Targeting Serotonin1A Receptors for Treating Chronic Pain and Depression

Author(s): Darakhshan Jabeen Haleem*.

Journal Name: Current Neuropharmacology

Volume 17 , Issue 12 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

The association of chronic pain with depression is becoming increasingly recognized. Treating both the conditions together is essential for an effective treatment outcome. In this regard, it is important to identify a shared mechanism involved in the association of chronic pain with depression. Central serotonin (5-hydroxytryptamine; 5-HT) neurotransmission has long been known to participate in the processing of signals related to pain. It also plays a key role in the pathogenesis and treatment of depression. Although functional responses to serotonin are mediated via the activation of multiple receptor types and subtypes, the 5-HT1A subtype is involved in the processing of nociception as well as the pathogenesis and treatment of depression. This receptor is located presynaptically, as an autoreceptor, on the perikaryon and dendritic spines of serotonin-containing neurons. It is also expressed as a heteroreceptor on neurons receiving input from serotonergic neurons. This article targets the 5-HT1A receptors to show that indiscriminate activation of pre and postsynaptic 5-HT1A receptors is likely to produce no therapeutic benefits; biased activation of the 5-HT heteroreceptors may be a useful strategy for treating chronic pain and depression individually as well as in a comorbid condition.

Keywords: Chronic pain, depression, serotonin, 5-HT1A receptor, heteroreceptors, autoreceptors.

[1]
Colloca, L.; Ludman, T.; Bouhassira, D.; Baron, R.; Dickenson, A.H.; Yarnitsky, D.; Freeman, R.; Truini, A.; Attal, N.; Finnerup, N.B.; Eccleston, C.; Kalso, E.; Bennett, D.L.; Dworkin, R.H.; Raja, S.N. Neuropathic pain. Nat. Rev. Dis. Primers, 2017, 3, 17002.
[http://dx.doi.org/10.1038/nrdp.2017.2] [PMID: 28205574]
[2]
St. John, S.E. Advances in understanding nociception and neuropathic pain. J. Neurol., 2018, 265(2), 231-238.
[http://dx.doi.org/10.1007/s00415-017-8641-6] [PMID: 29032407]
[3]
Häuser, W.; Wolfe, F.; Henningsen, P.; Schmutzer, G.; Brähler, E.; Hinz, A. Untying chronic pain: prevalence and societal burden of chronic pain stages in the general population - a cross-sectional survey. BMC Public Health, 2014, 14, 352.
[http://dx.doi.org/10.1186/1471-2458-14-352] [PMID: 24725286]
[4]
Weinrib, A.Z.; Azam, M.A.; Birnie, K.A.; Burns, L.C.; Clarke, H.; Katz, J. The psychology of chronic post-surgical pain: new frontiers in risk factor identification, prevention and management. Br. J. Pain, 2017, 11(4), 169-177.
[http://dx.doi.org/10.1177/2049463717720636] [PMID: 29123661]
[5]
Belayev, L.Y.; Mor, M.K.; Sevick, M.A.; Shields, A.M.; Rollman, B.L.; Palevsky, P.M.; Arnold, R.M.; Fine, M.J.; Weisbord, S.D. Longitudinal associations of depressive symptoms and pain with quality of life in patients receiving chronic hemodialysis. Hemodial. Int., 2015, 19(2), 216-224.
[http://dx.doi.org/10.1111/hdi.12247] [PMID: 25403142]
[6]
Hooten, W.M. Chronic pain and mental health disorders: shared neural mechanisms, epidemiology, and treatment. Mayo Clin. Proc., 2016, 91(7), 955-970.
[http://dx.doi.org/10.1016/j.mayocp.2016.04.029] [PMID: 27344405]
[7]
Mossey, J.M.; Gallagher, R.M. The longitudinal occurrence and impact of comorbid chronic pain and chronic depression over two years in continuing care retirement community residents. Pain Med., 2004, 5(4), 335-348.
[http://dx.doi.org/10.1111/j.1526-4637.2004.04041.x] [PMID: 15563319]
[8]
Polatin, P.; Bevers, K.; Gatchel, R.J. Pharmacological treatment of depression in geriatric chronic pain patients: a biopsychosocial approach integrating functional restoration. Expert Rev. Clin. Pharmacol., 2017, 10(9), 957-963.
[http://dx.doi.org/10.1080/17512433.2017.1339602] [PMID: 28590144]
[9]
Hassett, A.L.; Marshall, E.; Bailey, A.M.; Moser, S.; Clauw, D.J.; Hooten, W.M.; Urquhart, A.; Brummett, C.M. Changes in anxiety and depression are mediated by changes in pain severity in patients undergoing lower-extremity total joint arthroplasty. Reg. Anesth. Pain Med., 2018, 43(1), 14-18.
[http://dx.doi.org/10.1097/AAP.0000000000000682] [PMID: 29077589]
[10]
Bair, M.J.; Robinson, R.L.; Katon, W.; Kroenke, K. Depression and pain comorbidity: a literature review. Arch. Intern. Med., 2003, 163(20), 2433-2445.
[http://dx.doi.org/10.1001/archinte.163.20.2433] [PMID: 14609780]
[11]
Cabrera-León, A.; Cantero-Braojos, M.Á.; Garcia-Fernandez, L.; Guerra de Hoyos, J.A. Living with disabling chronic pain: results from a face-to-face cross-sectional population-based study. BMJ Open, 2018, 8(11)e020913
[http://dx.doi.org/10.1136/bmjopen-2017-020913] [PMID: 30420342]
[12]
Costigan, M.; Scholz, J.; Woolf, C.J. Neuropathic pain: a maladaptive response of the nervous system to damage. Annu. Rev. Neurosci., 2009, 32, 1-32.
[http://dx.doi.org/10.1146/annurev.neuro.051508.135531] [PMID: 19400724]
[13]
Calvo, M.; Bennett, D.L. The mechanisms of microgliosis and pain following peripheral nerve injury. Exp. Neurol., 2012, 234(2), 271-282.
[http://dx.doi.org/10.1016/j.expneurol.2011.08.018] [PMID: 21893056]
[14]
Zhao, H.; Alam, A.; Chen, Q.A.; Eusman, M.; Pal, A.; Eguchi, S.; Wu, L.; Ma, D. The role of microglia in the pathobiology of neuropathic pain development: what do we know? Br. J. Anaesth., 2017, 118(4), 504-516.
[http://dx.doi.org/10.1093/bja/aex006] [PMID: 28403399]
[15]
Rial, D.; Lemos, C.; Pinheiro, H.; Duarte, J.M.; Gonçalves, F.Q.; Real, J.I.; Prediger, R.D.; Gonçalves, N.; Gomes, C.A.; Canas, P.M.; Agostinho, P.; Cunha, R.A. Depression as a glial-based synaptic dysfunction. Front. Cell. Neurosci., 2016, 9, 521.
[http://dx.doi.org/10.3389/fncel.2015.00521] [PMID: 26834566]
[16]
Ohno, Y.; Kinboshi, M.; Shimizu, S. Inwardly rectifying potassium channel Kir4.1 as a novel modulator of BDNF expression in astrocytes. Int. J. Mol. Sci., 2018, 19(11)E3313
[http://dx.doi.org/10.3390/ijms19113313] [PMID: 30356026]
[17]
Doan, L.; Manders, T.; Wang, J. Neuroplasticity underlying the comorbidity of pain and depression. Neural Plast., 2015, 2015504691
[http://dx.doi.org/10.1155/2015/504691] [PMID: 25810926]
[18]
Sheng, J.; Liu, S.; Wang, Y.; Cui, R.; Zhang, X. The link between depression and chronic pain: neural mechanisms in the brain. Neural Plast., 2017, 20179724371
[http://dx.doi.org/10.1155/2017/9724371] [PMID: 28706741]
[19]
Abdallah, C.G.; Geha, P. Chronic pain and chronic stress: two sides of the same coin? Chronic Stress , 2017, 1, 1-10.
[20]
Jabeen, H.D. Raphe-hippocampal serotonin neurotransmission in the sex related differences of adaptation to stress: focus on serotonin-1a receptor. Curr. Neuropharmacol., 2011, 9(3), 512-521.
[http://dx.doi.org/10.2174/157015911796558019] [PMID: 22379463]
[21]
Fischer, B.; Lusted, A.; Roerecke, M.; Taylor, B.; Rehm, J. The prevalence of mental health and pain symptoms in general population samples reporting nonmedical use of prescription opioids: a systematic review and meta-analysis. J. Pain, 2012, 13(11), 1029-1044.
[http://dx.doi.org/10.1016/j.jpain.2012.07.013] [PMID: 23040158]
[22]
Morley, K.I.; Ferris, J.A.; Winstock, A.R.; Lynskey, M.T. Polysubstance use and misuse or abuse of prescription opioid analgesics: a multi-level analysis of international data. Pain, 2017, 158(6), 1138-1144.
[http://dx.doi.org/10.1097/j.pain.0000000000000892] [PMID: 28267061]
[23]
Haleem, D.J. Extending therapeutic use of psychostimulants: focus on serotonin-1A receptor. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2013, 46, 170-180.
[http://dx.doi.org/10.1016/j.pnpbp.2013.07.015] [PMID: 23906987]
[24]
Devinsky, O.; Cilio, M.R.; Cross, H.; Fernandez-Ruiz, J.; French, J.; Hill, C.; Katz, R.; Di Marzo, V.; Jutras-Aswad, D.; Notcutt, W.G.; Martinez-Orgado, J.; Robson, P.J.; Rohrback, B.G.; Thiele, E.; Whalley, B.; Friedman, D. Cannabidiol: pharmacology and potential therapeutic role in epilepsy and other neuropsychiatric disorders. Epilepsia, 2014, 55(6), 791-802.
[http://dx.doi.org/10.1111/epi.12631] [PMID: 24854329]
[25]
Haleem, D.J.; Nawaz, S. Inhibition of reinforcing, hyperalgesic, and motor effects of morphine by buspirone in rats. J. Pain, 2017, 18(1), 19-28.
[http://dx.doi.org/10.1016/j.jpain.2016.10.001] [PMID: 27742411]
[26]
Haleem, D.J. Serotonin-1A receptor dependent modulation of pain and reward for improving therapy of chronic pain. Pharmacol. Res., 2018, 134, 212-219.
[http://dx.doi.org/10.1016/j.phrs.2018.06.030] [PMID: 29969666]
[27]
Haleem, D.J.; Nawaz, S.; Salman, T. Dopamine and serotonin metabolism associated with morphine reward and its inhibition with buspirone: A study in the rat striatum. Pharmacol. Biochem. Behav., 2018, 170, 71-78.
[http://dx.doi.org/10.1016/j.pbb.2018.05.010] [PMID: 29782941]
[28]
Haleem, D.J.; Nawaz, S.; Salman, T. Dose related effects of buspirone on pain, learning/memory and food intake. Regul. Toxicol. Pharmacol., 2018, 99, 182-190.
[http://dx.doi.org/10.1016/j.yrtph.2018.09.017] [PMID: 30244043]
[29]
Erspamer, V. Pharmakologische studien uber enteramin: Uber die, wirkung von acetonextrkten der kaninchenmagenschleimhaut auf den blutdruck und auf isoliert uberlebende organe. Arch Exp Path Pharmakol., 1940, 196, 343-407.
[http://dx.doi.org/10.1007/BF01861121]
[30]
Rapport, M.M.; Green, A.A.; Page, I.H. Crystalline serotonin. Science, 1948, 108(2804), 329-330.
[http://dx.doi.org/10.1126/science.108.2804.329] [PMID: 17748034]
[31]
Amin, A.H.; Crawford, T.B.; Gaddum, J.H. The distribution of substance P and 5-hydroxytryptamine in the central nervous system of the dog. J. Physiol., 1954, 126(3), 596-618.
[http://dx.doi.org/10.1113/jphysiol.1954.sp005229] [PMID: 13222357]
[32]
Brodie, B.B.; Pletscher, A.; Shore, P.A. Evidence that serotonin has a role in brain function. Science, 1955, 122(3177), 968.
[http://dx.doi.org/10.1126/science.122.3177.968] [PMID: 13274056]
[33]
Nemeroff, C.B.; Owens, M.J. The role of serotonin in the pathophysiology of depression: as important as ever. Clin. Chem., 2009, 55(8), 1578-1579.
[http://dx.doi.org/10.1373/clinchem.2009.123752] [PMID: 19498050]
[34]
Haleem, D.J. Drug targets for obesity and depression: from serotonin to leptin. Curr. Drug Targets, 2016, 17(11), 1282-1291.
[http://dx.doi.org/10.2174/1389450117666151209123049] [PMID: 26648065]
[35]
Akimova, E.; Lanzenberger, R.; Kasper, S. The serotonin-1A receptor in anxiety disorders. Biol. Psychiatry, 2009, 66(7), 627-635.
[http://dx.doi.org/10.1016/j.biopsych.2009.03.012] [PMID: 19423077]
[36]
Goadsby, P.J. Emerging therapies for migraine. Nat. Clin. Pract. Neurol., 2007, 3(11), 610-619.
[http://dx.doi.org/10.1038/ncpneuro0639] [PMID: 17982431]
[37]
Haleem, D.J. Serotonin neurotransmission in anorexia nervosa. Behav. Pharmacol., 2012, 23(5-6), 478-495.
[http://dx.doi.org/10.1097/FBP.0b013e328357440d] [PMID: 22854305]
[38]
Haleem, D.J. Improving therapeutics in anorexia nervosa with tryptophan. Life Sci., 2017, 178, 87-93.
[http://dx.doi.org/10.1016/j.lfs.2017.04.015] [PMID: 28438641]
[39]
Haleem, D.J. 5-HT1A receptor-dependent control of nigrostriatal dopamine neurotransmission in the pharmacotherapy of Parkinson’s disease and schizophrenia. Behav. Pharmacol., 2015, 26(1-2), 45-58.
[http://dx.doi.org/10.1097/FBP.0000000000000123] [PMID: 25503261]
[40]
Millan, M.J. Descending control of pain. Prog. Neurobiol., 2002, 66(6), 355-474.
[http://dx.doi.org/10.1016/S0301-0082(02)00009-6] [PMID: 12034378]
[41]
Sagalajev, B.; Viisanen, H.; Wei, H.; Pertovaara, A. Descending antinociception induced by secondary somatosensory cortex stimulation in experimental neuropathy: role of the medullospinal serotonergic pathway. J. Neurophysiol., 2017, 117(3), 1200-1214.
[http://dx.doi.org/10.1152/jn.00836.2016] [PMID: 28053243]
[42]
Ossipov, M.H.; Morimura, K.; Porreca, F. Descending pain modulation and chronification of pain. Curr. Opin. Support. Palliat. Care, 2014, 8(2), 143-151.
[PMID: 24752199]
[43]
Gershon, M.D.; Ross, L.L. Location of sites of 5-hydroxytryptamine storage and metabolism by radioautography. J. Physiol., 1966, 186(2), 477-492.
[http://dx.doi.org/10.1113/jphysiol.1966.sp008047] [PMID: 5298337]
[44]
Sikander, A.; Rana, S.V.; Prasad, K.K. Role of serotonin in gastrointestinal motility and irritable bowel syndrome. Clin. Chim. Acta, 2009, 403(1-2), 47-55.
[http://dx.doi.org/10.1016/j.cca.2009.01.028] [PMID: 19361459]
[45]
Ahern, G.P. 5-HT and the immune system. Curr. Opin. Pharmacol., 2011, 11(1), 29-33.
[http://dx.doi.org/10.1016/j.coph.2011.02.004] [PMID: 21393060]
[46]
Mawe, G.M.; Hoffman, J.M. Serotonin signalling in the gut--functions, dysfunctions and therapeutic targets. Nat. Rev. Gastroenterol. Hepatol., 2013, 10(8), 473-486.
[http://dx.doi.org/10.1038/nrgastro.2013.105] [PMID: 23797870]
[47]
Charnay, Y.; Léger, L. Brain serotonergic circuitries. Dialogues Clin. Neurosci., 2010, 12(4), 471-487.
[PMID: 21319493]
[48]
Pytliak, M.; Vargová, V.; Mechírová, V.; Felšöci, M. Serotonin receptors - from molecular biology to clinical applications. Physiol. Res., 2011, 60(1), 15-25.
[PMID: 20945968]
[49]
Nichols, D.E.; Nichols, C.D. Serotonin receptors. Chem. Rev., 2008, 108(5), 1614-1641.
[http://dx.doi.org/10.1021/cr078224o] [PMID: 18476671]
[50]
Peroutka, S.J. Molecular biology of serotonin (5-HT) receptors. Synapse, 1994, 18(3), 241-260.
[http://dx.doi.org/10.1002/syn.890180310] [PMID: 7855737]
[51]
Comai, S.; Lopez-Canul, M.; De Gregorio, D.; Posner, A.; Ettaoussi, M.; Guarnieri, F.C.; Gobbi, G. Melatonin MT1 receptor as a novel target in neuropsychopharmacology: MT1 ligands, pathophysiological and therapeutic implications, and perspectives. Pharmacol. Res., 2019, 144, 343-356.
[http://dx.doi.org/10.1016/j.phrs.2019.04.015] [PMID: 31029764]
[52]
Caumo, W.; Hidalgo, M.P.; Souza, A.; Torres, I.L.S.; Antunes, L.C. Melatonin is a biomarker of circadian dysregulation and is correlated with major depression and fibromyalgia symptom severity. J. Pain Res., 2019, 12, 545-556.
[http://dx.doi.org/10.2147/JPR.S176857] [PMID: 30787633]
[53]
Srinivasan, V.; Lauterbach, E.C.; Ho, K.Y.; Acuña-Castroviejo, D.; Zakaria, R.; Brzezinski, A. Melatonin in antinociception: its therapeutic applications. Curr. Neuropharmacol., 2012, 10(2), 167-178.
[http://dx.doi.org/10.2174/157015912800604489] [PMID: 23204986]
[54]
Chen, C.; Fichna, J.; Laudon, M.; Storr, M. Antinociceptive effects of novel melatonin receptor agonists in mouse models of abdominal pain. World J. Gastroenterol., 2014, 20(5), 1298-1304.
[http://dx.doi.org/10.3748/wjg.v20.i5.12]
[55]
Rojas, P.S.; Fiedler, J.L. What do we really know about 5-ht1a receptor signaling in neuronal cells? Front. Cell. Neurosci., 2016, 10, 272.
[http://dx.doi.org/10.3389/fncel.2016.00272] [PMID: 27932955]
[56]
Barnes, N.M.; Sharp, T. A review of central 5-HT receptors and their function. Neuropharmacology, 1999, 38(8), 1083-1152.
[http://dx.doi.org/10.1016/S0028-3908(99)00010-6] [PMID: 10462127]
[57]
Hjorth, S.; Magnusson, T. The 5-HT 1A receptor agonist, 8-OH-DPAT, preferentially activates cell body 5-HT autoreceptors in rat brain in vivo. Naunyn Schmiedebergs Arch. Pharmacol., 1988, 338(5), 463-471.
[http://dx.doi.org/10.1007/BF00179315] [PMID: 2469021]
[58]
Haleem, D.J. Attenuation of 8-OH-DPAT-induced decreases in 5-Ht synthesis in brain regions of rats adapted to a repeated stress schedule. Stress, 1999, 3(2), 123-129.
[http://dx.doi.org/10.3109/10253899909001117] [PMID: 10938574]
[59]
Pazos, A.; Palacios, J.M. Quantitative autoradiographic mapping of serotonin receptors in the rat brain. I. Serotonin-1 receptors. Brain Res., 1985, 346(2), 205-230.
[http://dx.doi.org/10.1016/0006-8993(85)90856-X] [PMID: 4052776]
[60]
Riad, M.; Garcia, S.; Watkins, K.C.; Jodoin, N.; Doucet, E.; Langlois, X.; el Mestikawy, S.; Hamon, M.; Descarries, L. Somatodendritic localization of 5-HT1A and preterminal axonal localization of 5-HT1B serotonin receptors in adult rat brain. J. Comp. Neurol., 2000, 417(2), 181-194.
[http://dx.doi.org/10.1002/(SICI)1096-9861(20000207)417:2<181:AID-CNE4>3.0.CO;2-A] [PMID: 10660896]
[61]
Pompeiano, M.; Palacios, J.M.; Mengod, G. Distribution and cellular localization of mRNA coding for 5-HT1A receptor in the rat brain: correlation with receptor binding. J. Neurosci., 1992, 12(2), 440-453.
[http://dx.doi.org/10.1523/JNEUROSCI.12-02-00440.1992] [PMID: 1531498]
[62]
Doherty, M.D.; Pickel, V.M. Targeting of serotonin 1A receptors to dopaminergic neurons within the parabrachial subdivision of the ventral tegmental area in rat brain. J. Comp. Neurol., 2001, 433(3), 390-400.
[http://dx.doi.org/10.1002/cne.1147] [PMID: 11298363]
[63]
Mannoury la Cour, C.; El Mestikawy, S.; Hanoun, N.; Hamon, M.; Lanfumey, L. Regional differences in the coupling of 5-hydroxytryptamine-1A receptors to G proteins in the rat brain. Mol. Pharmacol., 2006, 70(3), 1013-1021.
[http://dx.doi.org/10.1124/mol.106.022756] [PMID: 16772521]
[64]
Altieri, S.C.; Garcia-Garcia, A.L.; Leonardo, E.D.; Andrews, A.M. Rethinking 5-HT1A receptors: emerging modes of inhibitory feedback of relevance to emotion-related behavior. ACS Chem. Neurosci., 2013, 4(1), 72-83.
[http://dx.doi.org/10.1021/cn3002174] [PMID: 23336046]
[65]
Ehrengruber, M.U.; Doupnik, C.A.; Xu, Y.; Garvey, J.; Jasek, M.C.; Lester, H.A.; Davidson, N. Activation of heteromeric G protein-gated inward rectifier K+ channels overexpressed by adenovirus gene transfer inhibits the excitability of hippocampal neurons. Proc. Natl. Acad. Sci. USA, 1997, 94(13), 7070-7075.
[http://dx.doi.org/10.1073/pnas.94.13.7070] [PMID: 9192693]
[66]
Penington, N.J.; Kelly, J.S.; Fox, A.P. Whole-cell recordings of inwardly rectifying K+ currents activated by 5-HT1A receptors on dorsal raphe neurones of the adult rat. J. Physiol., 1993, 469, 387-405.
[http://dx.doi.org/10.1113/jphysiol.1993.sp019819] [PMID: 8271204]
[67]
Okuhara, D.Y.; Beck, S.G. 5-HT1A receptor linked to inward-rectifying potassium current in hippocampal CA3 pyramidal cells. J. Neurophysiol., 1994, 71(6), 2161-2167.
[http://dx.doi.org/10.1152/jn.1994.71.6.2161] [PMID: 7931509]
[68]
Béïque, J.C.; Campbell, B.; Perring, P.; Hamblin, M.W.; Walker, P.; Mladenovic, L.; Andrade, R. Serotonergic regulation of membrane potential in developing rat prefrontal cortex: Coordinated expression of 5-hydroxytryptamine (5-HT)1A, 5-HT2A, and 5-HT7 receptors. J. Neurosci., 2004, 24(20), 4807-4817.
[http://dx.doi.org/10.1523/JNEUROSCI.5113-03.2004] [PMID: 15152041]
[69]
Rhee, J.S.; Ishibashi, H.; Akaike, N. Serotonin modulates high-voltage-activated Ca2+ channels in rat ventromedial hypothalamic neurons. Neuropharmacology, 1996, 35(8), 1093-1100.
[http://dx.doi.org/10.1016/S0028-3908(96)00052-4] [PMID: 9121612]
[70]
Sullivan, N.R.; Crane, J.W.; Damjanoska, K.J.; Carrasco, G.A.; D’Souza, D.N.; Garcia, F.; Van de Kar, L.D. Tandospirone activates neuroendocrine and ERK (MAP kinase) signaling pathways specifically through 5-HT1A receptor mechanisms in vivo. Naunyn Schmiedebergs Arch. Pharmacol., 2005, 371(1), 18-26.
[http://dx.doi.org/10.1007/s00210-004-1005-7] [PMID: 15655673]
[71]
Crane, J.W.; Shimizu, K.; Carrasco, G.A.; Garcia, F.; Jia, C.; Sullivan, N.R.; D’Souza, D.N.; Zhang, Y.; Van de Kar, L.D.; Muma, N.A.; Battaglia, G. 5-HT1A receptors mediate (+)8-OH-DPAT-stimulation of extracellular signal-regulated kinase (MAP kinase) in vivo in rat hypothalamus: time dependence and regional differences. Brain Res., 2007, 1183, 51-59.
[http://dx.doi.org/10.1016/j.brainres.2007.07.101] [PMID: 17976547]
[72]
Mogha, A.; Guariglia, S.R.; Debata, P.R.; Wen, G.Y.; Banerjee, P. Serotonin 1A receptor-mediated signaling through ERK and PKCα is essential for normal synaptogenesis in neonatal mouse hippocampus. Transl. Psychiatry, 2012, 2 e66
[http://dx.doi.org/10.1038/tp.2011.58] [PMID: 22832728]
[73]
Peroutka, S.J. 5-Hydroxytryptamine receptor subtypes: molecular, biochemical and physiological characterization. Trends Neurosci., 1988, 11(11), 496-500.
[http://dx.doi.org/10.1016/0166-2236(88)90011-2] [PMID: 2469177]
[74]
Artigas, F.; Bel, N.; Casanovas, J.M.; Romero, L. Adaptative changes of the serotonergic system after antidepressant treatments. Adv. Exp. Med. Biol., 1996, 398, 51-59.
[http://dx.doi.org/10.1007/978-1-4613-0381-7_6] [PMID: 8906240]
[75]
Nash, J.R.; Sargent, P.A.; Rabiner, E.A.; Hood, S.D.; Argyropoulos, S.V.; Potokar, J.P.; Grasby, P.M.; Nutt, D.J. Serotonin 5-HT1A receptor binding in people with panic disorder: positron emission tomography study. Br. J. Psychiatry, 2008, 193(3), 229-234.
[http://dx.doi.org/10.1192/bjp.bp.107.041186] [PMID: 18757983]
[76]
Newman-Tancredi, A. The importance of 5-HT1A receptor agonism in antipsychotic drug action: rationale and perspectives. Curr. Opin. Investig. Drugs, 2010, 11(7), 802-812.
[PMID: 20571976]
[77]
Perrin, F.E.; Gerber, Y.N.; Teigell, M.; Lonjon, N.; Boniface, G.; Bauchet, L.; Rodriguez, J.J.; Hugnot, J.P.; Privat, A.M. Anatomical study of serotonergic innervation and 5-HT(1A) receptor in the human spinal cord. Cell Death Dis., 2011, 2 e218
[http://dx.doi.org/10.1038/cddis.2011.98] [PMID: 21993394]
[78]
Bardin, L.; Tarayre, J.P.; Malfetes, N.; Koek, W.; Colpaert, F.C. Profound, non-opioid analgesia produced by the high-efficacy 5-HT(1A) agonist F 13640 in the formalin model of tonic nociceptive pain. Pharmacology, 2003, 67(4), 182-194.
[http://dx.doi.org/10.1159/000068404] [PMID: 12595749]
[79]
Suzuki, R.; Rahman, W.; Hunt, S.P.; Dickenson, A.H. Descending facilitatory control of mechanically evoked responses is enhanced in deep dorsal horn neurones following peripheral nerve injury. Brain Res., 2004, 1019(1-2), 68-76.
[http://dx.doi.org/10.1016/j.brainres.2004.05.108] [PMID: 15306240]
[80]
Jacobs, B.L.; Azmitia, E.C. Structure and function of the brain serotonin system. Physiol. Rev., 1992, 72(1), 165-229.
[http://dx.doi.org/10.1152/physrev.1992.72.1.165] [PMID: 1731370]
[81]
Nishitani, N.; Nagayasu, K.; Asaoka, N.; Yamashiro, M.; Andoh, C.; Nagai, Y.; Kinoshita, H.; Kawai, H.; Shibui, N.; Liu, B.; Hewinson, J.; Shirakawa, H.; Nakagawa, T.; Hashimoto, H.; Kasparov, S.; Kaneko, S. Manipulation of dorsal raphe serotonergic neurons modulates active coping to inescapable stress and anxiety-related behaviors in mice and rats. Neuropsychopharmacology, 2019, 44(4), 721-732.
[http://dx.doi.org/10.1038/s41386-018-0254-y] [PMID: 30377380]
[82]
Teissier, A.; Chemiakine, A.; Inbar, B.; Bagchi, S.; Ray, R.S.; Palmiter, R.D.; Dymecki, S.M.; Moore, H.; Ansorge, M.S. Activity of raphé serotonergic neurons controls emotional behaviors. Cell Rep., 2015, 13(9), 1965-1976.
[http://dx.doi.org/10.1016/j.celrep.2015.10.061] [PMID: 26655908]
[83]
Huo, F.Q.; Huang, F.S.; Lv, B.C.; Chen, T.; Feng, J.; Qu, C.L.; Tang, J.S.; Li, Y.Q. Activation of serotonin 1A receptors in ventrolateral orbital cortex depresses persistent nociception: a presynaptic inhibition mechanism. Neurochem. Int., 2010, 57(7), 749-755.
[http://dx.doi.org/10.1016/j.neuint.2010.08.011] [PMID: 20813144]
[84]
Clark, M.S.; McDevitt, R.A.; Neumaier, J.F. Quantitative mapping of tryptophan hydroxylase-2, 5-HT1A, 5-HT1B, and serotonin transporter expression across the anteroposterior axis of the rat dorsal and median raphe nuclei. J. Comp. Neurol., 2006, 498(5), 611-623.
[http://dx.doi.org/10.1002/cne.21073] [PMID: 16917826]
[85]
Hervás, I.; Bel, N.; Fernández, A.G.; Palacios, J.M.; Artigas, F. In vivo control of 5-hydroxytryptamine release by terminal autoreceptors in rat brain areas differentially innervated by the dorsal and median raphe nuclei. Naunyn Schmiedebergs Arch. Pharmacol., 1998, 358(3), 315-322.
[http://dx.doi.org/10.1007/PL00005259] [PMID: 9774218]
[86]
Hillegaart, V.; Hjorth, S.; Ahlenius, S. Effects of 5-HT and 8-OH-DPAT on forebrain monoamine synthesis after local application into the median and dorsal raphe nuclei of the rat. J. Neural Transm. (Vienna), 1990, 81(2), 131-145.
[http://dx.doi.org/10.1007/BF01245833] [PMID: 2141990]
[87]
Zhang, Y.Q.; Gao, X.; Ji, G.C.; Huang, Y.L.; Wu, G.C.; Zhao, Z.Q. Expression of 5-HT1A receptor mRNA in rat lumbar spinal dorsal horn neurons after peripheral inflammation. Pain, 2002, 98(3), 287-295.
[http://dx.doi.org/10.1016/S0304-3959(02)00026-X] [PMID: 12127030]
[88]
Newman-Tancredi, A.; Kleven, M.S. Comparative pharmacology of antipsychotics possessing combined dopamine D2 and serotonin 5-HT1A receptor properties. Psychopharmacology (Berl.), 2011, 216(4), 451-473.
[http://dx.doi.org/10.1007/s00213-011-2247-y] [PMID: 21394633]
[89]
Gjerstad, J.; Tjolsen, A.; Hole, K. The effect of 5-HT1A receptor stimulation on nociceptive dorsal horn neurones in rats. Eur. J. Pharmacol., 1996, 318(2-3), 315-321.
[http://dx.doi.org/10.1016/S0014-2999(96)00819-9] [PMID: 9016920]
[90]
Mjellem, N.; Lund, A.; Eide, P.K.; Størkson, R.; Tjølsen, A. The role of 5-HT1A and 5-HT1B receptors in spinal nociceptive transmission and in the modulation of NMDA induced behaviour. Neuroreport, 1992, 3(12), 1061-1064.
[http://dx.doi.org/10.1097/00001756-199212000-00007] [PMID: 1337283]
[91]
Fasmer, O.B.; Berge, O.G.; Post, C.; Hole, K. Effects of the putative 5-HT1A receptor agonist 8-OH-2-(di-n-propylamino)tetralin on nociceptive sensitivity in mice. Pharmacol. Biochem. Behav., 1986, 25(4), 883-888.
[http://dx.doi.org/10.1016/0091-3057(86)90402-8] [PMID: 2947249]
[92]
Nadeson, R.; Goodchild, C.S. Antinociceptive role of 5-HT1A receptors in rat spinal cord. Br. J. Anaesth., 2002, 88(5), 679-684.
[http://dx.doi.org/10.1093/bja/88.5.679] [PMID: 12067006]
[93]
Liu, Y.Y.; Yin, D.; Chen, L.; Qu, W.M.; Chen, C.R.; Laudon, M.; Cheng, N.N.; Urade, Y.; Huang, Z.L. Piromelatine exerts antinociceptive effect via melatonin, opioid, and 5HT1A receptors and hypnotic effect via melatonin receptors in a mouse model of neuropathic pain. Psychopharmacology (Berl.), 2014, 231(20), 3973-3985.
[http://dx.doi.org/10.1007/s00213-014-3530-5] [PMID: 24700387]
[94]
Lemonde, S.; Turecki, G.; Bakish, D.; Du, L.; Hrdina, P.D.; Bown, C.D.; Sequeira, A.; Kushwaha, N.; Morris, S.J.; Basak, A.; Ou, X.M.; Albert, P.R. Impaired repression at a 5-hydroxytryptamine 1A receptor gene polymorphism associated with major depression and suicide. J. Neurosci., 2003, 23(25), 8788-8799.
[http://dx.doi.org/10.1523/JNEUROSCI.23-25-08788.2003] [PMID: 14507979]
[95]
Czesak, M.; Lemonde, S.; Peterson, E.A.; Rogaeva, A.; Albert, P.R. Cell-specific repressor or enhancer activities of Deaf-1 at a serotonin 1A receptor gene polymorphism. J. Neurosci., 2006, 26(6), 1864-1871.
[http://dx.doi.org/10.1523/JNEUROSCI.2643-05.2006] [PMID: 16467535]
[96]
Czesak, M.; Le François, B.; Millar, A.M.; Deria, M.; Daigle, M.; Visvader, J.E.; Anisman, H.; Albert, P.R. Increased serotonin-1A (5-HT1A) autoreceptor expression and reduced raphe serotonin levels in deformed epidermal autoregulatory factor-1 (Deaf-1) gene knock-out mice. J. Biol. Chem., 2012, 287(9), 6615-6627.
[http://dx.doi.org/10.1074/jbc.M111.293027] [PMID: 22232550]
[97]
Kayser, V.; Elfassi, I.E.; Aubel, B.; Melfort, M.; Julius, D.; Gingrich, J.A.; Hamon, M.; Bourgoin, S. Mechanical, thermal and formalin-induced nociception is differentially altered in 5-HT1A-/-, 5-HT1B-/-, 5-HT2A-/-, 5-HT3A-/- and 5-HTT-/- knock-out male mice. Pain, 2007, 130(3), 235-248.
[http://dx.doi.org/10.1016/j.pain.2006.11.015] [PMID: 17250964]
[98]
Haleem, D.J.; Shireen, E.; Haleem, M.A. Somatodendritic and postsynaptic serotonin-1A receptors in the attenuation of haloperidol-induced catalepsy. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2004, 28(8), 1323-1329.
[http://dx.doi.org/10.1016/j.pnpbp.2004.08.003] [PMID: 15588759]
[99]
Celada, P.; Bortolozzi, A.; Artigas, F. Serotonin 5-HT1A receptors as targets for agents to treat psychiatric disorders: Rationale and current status of research. CNS Drugs, 2013, 27(9), 703-716.
[http://dx.doi.org/10.1007/s40263-013-0071-0] [PMID: 23757185]
[100]
Galeotti, N.; Ghelardini, C.; Bartolini, A. 5-HT1A agonists induce central cholinergic antinociception. Pharmacol. Biochem. Behav., 1997, 57(4), 835-841.
[http://dx.doi.org/10.1016/S0091-3057(96)00401-7] [PMID: 9259013]
[101]
Belcheva, S.; Petkov, V.D.; Konstantinova, E.; Petkov, V.V.; Boyanova, E. Effects on nociception of the Ca2+ and 5-HT antagonist dotarizine and other 5-HT receptor agonists and antagonists. Acta Physiol. Pharmacol. Bulg., 1995, 21(4), 93-98.
[PMID: 8830881]
[102]
Savitz, J.; Lucki, I.; Drevets, W.C. 5-HT(1A) receptor function in major depressive disorder. Prog. Neurobiol., 2009, 88(1), 17-31.
[http://dx.doi.org/10.1016/j.pneurobio.2009.01.009] [PMID: 19428959]
[103]
Kennett, G.A.; Dourish, C.T.; Curzon, G. Antidepressant-like action of 5-HT1A agonists and conventional antidepressants in an animal model of depression. Eur. J. Pharmacol., 1987, 134(3), 265-274.
[http://dx.doi.org/10.1016/0014-2999(87)90357-8] [PMID: 2883013]
[104]
Detke, M.J.; Wieland, S.; Lucki, I. Blockade of the antidepressant-like effects of 8-OH-DPAT, buspirone and desipramine in the rat forced swim test by 5HT1A receptor antagonists. Psychopharmacology (Berl.), 1995, 119(1), 47-54.
[http://dx.doi.org/10.1007/BF02246053] [PMID: 7675949]
[105]
Mayorga, A.J.; Dalvi, A.; Page, M.E.; Zimov-Levinson, S.; Hen, R.; Lucki, I. Antidepressant-like behavioral effects in 5-hydroxytryptamine(1A) and 5-hydroxytryptamine(1B) receptor mutant mice. J. Pharmacol. Exp. Ther., 2001, 298(3), 1101-1107.
[PMID: 11504807]
[106]
Blier, P.; de Montigny, C. Current advances and trends in the treatment of depression. Trends Pharmacol. Sci., 1994, 15(7), 220-226.
[http://dx.doi.org/10.1016/0165-6147(94)90315-8] [PMID: 7940983]
[107]
Albert, P.R.; Lembo, P.; Storring, J.M.; Charest, A.; Saucier, C. The 5-HT1A receptor: signaling, desensitization, and gene transcription. Neuropsychopharmacology, 1996, 14(1), 19-25.
[http://dx.doi.org/10.1016/S0893-133X(96)80055-8] [PMID: 8719026]
[108]
Haleem, D.J.; Parveen, T. Brain regional serotonin synthesis following adaptation to repeated restraint. Neuroreport, 1994, 5(14), 1785-1788.
[http://dx.doi.org/10.1097/00001756-199409080-00025] [PMID: 7827332]
[109]
Blier, P.; Ward, N.M. Is there a role for 5-HT1A agonists in the treatment of depression? Biol. Psychiatry, 2003, 53(3), 193-203.
[http://dx.doi.org/10.1016/S0006-3223(02)01643-8] [PMID: 12559651]
[110]
Artigas, F.; Celada, P.; Laruelle, M.; Adell, A. How does pindolol improve antidepressant action? Trends Pharmacol. Sci., 2001, 22(5), 224-228.
[http://dx.doi.org/10.1016/S0165-6147(00)01682-5] [PMID: 11339972]
[111]
Sahli, Z.T.; Banerjee, P.; Tarazi, F.I. The preclinical and clinical effects of vilazodone for the treatment of major depressive disorder. Expert Opin. Drug Discov., 2016, 11(5), 515-523.
[http://dx.doi.org/10.1517/17460441.2016.1160051] [PMID: 26971593]
[112]
Janakiraman, R.; Hamilton, L.; Wan, A. Unravelling the efficacy of antidepressants as analgesics. Aust. Fam. Phys, 2016, 45(3), 113-117.
[PMID: 27052046]
[113]
Finnerup, N.B.; Attal, N.; Haroutounian, S.; McNicol, E.; Baron, R.; Dworkin, R.H.; Gilron, I.; Haanpää, M.; Hansson, P.; Jensen, T.S.; Kamerman, P.R.; Lund, K.; Moore, A.; Raja, S.N.; Rice, A.S.; Rowbotham, M.; Sena, E.; Siddall, P.; Smith, B.H.; Wallace, M. Pharmacotherapy for neuropathic pain in adults: a systematic review and meta-analysis. Lancet Neurol., 2015, 14(2), 162-173.
[http://dx.doi.org/10.1016/S1474-4422(14)70251-0] [PMID: 25575710]
[114]
Walker, Z.; Walker, R.W.; Robertson, M.M.; Stansfeld, S. Antidepressant treatment of chronic tension-type headache: a comparison between fluoxetine and desipramine. Headache, 1998, 38(7), 523-528.
[http://dx.doi.org/10.1046/j.1526-4610.1998.3807523.x] [PMID: 15613168]
[115]
Max, M.B.; Lynch, S.A.; Muir, J.; Shoaf, S.E.; Smoller, B.; Dubner, R. Effects of desipramine, amitriptyline, and fluoxetine on pain in diabetic neuropathy. N. Engl. J. Med., 1992, 326(19), 1250-1256.
[http://dx.doi.org/10.1056/NEJM199205073261904] [PMID: 1560801]
[116]
Luo, Y.L.; Zhang, M.Y.; Wu, W.Y.; Li, C.B.; Lu, Z.; Li, Q.W. A randomized double-blind clinical trial on analgesic efficacy of fluoxetine for persistent somatoform pain disorder. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2009, 33(8), 1522-1525.
[http://dx.doi.org/10.1016/j.pnpbp.2009.08.013] [PMID: 19733606]
[117]
Manna, V.; Bolino, F.; Di Cicco, L. Chronic tension-type headache, mood depression and serotonin: therapeutic effects of fluvoxamine and mianserine. Headache, 1994, 34(1), 44-49.
[http://dx.doi.org/10.1111/j.1526-4610.1994.hed3401044.x] [PMID: 8132440]
[118]
Shimodozono, M.; Kawahira, K.; Kamishita, T.; Ogata, A.; Tohgo, S.; Tanaka, N. Reduction of central poststroke pain with the selective serotonin reuptake inhibitor fluvoxamine. Int. J. Neurosci., 2002, 112(10), 1173-1181.
[http://dx.doi.org/10.1080/00207450290026139] [PMID: 12587520]
[119]
Xiao, Y.; Liu, J.; Huang, X.E.; Ca, L.H.; Ma, Y.M.; Wei, W.; Zhang, R.X.; Huang, X.H.; Chang, J.; Wu, Y.J. Clinical study on fluvoxamine combined with oxycodone prolonged-release tablets in treating patients with moderate to severe cancer pain. Asian Pac. J. Cancer Prev., 2014, 15(23), 10445-10449.
[http://dx.doi.org/10.7314/APJCP.2014.15.23.10445] [PMID: 25556490]
[120]
Kane, C.M.; Mulvey, M.R.; Wright, S.; Craigs, C.; Wright, J.M.; Bennett, M.I. Opioids combined with antidepressants or antiepileptic drugs for cancer pain: Systematic review and meta-analysis. Palliat. Med., 2018, 32(1), 276-286.
[http://dx.doi.org/10.1177/0269216317711826] [PMID: 28604172]
[121]
Keefe, F.J.; Shelby, R.A.; Somers, T.J.; Varia, I.; Blazing, M.; Waters, S.J.; McKee, D.; Silva, S.; She, L.; Blumenthal, J.A.; O’Connor, J.; Knowles, V.; Johnson, P.; Bradley, L. Effects of coping skills training and sertraline in patients with non-cardiac chest pain: a randomized controlled study. Pain, 2011, 152(4), 730-741.
[http://dx.doi.org/10.1016/j.pain.2010.08.040] [PMID: 21324590]
[122]
Sindrup, S.H.; Gram, L.F.; Brøsen, K.; Eshøj, O.; Mogensen, E.F. The selective serotonin reuptake inhibitor paroxetine is effective in the treatment of diabetic neuropathy symptoms. Pain, 1990, 42(2), 135-144.
[http://dx.doi.org/10.1016/0304-3959(90)91157-E] [PMID: 2147235]
[123]
Viazis, N.; Katopodi, K.; Karamanolis, G.; Denaxas, K.; Varytimiadis, L.; Galanopoulos, M.; Tsoukali, E.; Kamberoglou, D.; Christidou, A.; Karamanolis, D.G.; Papatheodoridis, G.; Mantzaris, G.J. Proton pump inhibitor and selective serotonin reuptake inhibitor therapy for the management of noncardiac chest pain. Eur. J. Gastroenterol. Hepatol., 2017, 29(9), 1054-1058.
[http://dx.doi.org/10.1097/MEG.0000000000000925] [PMID: 28628496]
[124]
Giannopoulos, S.; Kosmidou, M.; Sarmas, I.; Markoula, S.; Pelidou, S.H.; Lagos, G.; Kyritsis, A.P. Patient compliance with SSRIs and gabapentin in painful diabetic neuropathy. Clin. J. Pain, 2007, 23(3), 267-269.
[http://dx.doi.org/10.1097/AJP.0b013e31802fc14a] [PMID: 17314587]
[125]
Roohafza, H.; Pourmoghaddas, Z.; Saneian, H.; Gholamrezaei, A. Citalopram for pediatric functional abdominal pain: A randomized, placebo-controlled trial. Neurogastroenterol. Motil., 2014, 26(11), 1642-1650.
[http://dx.doi.org/10.1111/nmo.12444] [PMID: 25244442]
[126]
Otto, M.; Bach, F.W.; Jensen, T.S.; Brøsen, K.; Sindrup, S.H. Escitalopram in painful polyneuropathy: a randomized, placebo-controlled, cross-over trial. Pain, 2008, 139(2), 275-283.
[http://dx.doi.org/10.1016/j.pain.2008.04.012] [PMID: 18547727]
[127]
Muller, J.E.; Wentzel, I.; Koen, L.; Niehaus, D.J.; Seedat, S.; Stein, D.J. Escitalopram in the treatment of multisomatoform disorder: a double-blind, placebo-controlled trial. Int. Clin. Psychopharmacol., 2008, 23(1), 43-48.
[http://dx.doi.org/10.1097/YIC.0b013e32825ea301] [PMID: 18090507]
[128]
Jaracz, J.; Gattner, K.; Jaracz, K.; Górna, K.; Moczko, J.; Hauser, J. Is venlafaxine more effective than escitalopram and nortriptyline in the management of painful symptoms in patients with major depression? Pharmacopsychiatry, 2018, 51(4), 148-152.
[http://dx.doi.org/10.1055/s-0043-122077] [PMID: 29141255]
[129]
Obata, H. Analgesic mechanisms of antidepressants for neuropathic pain. Int. J. Mol. Sci., 2017, 18(11)E2483
[http://dx.doi.org/10.3390/ijms18112483] [PMID: 29160850]


Rights & PermissionsPrintExport Cite as


Article Details

VOLUME: 17
ISSUE: 12
Year: 2019
Page: [1098 - 1108]
Pages: 11
DOI: 10.2174/1570159X17666190811161807
Price: $65

Article Metrics

PDF: 38
HTML: 4