014, 70, 3839-3846.
[http://dx.doi.org/10.1016/j.tet.2014.04.074]
[84]
Xu, J.J.; Li, X.Y.; Wu, J.L.; Dai, W.M. Synthesis of 5-alkyl-5-aryl-1-pyrroline N-oxides from 1-arylsubstituted nitroalkanes and acrolein via Michael addition and nitro reductive cyclization. Tetrahedron, 2014, 70, 6384-6391.
[http://dx.doi.org/10.1016/j.tet.2014.07.046]
[85]
Brals, J.; Smith, J.D.; Ibrahim, F.; Gallou, F.; Handa, S. Micelle-enabled palladium catalysis for convenient sp2-sp3 coupling of nitroalkanes with aryl bromides in water under mild conditions. ACS Catal., 2017, 7, 7245-7250.
[http://dx.doi.org/10.1021/acscatal.7b02663]
[86]
Sharafi-Kolkeshvandi, M.; Nematollahi, D.; Nikpour, F. A green C-C bond formation reaction between N, N′-diphenylbenzene-1,4-diamine and Michael donors: A convergent paired strategy. J. Electrochem. Soc., 2016, 163, 75-78.
[http://dx.doi.org/10.1149/2.0691606jes]
[87]
Barnes, B.J.; Newcombe, P.J.; Wilson, K.; Norris, R.K. Novel nucleophile-dependent cine-substitution in α-nitrofurans. J. Chem. Soc. Chem. Commun., 1985, 1408-1409.
[http://dx.doi.org/10.1039/C39850001408]
[88]
Ono, N.; Jun, T.X.; Kaji, A. Alkylation of furans via cine-substitution of α-nitrofurans with anion of nitroalkanes and subsequent denitration. Synthesis, 1987, 821-823.
[http://dx.doi.org/10.1055/s-1987-28087]
[89]
Gulevskaya, A.V.; Goryunenko, V.V.; Pozharskii, A.F. Purines, pyrimidines, and condensed systems based on them. Reactions of 6,8-dimethyl-3-chloropyrimido-[4,5, c]pyridazin-5,7 (6H, 8H) dione with C-nucleophiles. Chem. Heterocycl. Compd., 2000, 36, 975-980.
[http://dx.doi.org/10.1007/BF02256984]
[90]
Colgin, N.; Tatum, N.J.; Pohl, E.; Cobb, S.L.; Sandford, G. Synthesis and molecular structure of a perfluorinated pyridyl carbanion. J. Fluor. Chem., 2012, 133, 33-37.
[http://dx.doi.org/10.1016/j.jfluchem.2011.09.013]
[91]
Park, K.P.; Clapp, L.B. Phenylation of dinitroalkanes. J. Org. Chem., 1964, 29, 2108-2108.
[http://dx.doi.org/10.1021/jo01030a568]
[92]
Bakharev, V.V.; Gidaspov, A.A.; Kachanovskaya, E.V. Synthesis of 2,4-Diaryloxy-6- trinitromethyl-1,3,5-triazines. Russ. J. Org. Chem., 2007, 43, 454-457.
[http://dx.doi.org/10.1134/S1070428007030232]
[93]
Kashin, A.N.; Mitin, A.V.; Beletskaya, I.P.; Wife, R. Palladium-catalyzed arylation of sulfonyl CH-acids. Tetrahedron Lett., 2002, 43, 2539-2542.
[http://dx.doi.org/10.1016/S0040-4039(02)00321-0]
[94]
Fornicola, R.S.; Oblinger, E.; Montgomery, J. A new synthesis of α-amino acid derivatives employing methyl nitroacetate as a versatile glycine template. J. Org. Chem., 1998, 63, 3528-3529.
[http://dx.doi.org/10.1021/jo980477h]
[95]
Metz, A.E.; Berritt, S.; Dreher, S.D.; Kozlowski, M.C. Efficient palladium-catalyzed cross-coupling of highly acidic substrates, nitroacetates. Org. Lett., 2012, 14(3), 760-763.
[http://dx.doi.org/10.1021/ol203303b] [PMID: 22263870]
[96]
VanGelder, K.F.; Kozlowski, M.C. Palladium-catalyzed α-arylation of aryl nitromethanes. Org. Lett., 2015, 17(23), 5748-5751.
[http://dx.doi.org/10.1021/acs.orglett.5b02793] [PMID: 26584680]
[97]
Stach, H.; Hesse, M. Makrocyclische benzolactone durch ringerweiterung von 2-nitrocycloalkanonen. Helv. Chim. Acta, 1986, 69, 85-90.
[http://dx.doi.org/10.1002/hlca.19860690112]
[98]
Hu, J-H.; Zheng, H-J. Facile synthesis of 2-nitromethyl aromatic ketones by insertion of benzynes into the C-C bond of α-nitroketones. Synth. Commun., 2019, 49, 558-562.
[http://dx.doi.org/10.1080/00397911.2018.1563794]
[99]
Scutt, J.; Mathews, C.J.; Muehlebach, M. Novel herbicides. WO,, 2009, 20090150093,, A1.
[100]
Zhang, Z-Q.; Chen, T.; Zhang, F.M. Copper-assisted direct nitration of cyclic ketones with ceric ammonium nitrate for the synthesis of tertiary α-nitro-α-substituted scaffolds. Org. Lett., 2017, 19(5), 1124-1127.
[http://dx.doi.org/10.1021/acs.orglett.7b00040] [PMID: 28206766]
[101]
An, Y.; Zhang, X-M.; Li, Z-Y.; Xiong, W-H.; Yu, R-D.; Zhang, F-M. Transition-metal-free α-arylation of nitroketones with diaryliodonium salts for the synthesis of tertiary α-aryl, α-nitro ketones. Chem. Commun. (Camb.), 2018, 55(1), 119-122.
[http://dx.doi.org/10.1039/C8CC08920E] [PMID: 30516178]
[102]
Armillotta, N.; Bartoli, G.; Bosco, M.; Dalpozzo, R. Conjugate addition of grignard reagents to nitroarenes: A new synthesis of 9-alkylanthracenes, 9-nitro-10-alkylanthracenes, and 10,10-dialkylanthrones. Synthesis, 1982, 1982, 836-839.
[http://dx.doi.org/10.1055/s-1982-29963]
[103]
Wang, G.; Ma, L.; Xiang, J.; Wang, Y.; Chen, X.; Che, Y.; Jiang, H. 2,6-Pyridodicarboxamide-bridged triptycene molecular transmission devices: Converting rotation to rocking vibration. J. Org. Chem., 2015, 80(22), 11302-11312.
[http://dx.doi.org/10.1021/acs.joc.5b01778] [PMID: 26488182]
[104]
Tishkov, A.A.; Schmidhammer, U.; Roth, S.; Riedle, E.; Mayr, H. Ambident reactivity of the nitrite ion revisited. Angew. Chem. Int. Ed. Engl., 2005, 44(29), 4623-4626.
[http://dx.doi.org/10.1002/anie.200501274] [PMID: 16003794]
[105]
Feng, T.; He, Y.; Zhang, X.; Fan, X. Synthesis of functionalized cyclobutane-fused naphthalene derivatives via cascade reactions of allenynes with tert-butyl nitrite. Adv. Synth. Catal., 2019, 361, 1271-1276.
[http://dx.doi.org/10.1002/adsc.201801439]
[106]
Wu, D.; Zhang, J.; Cui, J.; Zhang, W.; Liu, Y. AgNO2-mediated direct nitration of the quinoxaline tertiary benzylic C-H bond and direct conversion of 2-methyl quinoxalines into related nitriles. Chem. Commun. (Camb.), 2014, 50(74), 10857-10860.
[http://dx.doi.org/10.1039/C4CC01327A] [PMID: 25089911]
[107]
Arnauld, T.; Barton, D.H.R.; Normant, J.F.; Doris, E. Chemistry of pentavalent organobismuth reagents. regioselective α-arylation of α,β-unsaturated carbonyls and related systems. J. Org. Chem., 1999, 64(18), 6915-6917.
[http://dx.doi.org/10.1021/jo9905928] [PMID: 11674709]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 23
ISSUE: 14
Year: 2019
Page: [1560 - 1580]
Pages: 21
DOI: 10.2174/1385272823666190820113718
Price: $58

Article Metrics

PDF: 17
HTML: 2
EPUB: 1
PRC: 1