Mitochondrial Metabolism in Cancer Cachexia: Novel Drug Target

Author(s): Dhwani T. Dave, Bhoomika M. Patel*.

Journal Name: Current Drug Metabolism

Volume 20 , Issue 14 , 2019


Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Cancer cachexia is a metabolic syndrome prevalent in the majority of the advanced cancers and is associated with complications such as anorexia, early satiety, weakness, anaemia, and edema, thereby reducing performance and impairing quality of life. Skeletal muscle wasting is a characteristic feature of cancer-cachexia and mitochondria is responsible for regulating total protein turnover in skeletal muscle tissue.

Methods: We carried out exhaustive search for cancer cachexia and role of mitochondria in the same in various databases. All the relevant articles were gathered and the pertinent information was extracted out and compiled which was further structured into different sub-sections.

Results: Various findings on the mitochondrial alterations in connection to its disturbed normal physiology in various models of cancer-cachexia have been recently reported, suggesting a significant role of the organelle in the pathogenesis of the complications involved in the disorder. It has also been reported that reduced mitochondrial oxidative capacity is due to reduced mitochondrial biogenesis as well as altered balance between fusion and fission protein activities. Moreover, autophagy in mitochondria (termed as mitophagy) is reported to play an important role in cancer cachexia.

Conclusion: The present review aims to put forth the changes occurring in mitochondria and hence explore possible targets which can be exploited in cancer-induced cachexia for treatment of such a debilitating condition.

Keywords: Uncoupled proteins, mega-mitochondria, fragmented mitochondria, mitofusin-2, dynamin related protein 1, mitophagy.

[1]
O’Gorman, P.; McMillan, D.C.; McArdle, C.S. Impact of weight loss, appetite, and the inflammatory response on quality of life in gastrointestinal cancer patients. Nutr. Cancer, 1998, 32(2), 76-80.
[http://dx.doi.org/10.1080/01635589809514722] [PMID: 9919615]
[2]
Duguet, A.; Bachmann, P.; Lallemand, Y.; Blanc-Vincent, M.P. Summary report of the standards options and recommendations for malnutrition and nutritional assessment in patients with cancer. Electron J Oncol., 1999, 1, 76-82.
[3]
O’Gorman, P.; McMillan, D.C.; McArdle, C.S. Prognostic factors in advanced gastrointestinal cancer patients with weight loss. Nutr. Cancer, 2000, 37(1), 36-40.
[http://dx.doi.org/10.1207/S15327914NC3701_4] [PMID: 10965517]
[4]
Martignoni, M.E.; Kunze, P.; Friess, H. Cancer cachexia. Mol. Cancer, 2003, 2, 36.
[http://dx.doi.org/10.1186/1476-4598-2-36] [PMID: 14613583]
[5]
Evans, W.J.; Morley, J.E.; Argilés, J.; Bales, C.; Baracos, V.; Guttridge, D.; Jatoi, A.; Kalantar-Zadeh, K.; Lochs, H.; Mantovani, G.; Marks, D.; Mitch, W.E.; Muscaritoli, M.; Najand, A.; Ponikowski, P.; Rossi Fanelli, F.; Schambelan, M.; Schols, A.; Schuster, M.; Thomas, D.; Wolfe, R.; Anker, S.D. Cachexia: a new definition. Clin. Nutr., 2008, 27(6), 793-799.
[http://dx.doi.org/10.1016/j.clnu.2008.06.013] [PMID: 18718696]
[6]
Shum, A.M.; Mahendradatta, T.; Taylor, R.J.; Painter, A.B.; Moore, M.M.; Tsoli, M.; Tan, T.C.; Clarke, S.J.; Robertson, G.R.; Polly, P. Disruption of MEF2C signaling and loss of sarcomeric and mitochondrial integrity in cancer-induced skeletal muscle wasting. Aging, 2012, 4, 02.
[7]
Bennani-Baiti, N.; Walsh, D. Animal models of the cancer anorexia-cachexia syndrome. Support. Care Cancer, 2011, 19(9), 1451-1463.
[http://dx.doi.org/10.1007/s00520-010-0972-0] [PMID: 20714754]
[8]
Patel, H.J.; Patel, B.M. TNF-α and cancer cachexia: molecular insights and clinical implications. Life Sci., 2017, 170, 56-63.
[http://dx.doi.org/10.1016/j.lfs.2016.11.033] [PMID: 27919820]
[9]
Khalifat, N.; Puff, N.; Bonneau, S.; Fournier, J.B.; Angelova, M.I. Membrane deformation under local pH gradient: mimicking mitochondrial cristae dynamics. Biophys. J., 2008, 95(10), 4924-4933.
[http://dx.doi.org/10.1529/biophysj.108.136077] [PMID: 18689447]
[10]
Shay, J.W.; Pierce, D.J.; Werbin, H. Mitochondrial DNA copy number is proportional to total cell DNA under a variety of growth conditions. J. Biol. Chem., 1990, 265(25), 14802-14807.
[PMID: 2394698]
[11]
Wallace, D.C. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu. Rev. Genet., 2005, 39, 359-407.
[http://dx.doi.org/10.1146/annurev.genet.39.110304.095751] [PMID: 16285865]
[12]
Wikstrom, J.D. Mitochondrial form and function in pancreatic β-cells and brown adipocytes PhD, Thesis. The Wenner-Gren Institute, Stockholm University: Sweden,. 2010.
[13]
Wright, S.H. Generation of resting membrane potential. Adv. Physiol. Educ., 2004, 28(1-4), 139-142.
[http://dx.doi.org/10.1152/advan.00029.2004] [PMID: 15545342]
[14]
Romanello, V.; Sandri, M. Mitochondrial biogenesis and fragmentation as regulators of muscle protein degradation. Curr. Hypertens. Rep., 2010, 12(6), 433-439.
[http://dx.doi.org/10.1007/s11906-010-0157-8] [PMID: 20967516]
[15]
Li, P.; Waters, R.E.; Redfern, S.I.; Zhang, M.; Mao, L.; Annex, B.H.; Yan, Z. Oxidative phenotype protects myofibers from pathological insults induced by chronic heart failure in mice. Am. J. Pathol., 2007, 170(2), 599-608.
[http://dx.doi.org/10.2353/ajpath.2007.060505] [PMID: 17255328]
[16]
Yu, Z.; Li, P.; Zhang, M.; Hannink, M.; Stamler, J.S.; Yan, Z. Fiber type-specific nitric oxide protects oxidative myofibers against cachectic stimuli. PLoS One, 2008, 3(5)e2086
[http://dx.doi.org/10.1371/journal.pone.0002086] [PMID: 18461174]
[17]
Romanello, V.; Guadagnin, E.; Gomes, L.; Roder, I.; Sandri, C.; Petersen, Y.; Milan, G.; Masiero, E.; Del Piccolo, P.; Foretz, M.; Scorrano, L.; Rudolf, R.; Sandri, M. Mitochondrial fission and remodelling contributes to muscle atrophy. EMBO J., 2010, 29(10), 1774-1785.
[http://dx.doi.org/10.1038/emboj.2010.60] [PMID: 20400940]
[18]
White, J.P.; Puppa, M.J.; Sato, S.; Gao, S.; Price, R.L.; Baynes, J.W.; Kostek, M.C.; Matesic, L.E.; Carson, J.A. IL-6 regulation on skeletal muscle mitochondrial remodeling during cancer cachexia in the ApcMin/+ mouse. Skelet. Muscle, 2012, 2, 14.
[http://dx.doi.org/10.1186/2044-5040-2-14] [PMID: 22769563]
[19]
Constantinou, C.; Fontes de Oliveira, C.C.; Mintzopoulos, D.; Busquets, S.; He, J.; Kesarwani, M.; Mindrinos, M.; Rahme, L.G.; Argilés, J.M.; Tzika, A.A. Nuclear magnetic resonance in conjunction with functional genomics suggests mitochondrial dysfunction in a murine model of cancer cachexia. Int. J. Mol. Med., 2011, 27(1), 15-24.
[PMID: 21069263]
[20]
Vitorino, R.; Moreira-Gonçalves, D.; Ferreira, R. Mitochondrial plasticity in cancer-related muscle wasting: potential approaches for its management. Curr. Opin. Clin. Nutr. Metab. Care, 2015, 18(3), 226-233.
[http://dx.doi.org/10.1097/MCO.0000000000000161] [PMID: 25783794]
[21]
Antunes, D.; Padrão, A.I.; Maciel, E.; Santinha, D.; Oliveira, P.; Vitorino, R.; Moreira-Gonçalves, D.; Colaço, B.; Pires, M.J.; Nunes, C.; Santos, L.L.; Amado, F.; Duarte, J.A.; Domingues, M.R.; Ferreira, R. Molecular insights into mitochondrial dysfunction in cancer-related muscle wasting. Biochim. Biophys. Acta, 2014, 1841(6), 896-905.
[http://dx.doi.org/10.1016/j.bbalip.2014.03.004] [PMID: 24657703]
[22]
White, J.P.; Baltgalvis, K.A.; Puppa, M.J.; Sato, S.; Baynes, J.W.; Carson, J.A. Muscle oxidative capacity during IL-6-dependent cancer cachexia. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2011, 300(2), R201-R211.
[http://dx.doi.org/10.1152/ajpregu.00300.2010] [PMID: 21148472]
[23]
Detmer, S.A.; Chan, D.C. Functions and dysfunctions of mitochondrial dynamics. Nat. Rev. Mol. Cell Biol., 2007, 8(11), 870-879.
[http://dx.doi.org/10.1038/nrm2275] [PMID: 17928812]
[24]
Delettre, C.; Lenaers, G.; Griffoin, J.M.; Gigarel, N.; Lorenzo, C.; Belenguer, P.; Pelloquin, L.; Grosgeorge, J.; Turc-Carel, C.; Perret, E.; Astarie-Dequeker, C.; Lasquellec, L.; Arnaud, B.; Ducommun, B.; Kaplan, J.; Hamel, C.P. Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy. Nat. Genet., 2000, 26(2), 207-210.
[http://dx.doi.org/10.1038/79936] [PMID: 11017079]
[25]
Alexander, C.; Votruba, M.; Pesch, U.E.; Thiselton, D.L.; Mayer, S.; Moore, A.; Rodriguez, M.; Kellner, U.; Leo-Kottler, B.; Auburger, G.; Bhattacharya, S.S.; Wissinger, B. OPA1, encoding a dynamin-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28. Nat. Genet., 2000, 26(2), 211-215.
[http://dx.doi.org/10.1038/79944] [PMID: 11017080]
[26]
Züchner, S.; Mersiyanova, I.V.; Muglia, M.; Bissar-Tadmouri, N.; Rochelle, J.; Dadali, E.L.; Zappia, M.; Nelis, E.; Patitucci, A.; Senderek, J.; Parman, Y.; Evgrafov, O.; Jonghe, P.D.; Takahashi, Y.; Tsuji, S.; Pericak-Vance, M.A.; Quattrone, A.; Battaloglu, E.; Polyakov, A.V.; Timmerman, V.; Schröder, J.M.; Vance, J.M. Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A. Nat. Genet., 2004, 36(5), 449-451.
[http://dx.doi.org/10.1038/ng1341] [PMID: 15064763]
[27]
Waterham, H.R.; Koster, J.; van Roermund, C.W.; Mooyer, P.A.; Wanders, R.J.; Leonard, J.V. A lethal defect of mitochondrial and peroxisomal fission. N. Engl. J. Med., 2007, 356(17), 1736-1741.
[http://dx.doi.org/10.1056/NEJMoa064436] [PMID: 17460227]
[28]
Chen, H.; Detmer, S.A.; Ewald, A.J.; Griffin, E.E.; Fraser, S.E.; Chan, D.C. Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J. Cell Biol., 2003, 160(2), 189-200.
[http://dx.doi.org/10.1083/jcb.200211046] [PMID: 12527753]
[29]
Ishihara, N.; Eura, Y.; Mihara, K. Mitofusin 1 and 2 play distinct roles in mitochondrial fusion reactions via GTPase activity. J. Cell Sci., 2004, 117(Pt 26), 6535-6546.
[http://dx.doi.org/10.1242/jcs.01565] [PMID: 15572413]
[30]
Olichon, A.; Landes, T.; Arnauné-Pelloquin, L.; Emorine, L.J.; Mils, V.; Guichet, A.; Delettre, C.; Hamel, C.; Amati-Bonneau, P.; Bonneau, D.; Reynier, P.; Lenaers, G.; Belenguer, P. Effects of OPA1 mutations on mitochondrial morphology and apoptosis: relevance to ADOA pathogenesis. J. Cell. Physiol., 2007, 211(2), 423-430.
[http://dx.doi.org/10.1002/jcp.20950] [PMID: 17167772]
[31]
Carson, J.A.; Hardee, J.P.; VanderVeen, B.N. The emerging role of skeletal muscle oxidative metabolism as a biological target and cellular regulator of cancer-induced muscle wasting. Semin. Cell Dev. Biol., 2016, 54, 53-67.
[http://dx.doi.org/10.1016/j.semcdb.2015.11.005] [PMID: 26593326]
[32]
Romanello, V.; Sandri, M. Mitochondrial quality control and muscle mass maintenance. Front. Physiol., 2016, 6, 422.
[http://dx.doi.org/10.3389/fphys.2015.00422] [PMID: 26793123]
[33]
Koshiba, T.; Detmer, S.A.; Kaiser, J.T.; Chen, H.; McCaffery, J.M.; Chan, D.C. Structural basis of mitochondrial tethering by mitofusin complexes. Science, 2004, 305(5685), 858-862.
[http://dx.doi.org/10.1126/science.1099793] [PMID: 15297672]
[34]
Chan, D.C. Mitochondria: dynamic organelles in disease, aging, and development. Cell, 2006, 125(7), 1241-1252.
[http://dx.doi.org/10.1016/j.cell.2006.06.010] [PMID: 16814712]
[35]
Iqbal, S.; Hood, D.A. The role of mitochondrial fusion and fission in skeletal muscle function and dysfunction. Front. Biosci., 2015, 20, 157-172.
[http://dx.doi.org/10.2741/4303] [PMID: 25553445]
[36]
Frezza, C.; Cipolat, S.; Martins de Brito, O.; Micaroni, M.; Beznoussenko, G.V.; Rudka, T.; Bartoli, D.; Polishuck, R.S.; Danial, N.N.; De Strooper, B.; Scorrano, L. OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion. Cell, 2006, 126(1), 177-189.
[http://dx.doi.org/10.1016/j.cell.2006.06.025] [PMID: 16839885]
[37]
Hoppins, S.; Collins, S.R.; Cassidy-Stone, A.; Hummel, E.; Devay, R.M.; Lackner, L.L.; Westermann, B.; Schuldiner, M.; Weissman, J.S.; Nunnari, J. A mitochondrial-focused genetic interaction map reveals a scaffold-like complex required for inner membrane organization in mitochondria. J. Cell Biol., 2011, 195(2), 323-340.
[http://dx.doi.org/10.1083/jcb.201107053] [PMID: 21987634]
[38]
Javadov, S.; Kuznetsov, A.V. Mitochondria: the cell powerhouse and nexus of stress. Front. Physiol., 2013, 4, 207.
[http://dx.doi.org/10.3389/fphys.2013.00207] [PMID: 23966947]
[39]
Wakabayashi, T. Megamitochondria formation - physiology and pathology. J. Cell. Mol. Med., 2002, 6(4), 497-538.
[http://dx.doi.org/10.1111/j.1582-4934.2002.tb00452.x] [PMID: 12611638]
[40]
Kaasik, A.; Safiulina, D.; Zharkovsky, A.; Veksler, V. Regulation of mitochondrial matrix volume. Am. J. Physiol. Cell Physiol., 2007, 292(1), C157-C163.
[http://dx.doi.org/10.1152/ajpcell.00272.2006] [PMID: 16870828]
[41]
Arbustini, E.; Brega, A.; Narula, J. Ultrastructural definition of apoptosis in heart failure. Heart Fail. Rev., 2008, 13(2), 121-135.
[http://dx.doi.org/10.1007/s10741-007-9072-8] [PMID: 18172761]
[42]
Gupta, A.; Gupta, S.; Young, D.; Das, B.; McMahon, J.; Sen, S. Impairment of ultrastructure and cytoskeleton during progression of cardiac hypertrophy to heart failure. Lab. Invest., 2010, 90(4), 520-530.
[http://dx.doi.org/10.1038/labinvest.2010.43] [PMID: 20157292]
[43]
Tzika, A.A.; Fontes-Oliveira, C.C.; Shestov, A.A.; Constantinou, C.; Psychogios, N.; Righi, V.; Mintzopoulos, D.; Busquets, S.; Lopez-Soriano, F.J.; Milot, S.; Lepine, F.; Mindrinos, M.N.; Rahme, L.G.; Argiles, J.M. Skeletal muscle mitochondrial uncoupling in a murine cancer cachexia model. Int. J. Oncol., 2013, 43(3), 886-894.
[http://dx.doi.org/10.3892/ijo.2013.1998] [PMID: 23817738]
[44]
Navratil, M.; Terman, A.; Arriaga, E.A. Giant mitochondria do not fuse and exchange their contents with normal mitochondria. Exp. Cell Res., 2008, 314(1), 164-172.
[http://dx.doi.org/10.1016/j.yexcr.2007.09.013] [PMID: 17964571]
[45]
Fontes-Oliveira, C.C.; Busquets, S.; Toledo, M.; Penna, F.; Paz Aylwin, M.; Sirisi, S.; Silva, A.P.; Orpí, M.; García, A.; Sette, A.; Inês Genovese, M.; Olivan, M.; López-Soriano, F.J.; Argilés, J.M. Mitochondrial and sarcoplasmic reticulum abnormalities in cancer cachexia: altered energetic efficiency? Biochim. Biophys. Acta, 2013, 1830(3), 2770-2778.
[http://dx.doi.org/10.1016/j.bbagen.2012.11.009] [PMID: 23200745]
[46]
Figueras, M.; Busquets, S.; Carbó, N.; Barreiro, E.; Almendro, V.; Argilés, J.M.; López-Soriano, F.J. Interleukin-15 is able to suppress the increased DNA fragmentation associated with muscle wasting in tumour-bearing rats. FEBS Lett., 2004, 569(1-3), 201-206.
[http://dx.doi.org/10.1016/j.febslet.2004.05.066] [PMID: 15225634]
[47]
Zorzano, A. Regulation of mitofusin-2 expression in skeletal muscle. Appl. Physiol. Nutr. Metab., 2009, 34(3), 433-439.
[http://dx.doi.org/10.1139/H09-049] [PMID: 19448711]
[48]
Mattenberger, Y.; James, D.I.; Martinou, J.C. Fusion of mitochondria in mammalian cells is dependent on the mitochondrial inner membrane potential and independent of microtubules or actin. FEBS Lett., 2003, 538(1-3), 53-59.
[http://dx.doi.org/10.1016/S0014-5793(03)00124-8] [PMID: 12633852]
[49]
Huang, P.; Yu, T.; Yoon, Y. Mitochondrial clustering induced by overexpression of the mitochondrial fusion protein Mfn2 causes mitochondrial dysfunction and cell death. Eur. J. Cell Biol., 2007, 86(6), 289-302.
[http://dx.doi.org/10.1016/j.ejcb.2007.04.002] [PMID: 17532093]
[50]
Xi, Q.L.; Zhang, B.; Jiang, Y.; Zhang, H.S.; Meng, Q.Y.; Chen, Y.; Han, Y.S.; Zhuang, Q.L.; Han, J.; Wang, H.Y.; Fang, J.; Wu, G.H. Mitofusin-2 prevents skeletal muscle wasting in cancer cachexia. Oncol. Lett., 2016, 12(5), 4013-4020.
[http://dx.doi.org/10.3892/ol.2016.5191] [PMID: 27895764]
[51]
Lee, J.Y.; Kapur, M.; Li, M.; Choi, M.C.; Choi, S.; Kim, H.J.; Kim, I.; Lee, E.; Taylor, J.P.; Yao, T.P. MFN1 deacetylation activates adaptive mitochondrial fusion and protects metabolically challenged mitochondria. J. Cell Sci., 2014, 127(Pt 22), 4954-4963.
[http://dx.doi.org/10.1242/jcs.157321] [PMID: 25271058]
[52]
Youle, R.J.; van der Bliek, A.M. Mitochondrial fission, fusion, and stress. Science, 2012, 337(6098), 1062-1065.
[http://dx.doi.org/10.1126/science.1219855] [PMID: 22936770]
[53]
Wu, S.; Zhou, F.; Zhang, Z.; Xing, D. Mitochondrial oxidative stress causes mitochondrial fragmentation via differential modulation of mitochondrial fission-fusion proteins. FEBS J., 2011, 278(6), 941-954.
[http://dx.doi.org/10.1111/j.1742-4658.2011.08010.x] [PMID: 21232014]
[54]
Marcinko, K.; Steinberg, G.R. The role of AMPK in controlling metabolism and mitochondrial biogenesis during exercise. Exp. Physiol., 2014, 99(12), 1581-1585.
[http://dx.doi.org/10.1113/expphysiol.2014.082255] [PMID: 25261498]
[55]
Bellinger, A.M.; Mongillo, M.; Marks, A.R. Stressed out: the skeletal muscle ryanodine receptor as a target of stress. J. Clin. Invest., 2008, 118(2), 445-453.
[http://dx.doi.org/10.1172/JCI34006] [PMID: 18246195]
[56]
Aydin, J.; Andersson, D.C.; Hänninen, S.L.; Wredenberg, A.; Tavi, P.; Park, C.B.; Larsson, N.G.; Bruton, J.D.; Westerblad, H. Increased mitochondrial Ca2+ and decreased sarcoplasmic reticulum Ca2+ in mitochondrial myopathy. Hum. Mol. Genet., 2009, 18(2), 278-288.
[http://dx.doi.org/10.1093/hmg/ddn355] [PMID: 18945718s]
[57]
Lowell, B.B.; Shulman, G.I. Mitochondrial dysfunction and type 2 diabetes. Science, 2005, 307(5708), 384-387.
[http://dx.doi.org/10.1126/science.1104343] [PMID: 15662004]
[58]
Mitchell, P. Vectorial chemistry and the molecular mechanics of chemiosmotic coupling: power transmission by proticity. Biochem. Soc. Trans., 1976, 4(3), 399-430.
[http://dx.doi.org/10.1042/bst0040399] [PMID: 137147]
[59]
Nicholls, D.G. A history of UCP1. Biochem. Soc. Trans., 2001, 29(Pt 6), 751-755.
[http://dx.doi.org/10.1042/bst0290751] [PMID: 11709069]
[60]
Sanchís, D.; Busquets, S.; Alvarez, B.; Ricquier, D.; López-Soriano, F.J.; Argilés, J.M. Skeletal muscle UCP2 and UCP3 gene expression in a rat cancer cachexia model. FEBS Lett., 1998, 436(3), 415-418.
[http://dx.doi.org/10.1016/S0014-5793(98)01178-8] [PMID: 9801160]
[61]
Busquets, S.; Almendro, V.; Barreiro, E.; Figueras, M.; Argilés, J.M.; López-Soriano, F.J. Activation of UCPs gene expression in skeletal muscle can be independent on both circulating fatty acids and food intake. Involvement of ROS in a model of mouse cancer cachexia. FEBS Lett., 2005, 579(3), 717-722.
[http://dx.doi.org/10.1016/j.febslet.2004.12.050] [PMID: 15670834]
[62]
Gordon, J.N.; Green, S.R.; Goggin, P.M. Cancer cachexia. QJM, 2005, 98(11), 779-788.
[http://dx.doi.org/10.1093/qjmed/hci127] [PMID: 16214835]
[63]
Bing, C.; Russell, S.; Becket, E.; Pope, M.; Tisdale, M.J.; Trayhurn, P.; Jenkins, J.R. Adipose atrophy in cancer cachexia: morphologic and molecular analysis of adipose tissue in tumour-bearing mice. Br. J. Cancer, 2006, 95(8), 1028-1037.
[http://dx.doi.org/10.1038/sj.bjc.6603360] [PMID: 17047651]
[64]
Kliewer, K.L.; Ke, J.Y.; Tian, M.; Cole, R.M.; Andridge, R.R.; Belury, M.A. Adipose tissue lipolysis and energy metabolism in early cancer cachexia in mice. Cancer Biol. Ther., 2015, 16(6), 886-897.
[http://dx.doi.org/10.4161/15384047.2014.987075] [PMID: 25457061]
[65]
Julienne, C.M.; Dumas, J.F.; Goupille, C.; Pinault, M.; Berri, C.; Collin, A.; Tesseraud, S.; Couet, C.; Servais, S. Cancer cachexia is associated with a decrease in skeletal muscle mitochondrial oxidative capacities without alteration of ATP production efficiency. J. Cachexia Sarcopenia Muscle, 2012, 3(4), 265-275.
[http://dx.doi.org/10.1007/s13539-012-0071-9] [PMID: 22648737]
[66]
Kir, S.; White, J.P.; Kleiner, S.; Kazak, L.; Cohen, P.; Baracos, V.E.; Spiegelman, B.M. Tumour-derived PTH-related protein triggers adipose tissue browning and cancer cachexia. Nature, 2014, 513(7516), 100-104.
[http://dx.doi.org/10.1038/nature13528] [PMID: 25043053]
[67]
Petruzzelli, M.; Schweiger, M.; Schreiber, R.; Campos-Olivas, R.; Tsoli, M.; Allen, J.; Swarbrick, M.; Rose-John, S.; Rincon, M.; Robertson, G.; Zechner, R.; Wagner, E.F. A switch from white to brown fat increases energy expenditure in cancer-associated cachexia. Cell Metab., 2014, 20(3), 433-447.
[http://dx.doi.org/10.1016/j.cmet.2014.06.011] [PMID: 25043816]
[68]
Nedergaard, J.; Cannon, B. The browning of white adipose tissue: some burning issues. Cell Metab., 2014, 20(3), 396-407.
[http://dx.doi.org/10.1016/j.cmet.2014.07.005] [PMID: 25127354]
[69]
Petruzzelli, M.; Wagner, E.F. Mechanisms of metabolic dysfunction in cancer-associated cachexia. Genes Dev., 2016, 30(5), 489-501.
[http://dx.doi.org/10.1101/gad.276733.115] [PMID: 26944676]
[70]
Giordano, A.; Calvani, M.; Petillo, O.; Carteni’, M.; Melone, M.R.A.B.; Peluso, G. Skeletal muscle metabolism in physiology and in cancer disease. J. Cell. Biochem., 2003, 90(1), 170-186.
[http://dx.doi.org/10.1002/jcb.10601] [PMID: 12938166]
[71]
Vaughan, V.C.; Martin, P.; Lewandowski, P.A. Cancer cachexia: impact, mechanisms and emerging treatments. J. Cachexia Sarcopenia Muscle, 2013, 4(2), 95-109.
[http://dx.doi.org/10.1007/s13539-012-0087-1] [PMID: 23097000]
[72]
Chan, C.B.; Harper, M.E. Uncoupling proteins: role in insulin resistance and insulin insufficiency. Curr. Diabetes Rev., 2006, 2(3), 271-283.
[http://dx.doi.org/10.2174/157339906777950660] [PMID: 18220632]
[73]
Zhivotovsky, B.; Galluzzi, L.; Kepp, O.; Kroemer, G. Adenine nucleotide translocase: a component of the phylogenetically conserved cell death machinery. Cell Death Differ., 2009, 16(11), 1419-1425.
[http://dx.doi.org/10.1038/cdd.2009.118] [PMID: 19696789]
[74]
Fariss, M.W.; Chan, C.B.; Patel, M.; Van Houten, B.; Orrenius, S. Role of mitochondria in toxic oxidative stress. Mol. Interv., 2005, 5(2), 94-111.
[http://dx.doi.org/10.1124/mi.5.2.7] [PMID: 15821158]
[75]
Sullivan-Gunn, M.J.; Campbell-O’Sullivan, S.P.; Tisdale, M.J.; Lewandowski, P.A. Decreased NADPH oxidase expression and antioxidant activity in cachectic skeletal muscle. J. Cachexia Sarcopenia Muscle, 2011, 2(3), 181-188.
[http://dx.doi.org/10.1007/s13539-011-0037-3] [PMID: 21966644]
[76]
Rubin, H. Cancer cachexia: its correlations and causes. Proc. Natl. Acad. Sci. USA, 2003, 100(9), 5384-5389.
[http://dx.doi.org/10.1073/pnas.0931260100] [PMID: 12702753]
[77]
Baar, K. Involvement of PPAR gamma co-activator-1, nuclear respiratory factors 1 and 2, and PPAR alpha in the adaptive response to endurance exercise. Proc. Nutr. Soc., 2004, 63(2), 269-273.
[http://dx.doi.org/10.1079/PNS2004334] [PMID: 15294042]
[78]
Puigserver, P.; Spiegelman, B.M. Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1 alpha): transcriptional coactivator and metabolic regulator. Endocr. Rev., 2003, 24(1), 78-90.
[http://dx.doi.org/10.1210/er.2002-0012] [PMID: 12588810]
[79]
Booth, F.W.; Ruegsegger, G.N.; Toedebusch, R.G.; Yan, Z. Endurance exercise and the regulation of skeletal muscle metabolism. Prog. Mol. Biol. Transl. Sci., 2015, 135, 129-151.
[http://dx.doi.org/10.1016/bs.pmbts.2015.07.016] [PMID: 26477913]
[80]
Brooks, S.V.; Faulkner, J.A. Contractile properties of skeletal muscles from young, adult and aged mice. J. Physiol., 1988, 404, 71-82.
[http://dx.doi.org/10.1113/jphysiol.1988.sp017279] [PMID: 3253447]
[81]
Zhang, P.; Chen, X.; Fan, M. Signaling mechanisms involved in disuse muscle atrophy. Med. Hypotheses, 2007, 69(2), 310-321.
[http://dx.doi.org/10.1016/j.mehy.2006.11.043] [PMID: 17376604]
[82]
Garnier, A.; Fortin, D.; Zoll, J.; N’Guessan, B.; Mettauer, B.; Lampert, E.; Veksler, V.; Ventura-Clapier, R. Coordinated changes in mitochondrial function and biogenesis in healthy and diseased human skeletal muscle. FASEB J., 2005, 19(1), 43-52.
[http://dx.doi.org/10.1096/fj.04-2173com] [PMID: 15629894]
[83]
Lehman, J.J.; Barger, P.M.; Kovacs, A.; Saffitz, J.E.; Medeiros, D.M.; Kelly, D.P. Peroxisome proliferator-activated receptor γ coactivator-1 promotes cardiac mitochondrial biogenesis. J. Clin. Invest., 2000, 106(7), 847-856.
[http://dx.doi.org/10.1172/JCI10268] [PMID: 11018072]
[84]
Aquilano, K.; Baldelli, S.; Pagliei, B.; Ciriolo, M.R. Extranuclear localization of SIRT1 and PGC-1α: an insight into possible roles in diseases associated with mitochondrial dysfunction. Curr. Mol. Med., 2013, 13(1), 140-154.
[http://dx.doi.org/10.2174/156652413804486241] [PMID: 22834844]
[85]
Lettieri Barbato, D.; Aquilano, K.; Baldelli, S.; Cannata, S.M.; Bernardini, S.; Rotilio, G.; Ciriolo, M.R. Proline oxidase-adipose triglyceride lipase pathway restrains adipose cell death and tissue inflammation. Cell Death Differ., 2014, 21(1), 113-123.
[http://dx.doi.org/10.1038/cdd.2013.137] [PMID: 24096872]
[86]
Baldelli, S.; Lettieri Barbato, D.; Tatulli, G.; Aquilano, K.; Ciriolo, M.R. The role of nNOS and PGC-1α in skeletal muscle cells. J. Cell Sci., 2014, 127(Pt 22), 4813-4820.
[http://dx.doi.org/10.1242/jcs.154229] [PMID: 25217629]
[87]
Lin, J.; Wu, H.; Tarr, P.T.; Zhang, C.Y.; Wu, Z.; Boss, O.; Michael, L.F.; Puigserver, P.; Isotani, E.; Olson, E.N.; Lowell, B.B.; Bassel-Duby, R.; Spiegelman, B.M. Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres. Nature, 2002, 418(6899), 797-801.
[http://dx.doi.org/10.1038/nature00904] [PMID: 12181572]
[88]
Puppa, M.J.; Murphy, E.A.; Fayad, R.; Hand, G.A.; Carson, J.A. Cachectic skeletal muscle response to a novel bout of low-frequency stimulation. J. Appl. Physiol., 2014, 116(8), 1078-1087.
[89]
Joseph, A.M.; Pilegaard, H.; Litvintsev, A.; Leick, L.; Hood, D.A. Control of gene expression and mitochondrial biogenesis in the muscular adaptation to endurance exercise. Essays Biochem., 2006, 42, 13-29.
[http://dx.doi.org/10.1042/bse0420013] [PMID: 17144877]
[90]
Lira, V.A.; Benton, C.R.; Yan, Z.; Bonen, A. PGC-1alpha regulation by exercise training and its influences on muscle function and insulin sensitivity. Am. J. Physiol. Endocrinol. Metab., 2010, 299(2), E145-E161.
[http://dx.doi.org/10.1152/ajpendo.00755.2009] [PMID: 20371735]
[91]
Vainshtein, A.; Tryon, L.D.; Pauly, M.; Hood, D.A. Role of PGC-1α during acute exercise-induced autophagy and mitophagy in skeletal muscle. Am. J. Physiol. Cell Physiol., 2015, 308(9), C710-C719.
[http://dx.doi.org/10.1152/ajpcell.00380.2014] [PMID: 25673772]
[92]
Vainshtein, A.; Desjardins, E.M.; Armani, A.; Sandri, M.; Hood, D.A. PGC-1α modulates denervation-induced mitophagy in skeletal muscle. Skelet. Muscle, 2015, 5, 9.
[http://dx.doi.org/10.1186/s13395-015-0033-y] [PMID: 25834726]
[93]
Cannavino, J.; Brocca, L.; Sandri, M.; Bottinelli, R.; Pellegrino, M.A. PGC1-α over-expression prevents metabolic alterations and soleus muscle atrophy in hindlimb unloaded mice. J. Physiol., 2014, 592(20), 4575-4589.
[http://dx.doi.org/10.1113/jphysiol.2014.275545] [PMID: 25128574]
[94]
Cannavino, J.; Brocca, L.; Sandri, M.; Grassi, B.; Bottinelli, R.; Pellegrino, M.A. The role of alterations in mitochondrial dynamics and PGC-1α over-expression in fast muscle atrophy following hindlimb unloading. J. Physiol., 2015, 593(8), 1981-1995.
[http://dx.doi.org/10.1113/jphysiol.2014.286740] [PMID: 25565653]
[95]
Sandri, M.; Lin, J.; Handschin, C.; Yang, W.; Arany, Z.P.; Lecker, S.H.; Goldberg, A.L.; Spiegelman, B.M. PGC-1alpha protects skeletal muscle from atrophy by suppressing FoxO3 action and atrophy-specific gene transcription. Proc. Natl. Acad. Sci. USA, 2006, 103(44), 16260-16265.
[http://dx.doi.org/10.1073/pnas.0607795103] [PMID: 17053067]
[96]
Jäger, S.; Handschin, C.; St-Pierre, J.; Spiegelman, B.M. AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha. Proc. Natl. Acad. Sci. USA, 2007, 104(29), 12017-12022.
[http://dx.doi.org/10.1073/pnas.0705070104] [PMID: 17609368]
[97]
Bergeron, R.; Ren, J.M.; Cadman, K.S.; Moore, I.K.; Perret, P.; Pypaert, M.; Young, L.H.; Semenkovich, C.F.; Shulman, G.I. Chronic activation of AMP kinase results in NRF-1 activation and mitochondrial biogenesis. Am. J. Physiol. Endocrinol. Metab., 2001, 281(6), E1340-E1346.
[http://dx.doi.org/10.1152/ajpendo.2001.281.6.E1340] [PMID: 11701451]
[98]
Carling, D. AMPK signalling in health and disease. Curr. Opin. Cell Biol., 2017, 45, 31-37.
[http://dx.doi.org/10.1016/j.ceb.2017.01.005] [PMID: 28232179]
[99]
Mihaylova, M.M.; Shaw, R.J. The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat. Cell Biol., 2011, 13(9), 1016-1023.
[http://dx.doi.org/10.1038/ncb2329] [PMID: 21892142]
[100]
White, J.P.; Puppa, M.J.; Gao, S.; Sato, S.; Welle, S.L.; Carson, J.A. Muscle mTORC1 suppression by IL-6 during cancer cachexia: a role for AMPK. Am. J. Physiol. Endocrinol. Metab., 2013, 304(10), E1042-E1052.
[http://dx.doi.org/10.1152/ajpendo.00410.2012] [PMID: 23531613]
[101]
Hindi, S.M.; Mishra, V.; Bhatnagar, S.; Tajrishi, M.M.; Ogura, Y.; Yan, Z.; Burkly, L.C.; Zheng, T.S.; Kumar, A. Regulatory circuitry of TWEAK-Fn14 system and PGC-1α in skeletal muscle atrophy program. FASEB J., 2014, 28(3), 1398-1411.
[http://dx.doi.org/10.1096/fj.13-242123] [PMID: 24327607]
[102]
Chen, J.L.; Walton, K.L.; Qian, H.; Colgan, T.D.; Hagg, A.; Watt, M.J.; Harrison, C.A.; Gregorevic, P. Differential effects of IL6 and activin A in the development of cancer-associated cachexia. Cancer Res., 2016, 76(18), 5372-5382.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-3152] [PMID: 27328730]
[103]
Ge, X.; Vajjala, A.; McFarlane, C.; Wahli, W.; Sharma, M.; Kambadur, R. Lack of Smad3 signaling leads to impaired skeletal muscle regeneration. Am. J. Physiol. Endocrinol. Metab., 2012, 303(1), E90-E102.
[http://dx.doi.org/10.1152/ajpendo.00113.2012] [PMID: 22535746]
[104]
Sandri, M. Signaling in muscle atrophy and hypertrophy. Physiology (Bethesda), 2008, 23, 160-170.
[http://dx.doi.org/10.1152/physiol.00041.2007] [PMID: 18556469]
[105]
Luo, Y.; Yoneda, J.; Ohmori, H.; Sasaki, T.; Shimbo, K.; Eto, S.; Kato, Y.; Miyano, H.; Kobayashi, T.; Sasahira, T.; Chihara, Y.; Kuniyasu, H. Cancer usurps skeletal muscle as an energy repository. Cancer Res., 2014, 74(1), 330-340.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-1052] [PMID: 24197136]
[106]
Talbert, E.E.; Metzger, G.A.; He, W.A.; Guttridge, D.C. Modeling human cancer cachexia in colon 26 tumor-bearing adult mice. J. Cachexia Sarcopenia Muscle, 2014, 5(4), 321-328.
[http://dx.doi.org/10.1007/s13539-014-0141-2] [PMID: 24668658]
[107]
Yan, Z.; Lira, V.A.; Greene, N.P. Exercise training-induced regulation of mitochondrial quality. Exerc. Sport Sci. Rev., 2012, 40(3), 159-164.
[PMID: 22732425]
[108]
Lira, V.A.; Okutsu, M.; Zhang, M.; Greene, N.P.; Laker, R.C.; Breen, D.S.; Hoehn, K.L.; Yan, Z. Autophagy is required for exercise training-induced skeletal muscle adaptation and improvement of physical performance. FASEB J., 2013, 27(10), 4184-4193.
[http://dx.doi.org/10.1096/fj.13-228486] [PMID: 23825228]
[109]
Jokl, E.J.; Blanco, G. Disrupted autophagy undermines skeletal muscle adaptation and integrity. Mamm. Genome, 2016, 27(11-12), 525-537.
[http://dx.doi.org/10.1007/s00335-016-9659-2] [PMID: 27484057]
[110]
Kimura, N.; Kumamoto, T.; Kawamura, Y.; Himeno, T.; Nakamura, K.I.; Ueyama, H.; Arakawa, R. Expression of autophagy-associated genes in skeletal muscle: an experimental model of chloroquine-induced myopathy. Pathobiology, 2007, 74(3), 169-176.
[http://dx.doi.org/10.1159/000103376] [PMID: 17643062]
[111]
Nichenko, A.S.; Southern, W.M.; Atuan, M.; Luan, J.; Peissig, K.B.; Foltz, S.J.; Beedle, A.M.; Warren, G.L.; Call, J.A. Mitochondrial maintenance via autophagy contributes to functional skeletal muscle regeneration and remodeling. Am. J. Physiol. Cell Physiol., 2016, 311(2), C190-C200.
[http://dx.doi.org/10.1152/ajpcell.00066.2016] [PMID: 27281480]
[112]
Rodney, G.G.; Pal, R.; Abo-Zahrah, R. Redox regulation of autophagy in skeletal muscle. Free Radic. Biol. Med., 2016, 98, 103-112.
[http://dx.doi.org/10.1016/j.freeradbiomed.2016.05.010] [PMID: 27184957]
[113]
Sandri, M. Autophagy in skeletal muscle. FEBS Lett., 2010, 584(7), 1411-1416.
[http://dx.doi.org/10.1016/j.febslet.2010.01.056] [PMID: 20132819]
[114]
Masiero, E.; Agatea, L.; Mammucari, C.; Blaauw, B.; Loro, E.; Komatsu, M.; Metzger, D.; Reggiani, C.; Schiaffino, S.; Sandri, M. Autophagy is required to maintain muscle mass. Cell Metab., 2009, 10(6), 507-515.
[http://dx.doi.org/10.1016/j.cmet.2009.10.008] [PMID: 19945408]
[115]
Mayers, J.R.; Wu, C.; Clish, C.B.; Kraft, P.; Torrence, M.E.; Fiske, B.P.; Yuan, C.; Bao, Y.; Townsend, M.K.; Tworoger, S.S.; Davidson, S.M.; Papagiannakopoulos, T.; Yang, A.; Dayton, T.L.; Ogino, S.; Stampfer, M.J.; Giovannucci, E.L.; Qian, Z.R.; Rubinson, D.A.; Ma, J.; Sesso, H.D.; Gaziano, J.M.; Cochrane, B.B.; Liu, S.; Wactawski-Wende, J.; Manson, J.E.; Pollak, M.N.; Kimmelman, A.C.; Souza, A.; Pierce, K.; Wang, T.J.; Gerszten, R.E.; Fuchs, C.S.; Vander Heiden, M.G.; Wolpin, B.M. Elevation of circulating branched-chain amino acids is an early event in human pancreatic adenocarcinoma development. Nat. Med., 2014, 20(10), 1193-1198.
[http://dx.doi.org/10.1038/nm.3686] [PMID: 25261994]
[116]
Pettersen, K.; Andersen, S.; Degen, S.; Tadini, V.; Grosjean, J.; Hatakeyama, S.; Tesfahun, A.N.; Moestue, S.; Kim, J.; Nonstad, U.; Romundstad, P.R.; Skorpen, F.; Sørhaug, S.; Amundsen, T.; Grønberg, B.H.; Strasser, F.; Stephens, N.; Hoem, D.; Molven, A.; Kaasa, S.; Fearon, K.; Jacobi, C.; Bjørkøy, G. Cancer cachexia associates with a systemic autophagy-inducing activity mimicked by cancer cell-derived IL-6 trans-signaling. Sci. Rep., 2017, 7(1), 2046.
[http://dx.doi.org/10.1038/s41598-017-02088-2] [PMID: 28515477]
[117]
Penna, F.; Costamagna, D.; Pin, F.; Camperi, A.; Fanzani, A.; Chiarpotto, E.M.; Cavallini, G.; Bonelli, G.; Baccino, F.M.; Costelli, P. Autophagic degradation contributes to muscle wasting in cancer cachexia. Am. J. Pathol., 2013, 182(4), 1367-1378.
[http://dx.doi.org/10.1016/j.ajpath.2012.12.023] [PMID: 23395093]
[118]
Tessitore, L.; Costelli, P.; Bonetti, G.; Baccino, F.M. Cancer cachexia, malnutrition, and tissue protein turnover in experimental animals. Arch. Biochem. Biophys., 1993, 306(1), 52-58.
[http://dx.doi.org/10.1006/abbi.1993.1479] [PMID: 8215420]
[119]
McClung, J.M.; Judge, A.R.; Powers, S.K.; Yan, Z. p38 MAPK links oxidative stress to autophagy-related gene expression in cachectic muscle wasting. Am. J. Physiol. Cell Physiol., 2010, 298(3), C542-C549.
[http://dx.doi.org/10.1152/ajpcell.00192.2009] [PMID: 19955483]
[120]
Ding, H.; Zhang, G.; Sin, K.W.; Liu, Z.; Lin, R.K.; Li, M.; Li, Y.P. Activin A induces skeletal muscle catabolism via p38β mitogen-activated protein kinase. J. Cach. Sarcop. Muscle, 2017, 8(2), 202-212.
[http://dx.doi.org/10.1002/jcsm.12145] [PMID: 27897407]
[121]
Cosper, P.F.; Leinwand, L.A. Cancer causes cardiac atrophy and autophagy in a sexually dimorphic manner. Cancer Res., 2011, 71(5), 1710-1720.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-3145] [PMID: 21163868]
[122]
Fritzen, A.M.; Frøsig, C.; Jeppesen, J.; Jensen, T.E.; Lundsgaard, A.M.; Serup, A.K.; Schjerling, P.; Proud, C.G.; Richter, E.A.; Kiens, B. Role of AMPK in regulation of LC3 lipidation as a marker of autophagy in skeletal muscle. Cell. Signal., 2016, 28(6), 663-674.
[http://dx.doi.org/10.1016/j.cellsig.2016.03.005] [PMID: 26976209]
[123]
Martinez-Outschoorn, U.E.; Whitaker-Menezes, D.; Pavlides, S.; Chiavarina, B.; Bonuccelli, G.; Casey, T.; Tsirigos, A.; Migneco, G.; Witkiewicz, A.; Balliet, R.; Mercier, I.; Wang, C.; Flomenberg, N.; Howell, A.; Lin, Z.; Caro, J.; Pestell, R.G.; Sotgia, F.; Lisanti, M.P. The autophagic tumor stroma model of cancer or “battery-operated tumor growth”: A simple solution to the autophagy paradox. Cell Cycle, 2010, 9(21), 4297-4306.
[http://dx.doi.org/10.4161/cc.9.21.13817] [PMID: 21051947]
[124]
Aversa, Z.; Pin, F.; Lucia, S.; Penna, F.; Verzaro, R.; Fazi, M.; Colasante, G.; Tirone, A.; Rossi Fanelli, F.; Ramaccini, C.; Costelli, P.; Muscaritoli, M. Autophagy is induced in the skeletal muscle of cachectic cancer patients. Sci. Rep., 2016, 6, 30340.
[http://dx.doi.org/10.1038/srep30340] [PMID: 27459917]
[125]
Penna, F.; Busquets, S.; Pin, F.; Toledo, M.; Baccino, F.M.; López-Soriano, F.J.; Costelli, P.; Argilés, J.M. Combined approach to counteract experimental cancer cachexia: eicosapentaenoic acid and training exercise. J. Cachexia Sarcopenia Muscle, 2011, 2(2), 95-104.
[http://dx.doi.org/10.1007/s13539-011-0028-4] [PMID: 21766055]
[126]
Paul, P.K.; Kumar, A. TRAF6 coordinates the activation of autophagy and ubiquitin-proteasome systems in atrophying skeletal muscle. Autophagy, 2011, 7(5), 555-556.
[http://dx.doi.org/10.4161/auto.7.5.15102] [PMID: 21412053]
[127]
Sanchez, A.M.; Csibi, A.; Raibon, A.; Cornille, K.; Gay, S.; Bernardi, H.; Candau, R. AMPK promotes skeletal muscle autophagy through activation of forkhead FoxO3a and interaction with Ulk1. J. Cell. Biochem., 2012, 113(2), 695-710.
[http://dx.doi.org/10.1002/jcb.23399] [PMID: 22006269]
[128]
Gullett, N.P.; Mazurak, V.C.; Hebbar, G.; Ziegler, T.R. Nutritional interventions for cancer-induced cachexia. Curr. Probl. Cancer, 2011, 35(2), 58-90.
[http://dx.doi.org/10.1016/j.currproblcancer.2011.01.001] [PMID: 21420558]
[129]
De Waele, E.; Mattens, S.; Honoré, P.M.; Spapen, H.; De Grève, J.; Pen, J.J. Nutrition therapy in cachectic cancer patients. The Tight Caloric Control (TiCaCo) pilot trial. Appetite, 2015, 91, 298-301.
[http://dx.doi.org/10.1016/j.appet.2015.04.049] [PMID: 25912786]
[130]
Reid, J.; Hughes, C.M.; Murray, L.J.; Parsons, C.; Cantwell, M.M. Non-steroidal anti-inflammatory drugs for the treatment of cancer cachexia: a systematic review. Palliat. Med., 2013, 27(4), 295-303.
[http://dx.doi.org/10.1177/0269216312441382] [PMID: 22450159]
[131]
Solheim, T.S.; Fearon, K.C.; Blum, D.; Kaasa, S. Non-steroidal anti-inflammatory treatment in cancer cachexia: a systematic literature review. Acta Oncol., 2013, 52(1), 6-17.
[http://dx.doi.org/10.3109/0284186X.2012.724536] [PMID: 23020528]
[132]
Patel, B.M.; Damle, D. Combination of telmisartan with cisplatin controls oral cancer cachexia in rats. BioMed Res. Int., 2013, 2013(December)642848
[http://dx.doi.org/10.1155/2013/642848] [PMID: 24381940]
[133]
Sukumaran, S.; Patel, H.J.; Patel, B.M. Evaluation of role of telmisartan in combination with 5-fluorouracil in gastric cancer cachexia. Life Sci., 2016, 154, 15-23.
[http://dx.doi.org/10.1016/j.lfs.2016.04.029] [PMID: 27117583]
[134]
Beijer, S.; Hupperets, P.S.; van den Borne, B.E.; Wijckmans, N.E.; Spreeuwenberg, C.; van den Brandt, P.A.; Dagnelie, P.C. Randomized clinical trial on the effects of adenosine 5′-triphosphate infusions on quality of life, functional status, and fatigue in preterminal cancer patients. J. Pain Symptom Manage., 2010, 40(4), 520-530.
[http://dx.doi.org/10.1016/j.jpainsymman.2010.01.023] [PMID: 20598849]
[135]
Agteresch, H.J.; Dagnelie, P.C.; van der Gaast, A.; Stijnen, T.; Wilson, J.H. Randomized clinical trial of adenosine 5′-triphosphate in patients with advanced non-small-cell lung cancer. J. Natl. Cancer Inst., 2000, 92(4), 321-328.
[http://dx.doi.org/10.1093/jnci/92.4.321] [PMID: 10675381]
[136]
Sakkas, G.K.; Schambelan, M.; Mulligan, K. Can the use of creatine supplementation attenuate muscle loss in cachexia and wasting? Curr. Opin. Clin. Nutr. Metab. Care, 2009, 12(6), 623-627.
[http://dx.doi.org/10.1097/MCO.0b013e328331de63] [PMID: 19741514]
[137]
Fermoselle, C.; García-Arumí, E.; Puig-Vilanova, E.; Andreu, A.L.; Urtreger, A.J.; de Kier Joffé, E.D.; Tejedor, A.; Puente-Maestu, L.; Barreiro, E. Mitochondrial dysfunction and therapeutic approaches in respiratory and limb muscles of cancer cachectic mice. Exp. Physiol., 2013, 98(9), 1349-1365.
[http://dx.doi.org/10.1113/expphysiol.2013.072496] [PMID: 23625954]
[138]
Martins, I.J. Avasimibe and Sirt 1 Activators Reverse NAFLD and Obesity. Novel Approaches in Drug Design. Develop., 2017, 1(3)555561
[139]
Martins, I.J. Anti-aging genes improve appetite regulation and reverse cell senescence and apoptosis in global populations. AAR, 2016, 5, 9-26.
[http://dx.doi.org/10.4236/aar.2016.51002]
[140]
Ghosh, H.S. The anti-aging, metabolism potential of SIRT1. Curr. Opin. Investig. Drugs, 2008, 9(10), 1095-1102.
[PMID: 18821472]
[141]
Sooyeon, L.; Kristina, L.G.; Kim, J. Deacetylation of mitofusin-2 by sirtuin-1: a critical event in cell survival after ischemia. Molecular & Cellular Oncology; , 2016, 3, . (2) e1087452 (3 pages).
[142]
Martins, I.J. Drug-drug interactions with relevance to drug induced mitochondrial toxicity and accelerated global chronic diseases. EC Pharmacol. Toxicol., 2017, 3(1), 18-21.
[143]
Martins, I.J. Increased risk for obesity and diabetes with neurodegeneration in developing countries. J. Mol. Genet. Med., 2013, S1, 1-8.
[144]
Martins, I.J. Caffeine consumption with relevance to type 3 diabetes and accelerated brain aging. Res. Rev. Neurosci., 2016, 1(1), 1-5.
[PMID: 26000816]
[145]
Martins, I.J. Food intake and caffeine determine amyloid beta metabolism with relevance to mitophagy in brain aging and chronic disease. Eu. J. Food Sci. Technol., 2016, 4.5, 11-17.
[146]
Martins, I.J. Diabetes and organ dysfunction in the developing and developed. Eur. J. Food Sci. Technol., 2015, 15.1, 1-6.
[147]
Martins, I.J. Induction of NAFLD with increased risk of obesity and chronic diseases in developed countries. Open J. Endocr. Metab. Dis., 2014, 4(4), 90-110.
[http://dx.doi.org/10.4236/ojemd.2014.44011]
[148]
Toledo, M.; Busquets, S.; Ametller, E.; López-Soriano, F.J.; Argilés, J.M. Sirtuin 1 in skeletal muscle of cachectic tumour-bearing rats: a role in impaired regeneration? J. Cach. Sarcopen. Muscle, 2011, 2(1), 57-62.
[http://dx.doi.org/10.1007/s13539-011-0018-6] [PMID: 21475674]
[149]
Shi, T.; Wang, F.; Stieren, E.; Tong, Q. SIRT3, a mitochondrial sirtuin deacetylase, regulates mitochondrial function and thermogenesis in brown adipocytes. J. Biol. Chem., 2005, 280(14), 13560-13567.
[http://dx.doi.org/10.1074/jbc.M414670200] [PMID: 15653680]
[150]
Palacios, O.M.; Carmona, J.J.; Michan, S.; Chen, K.Y.; Manabe, Y.; Ward, J.L., III; Goodyear, L.J.; Tong, Q. Diet and exercise signals regulate SIRT3 and activate AMPK and PGC-1alpha in skeletal muscle. Aging (Albany NY), 2009, 1(9), 771-783.
[http://dx.doi.org/10.18632/aging.100075] [PMID: 20157566]
[151]
Seufert, C.D.; Graf, M.; Janson, G.; Kuhn, A.; Söling, H.D. Formation of free acetate by isolated perfused livers from normal, starved and diabetic rats. Biochem. Biophys. Res. Commun., 1974, 57(3), 901-909.
[http://dx.doi.org/10.1016/0006-291X(74)90631-7] [PMID: 4827840]
[152]
Hallows, W.C.; Lee, S.; Denu, J.M. Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases. Proc. Natl. Acad. Sci. USA, 2006, 103(27), 10230-10235.
[http://dx.doi.org/10.1073/pnas.0604392103] [PMID: 16790548]
[153]
Schwer, B.; Bunkenborg, J.; Verdin, R.O.; Andersen, J.S.; Verdin, E. Reversible lysine acetylation controls the activity of the mitochondrial enzyme acetyl-CoA synthetase 2. Proc. Natl. Acad. Sci. USA, 2006, 103(27), 10224-10229.
[http://dx.doi.org/10.1073/pnas.0603968103] [PMID: 16788062]
[154]
Falcón, A.A.; Chen, S.; Wood, M.S.; Aris, J.P. Acetyl-coenzyme A synthetase 2 is a nuclear protein required for replicative longevity in Saccharomyces cerevisiae. Mol. Cell. Biochem., 2010, 333(1-2), 99-108.
[http://dx.doi.org/10.1007/s11010-009-0209-z] [PMID: 19618123]
[155]
Zullo, A.; Simone, E.; Grimaldi, M.; Musto, V.; Mancini, F.P. Sirtuins as mediator of the anti-ageing effects of calorie restriction in skeletal and cardiac muscle. Int. J. Mol. Sci., 2018, 19(4), 928.
[http://dx.doi.org/10.3390/ijms19040928] [PMID: 29561771]


Rights & PermissionsPrintExport Cite as


Article Details

VOLUME: 20
ISSUE: 14
Year: 2019
Page: [1141 - 1153]
Pages: 13
DOI: 10.2174/1389200220666190816162658
Price: $58

Article Metrics

PDF: 25
HTML: 4