Dietary Flavonoids Interaction with CREB-BDNF Pathway: An Unconventional Approach for Comprehensive Management of Epilepsy

Author(s): Pallavi Sharma, Amit Kumar, Damanpreet Singh*.

Journal Name: Current Neuropharmacology

Volume 17 , Issue 12 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

cAMP response element binding protein (CREB) is a key transcriptional regulator that regulates the transcription of genes related with neuronal differentiation, synaptic plasticity, learning and memory. Brain derived neurotrophic factor (BDNF), is a CREB dependent gene which plays a pivotal role in the pathogenesis of epilepsy and central comorbid conditions associated with epilepsy. However, the beneficial or detrimental consequences of CREB-BDNF activation on the induction and/or progression of seizures depend specifically on the region of brain involved and the time of activation. The bioactive molecules that alter the activity of CREB in a way to have specialized effects in different brain regions and neural circuits involved could potentially be utilized for therapeutic purposes. Flavonoids are the polyphenolic compounds which lead to phosphorylation of CREB in the hippocampus, followed by increase in extracellular signal regulated kinase (ERK) and BDNF. Several members of flavonoid family have also showed suppression of epileptic seizures via interaction with CREB/BDNF pathway. Moreover, epilepsy is often accompanied by a number of behavioural and psychological comorbid conditions that further gets aggravated by the use of conventional antiepileptic drug therapy. Multiple studies have also supported the beneficial effects of flavonoids in cognitive and memory impairments by upregulation of CREB-BDNF pathway. The current review is an attempt to collate the available preclinical and clinical studies to establish the therapeutic potential of various dietary flavonoids in comprehensive management of epilepsy with relation to CREB-BDNF pathway.

Keywords: cAMP response element binding protein, bioavailability, epilepsy comorbidities, neuroinflammation, neurotrophins, cognitive deficit.

[1]
Moshé, S.L.; Perucca, E.; Ryvlin, P.; Tomson, T. Epilepsy: new advances. Lancet, 2015, 385(9971), 884-898.
[http://dx.doi.org/10.1016/S0140-6736(14)60456-6] [PMID: 25260236]
[2]
Van Diessen, E.; Van Der Maas, F.; Cabral, V.; Otte, W.M. Community-based rehabilitation offers cost-effective epilepsy treatment in rural Guinea-Bissau. Epilepsy Behav., 2018, 79, 23-25.
[http://dx.doi.org/10.1016/j.yebeh.2017.11.009]
[3]
Scheffer, I.E.; Berkovic, S.; Capovilla, G.; Connolly, M.B.; French, J.; Guilhoto, L.; Hirsch, E.; Jain, S.; Mathern, G.W.; Moshé, S.L.; Nordli, D.R.; Perucca, E.; Tomson, T.; Wiebe, S.; Zhang, Y.H.; Zuberi, S.M. ILAE classification of the epilepsies: Position paper of the ILAE Commission for Classification and Terminology. Epilepsia, 2017, 58(4), 512-521.
[http://dx.doi.org/10.1111/epi.13709] [PMID: 28276062]
[4]
Sivathamboo, S.; Perucca, P.; Velakoulis, D.; Jones, N.C.; Goldin, J.; Kwan, P.; O’Brien, T.J. Sleep-disordered breathing in epilepsy: epidemiology, mechanisms, and treatment. Sleep (Basel), 2018, 41(4), 41.
[http://dx.doi.org/10.1093/sleep/zsy015] [PMID: 29394413]
[5]
Dalic, L.; Cook, M.J. Managing drug-resistant epilepsy: challenges and solutions. Neuropsychiatr. Dis. Treat., 2016, 12, 2605-2616.
[http://dx.doi.org/10.2147/NDT.S84852] [PMID: 27789949]
[6]
Yin, G.; Yao, G.; Zhang, K.; Li, B. Recent advances in pathophysiological studies and treatment of epilepsy. Curr. Neuropharmacol., 2018, 16(1), 3-4.
[PMID: 29301484]
[7]
Aneja, S.; Sharma, S. Newer anti-epileptic drugs. Indian Pediatr., 2013, 50(11), 1033-1040.
[http://dx.doi.org/10.1007/s13312-013-0284-9] [PMID: 24382900]
[8]
Manford, M. Recent advances in epilepsy. J. Neurol., 2017, 264(8), 1811-1824.
[http://dx.doi.org/10.1007/s00415-017-8394-2] [PMID: 28120042]
[9]
Brodie, M.J.; Zuberi, S.M.; Scheffer, I.E.; Fisher, R.S. The 2017 ILAE classification of seizure types and the epilepsies: what do people with epilepsy and their caregivers need to know? Epileptic Disord., 2018, 20(2), 77-87.
[http://dx.doi.org/10.1684/epd.2018.0957] [PMID: 29620013]
[10]
Neal, E.G.; Cross, J.H. Efficacy of dietary treatments for epilepsy. J. Hum. Nutr. Diet., 2010, 23(2), 113-119.
[http://dx.doi.org/10.1111/j.1365-277X.2010.01043.x] [PMID: 20487176]
[11]
Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An overview. J. Nutr. Sci, 2016, 5 e47
[http://dx.doi.org/10.1017/jns.2016.41] [http://dx.doi.org/10.1016/j.mam.2017.11.003] [PMID: 29117513]
[12]
Vauzour, D.; Vafeiadou, K.; Rodriguez-Mateos, A.; Rendeiro, C.; Spencer, J.P. The neuroprotective potential of flavonoids: a multiplicity of effects. Genes Nutr., 2008, 3(3-4), 115-126.
[http://dx.doi.org/10.1007/s12263-008-0091-4] [PMID: 18937002]
[13]
Kumar, S.; Pandey, A.K. Chemistry and biological activities of flavonoids: an overview. ScientificWorldJournal, 2013, 2013162750
[http://dx.doi.org/10.1155/2013/162750] [PMID: 24470791]
[14]
Dey, A.; Kang, X.; Qiu, J.; Du, Y.; Jiang, J. Anti-inflammatory small molecules to treat seizures and epilepsy: from bench to bedside. Trends Pharmacol. Sci., 2016, 37(6), 463-484.
[http://dx.doi.org/10.1016/j.tips.2016.03.001] [PMID: 27062228]
[15]
Diniz, T.C.; Silva, J.C.; de Lima-Saraiva, S.R.; Ribeiro, F.P.; Pacheco, A.G.; de Freitas, R.M.; Quintans-Júnior, L.J. Quintans, Jde.S.; Mendes, R.L.; Almeida, J.R. The role of flavonoids on oxidative stress in epilepsy. Oxid. Med. Cell. Longev., 2015, 2015171756
[http://dx.doi.org/10.1155/2015/171756] [PMID: 25653736]
[16]
Singh, P.; Singh, D.; Goel, R.K. Phytoflavonoids: antiepileptics for the future. Int. J. Pharm. Pharm. Sci., 2014, 6, 51-66.
[17]
Copmans, D.; Orellana-Paucar, A.M.; Steurs, G.; Zhang, Y.; Ny, A.; Foubert, K.; Exarchou, V.; Siekierska, A.; Kim, Y.; Borggraeve, W.D.; Dehaen, W. Pieters; de Witte, P.A.M. Methylated flavonoids as anti-seizure agents: Naringenin 40,7-dimethyl ether attenuates epileptic seizures in zebrafish and mouse models. Neurochem. Int., 2018, 112, 124-133.
[http://dx.doi.org/10.1016/j.neuint.2017.11.011] [PMID: 29174382]
[18]
Uttara, B.; Singh, A.V.; Zamboni, P.; Mahajan, R.T. Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr. Neuropharmacol., 2009, 7(1), 65-74.
[http://dx.doi.org/10.2174/157015909787602823] [PMID: 19721819]
[19]
Cardenas-Rodriguez, N.; Huerta-Gertrudis, B.; Rivera-Espinosa, L.; Montesinos-Correa, H.; Bandala, C.; Carmona-Aparicio, L.; Coballase-Urrutia, E. Role of oxidative stress in refractory epilepsy: evidence in patients and experimental models. Int. J. Mol. Sci., 2013, 14(1), 1455-1476.
[http://dx.doi.org/10.3390/ijms14011455] [PMID: 23344052]
[20]
Tambe, R.; Patil, A.; Jain, P.; Sancheti, J.; Somani, G.; Sathaye, S. Assessment of luteolin isolated from Eclipta alba leaves in animal models of epilepsy. Pharm. Biol., 2017, 55(1), 264-268.
[http://dx.doi.org/10.1080/13880209.2016.1260597] [PMID: 27927066]
[21]
Citraro, R.; Navarra, M.; Leo, A.; Donato Di Paola, E.; Santangelo, E.; Lippiello, P.; Aiello, R.; Russo, E.; De Sarro, G. The anticonvulsant activity of a flavonoid-rich extract from orange juice involves both NMDA and GABA-benzodiazepine receptor complexes. Molecules, 2016, 21(9)E1261
[http://dx.doi.org/10.3390/molecules21091261] [PMID: 27657037]
[22]
Chang, C.Y.; Lin, T.Y.; Lu, C.W.; Huang, S.K.; Wang, Y.C.; Chou, S.S.; Wang, S.J. Hesperidin inhibits glutamate release and exerts neuroprotection against excitotoxicity induced by kainic acid in the hippocampus of rats. Neurotoxicology, 2015, 50, 157-169.
[http://dx.doi.org/10.1016/j.neuro.2015.08.014] [PMID: 26342684]
[23]
Abbasi, E.; Nassiri-Asl, M.; Shafeei, M.; Sheikhi, M. Neuroprotective effects of vitexin, a flavonoid, on pentylenetetrazole-induced seizure in rats. Chem. Biol. Drug Des., 2012, 80(2), 274-278.
[http://dx.doi.org/10.1111/j.1747-0285.2012.01400.x] [PMID: 22554436]
[24]
Choudhary, N.; Bijjem, K.R.; Kalia, A.N. Antiepileptic potential of flavonoids fraction from the leaves of Anisomeles malabarica. J. Ethnopharmacol., 2011, 135(2), 238-242.
[http://dx.doi.org/10.1016/j.jep.2011.02.019] [PMID: 21354295]
[25]
Vezzani, A.; Sperk, G.; Colmers, W.F. Neuropeptide Y: emerging evidence for a functional role in seizure modulation. Trends Neurosci., 1999, 22(1), 25-30.
[http://dx.doi.org/10.1016/S0166-2236(98)01284-3] [PMID: 10088996]
[26]
Wu, L.H.; Lin, C.; Lin, H.Y.; Liu, Y.S.; Wu, C.Y.; Tsai, C.F.; Chang, P.C.; Yeh, W.L.; Lu, D.Y. Naringenin suppresses neuroinflammatory responses through inducing suppressor of cytokine signaling 3 expressions. Mol. Neurobiol., 2016, 53(2), 1080-1091.
[http://dx.doi.org/10.1007/s12035-014-9042-9] [PMID: 25579382]
[27]
Khan, H.; Perviz, S.; Sureda, A.; Nabavi, S.M.; Tejada, S. Current standing of plant derived flavonoids as an antidepressant. Food Chem. Toxicol., 2018, 119, 176-188.
[http://dx.doi.org/10.1016/j.fct.2018.04.052] [PMID: 29704578]
[28]
Wu, Y.; Chen, M.; Jiang, J. Mitochondrial dysfunction in neurodegenerative diseases and drug targets via apoptotic signaling. Mitochondrion, 2019, 49, 35-45.
[http://dx.doi.org/10.1016/j.mito.2019.07.003] [PMID: 31288090]
[29]
Folbergrová, J.; Kunz, W.S. Mitochondrial dysfunction in epilepsy. Mitochondrion, 2012, 12(1), 35-40.
[http://dx.doi.org/10.1016/j.mito.2011.04.004] [PMID: 21530687]
[30]
Gibellini, L.; Bianchini, E.; De Biasi, S.; Nasi, M.; Cossarizza, A.; Pinti, M. Natural compounds modulating mitochondrial functions. Evid. Based Complement. Alternat. Med., 2015, 2015527209
[http://dx.doi.org/10.1155/2015/527209] [PMID: 26167193]
[31]
Lagoa, R.; Graziani, I.; Lopez-Sanchez, C.; Garcia-Martinez, V.; Gutierrez-Merino, C. Complex I and cytochrome c are molecular targets of flavonoids that inhibit hydrogen peroxide production by mitochondria. Biochim. Biophys. Acta, 2011, 1807(12), 1562-1572.
[http://dx.doi.org/10.1016/j.bbabio.2011.09.022] [PMID: 22015496]
[32]
Gao, J.; Chi, Z.F.; Liu, X.W.; Shan, P.Y.; Wang, R. Mitochondrial dysfunction and ultrastructural damage in the hippocampus of pilocarpine-induced epileptic rat. Neurosci. Lett., 2007, 411(2), 152-157.
[http://dx.doi.org/10.1016/j.neulet.2006.10.022] [PMID: 17092649]
[33]
Avallone, R.; Zanoli, P.; Puia, G.; Kleinschnitz, M.; Schreier, P.; Baraldi, M. Pharmacological profile of apigenin, a flavonoid isolated from Matricaria chamomilla. Biochem. Pharmacol., 2000, 59(11), 1387-1394.
[http://dx.doi.org/10.1016/S0006-2952(00)00264-1] [PMID: 10751547]
[34]
Kavvadias, D.; Sand, P.; Youdim, K.A.; Qaiser, M.Z.; Rice-Evans, C.; Baur, R.; Sigel, E.; Rausch, W.D.; Riederer, P.; Schreier, P. The flavone hispidulin, a benzodiazepine receptor ligand with positive allosteric properties, traverses the blood-brain barrier and exhibits anticonvulsive effects. Br. J. Pharmacol., 2004, 142(5), 811-820.
[http://dx.doi.org/10.1038/sj.bjp.0705828] [PMID: 15231642]
[35]
Sharma, P.; Sharma, S.; Singh, D. Apigenin reverses behavioural impairments and cognitive decline in kindled mice via CREB-BDNF upregulation in the hippocampus. Nutr. Neurosci., 2018, 30, 1-10.
[http://dx.doi.org/10.1080/1028415X.2018.1478653] [PMID: 29847220]
[36]
Rahman, H.; Eswaraiah, M.C.; Duttal, A.M. Neuropharmacological activities of ethanolic extract of Citrus macroptera (Varannamensis) fruit peels. Glob. J. Pharmacol., 2014, 8, 609-616.
[37]
Bakoyiannis, I.; Daskalopoulou, A.; Pergialiotis, V.; Perrea, D. Phytochemicals and cognitive health: Are flavonoids doing the trick? Biomed. Pharmacother., 2019, 109, 1488-1497.
[http://dx.doi.org/10.1016/j.biopha.2018.10.086] [PMID: 30551400]
[38]
Thilakarathna, S.H.; Rupasinghe, H.P. Flavonoid bioavailability and attempts for bioavailability enhancement. Nutrients, 2013, 5(9), 3367-3387.
[http://dx.doi.org/10.3390/nu5093367] [PMID: 23989753]
[39]
Viskupicova, J.; Ondrejovic, M.; Sturdik, E. Bioavailability and metabolism of flavonoids. J. Food Nutr. Res., 2008, 47, 151-162.
[40]
Passamonti, S.; Terdoslavich, M.; Franca, R.; Vanzo, A.; Tramer, F.; Braidot, E.; Petrussa, E.; Vianello, A. Bioavailability of flavonoids: a review of their membrane transport and the function of bilitranslocase in animal and plant organisms. Curr. Drug Metab., 2009, 10(4), 369-394.
[http://dx.doi.org/10.2174/138920009788498950] [PMID: 19519345]
[41]
Watson, R.R.; Preedy, V.R.; Zibadi, S. Polyphenols in Human Health and Disease; London: Academic Press; Elsevier, 2014.
[42]
Hollman, P.C. Absorption, bioavailability, and metabolism of flavonoids. Pharm. Biol., 2004, 42, 74-83.
[http://dx.doi.org/10.3109/13880200490893492]
[43]
Manach, C.; Donovan, J.L. Pharmacokinetics and metabolism of dietary flavonoids in humans. Free Radic. Res., 2004, 38(8), 771-785.
[http://dx.doi.org/10.1080/10715760410001727858] [PMID: 15493450]
[44]
Krasieva, T.B.; Ehren, J.; O’Sullivan, T.; Tromberg, B.J.; Maher, P. Cell and brain tissue imaging of the flavonoid fisetin using label-free two-photon microscopy. Neurochem. Int., 2015, 89, 243-248.
[http://dx.doi.org/10.1016/j.neuint.2015.08.003] [PMID: 26271433]
[45]
Al Rahim, M.; Nakajima, A.; Saigusa, D.; Tetsu, N.; Maruyama, Y.; Shibuya, M.; Yamakoshi, H.; Tomioka, Y.; Iwabuchi, Y.; Ohizumi, Y.; Yamakuni, T. 4′-Demethylnobiletin, a bioactive metabolite of nobiletin enhancing PKA/ERK/CREB signaling, rescues learning impairment associated with NMDA receptor antagonism via stimulation of the ERK cascade. Biochemistry, 2009, 48(32), 7713-7721.
[http://dx.doi.org/10.1021/bi901088w] [PMID: 19601643]
[46]
Mullen, W.; Archeveque, M.A.; Edwards, C.A.; Matsumoto, H.; Crozier, A. Bioavailability and metabolism of orange juice flavanones in humans: impact of a full-fat yogurt. J. Agric. Food Chem., 2008, 56(23), 11157-11164.
[http://dx.doi.org/10.1021/jf801974v] [PMID: 19007165]
[47]
Peluso, I.; Palmery, M. Flavonoids at the pharma-nutrition interface: Is a therapeutic index in demand? Biomed. Pharmacother., 2015, 71, 102-107.
[http://dx.doi.org/10.1016/j.biopha.2015.02.028] [PMID: 25960223]
[48]
Morris, M.E.; Zhang, S. Flavonoid-drug interactions: effects of flavonoids on ABC transporters. Life Sci., 2006, 78(18), 2116-2130.
[http://dx.doi.org/10.1016/j.lfs.2005.12.003] [PMID: 16455109]
[49]
Rajnarayana, K.; Reddy, M.S.; Vidyasagar, J.; Krishna, D.R. Study on the influence of silymarin pretreatment on metabolism and disposition of metronidazole. Arzneimittelforschung. Drug Res., 2004, 54(2), 109-113.
[PMID: 15038460]
[50]
Lai, M.Y.; Hsiu, S.L.; Hou, Y.C.; Tsai, S.Y.; Chao, P.D. Significant decrease of cyclosporine bioavailability in rats caused by a decoction of the roots of Scutellaria baicalensis. Planta Med., 2004, 70(2), 132-137.
[http://dx.doi.org/10.1055/s-2004-815489] [PMID: 14994190]
[51]
Choi, J.S.; Jo, B.W.; Kim, Y.C. Enhanced paclitaxel bioavailability after oral administration of paclitaxel or prodrug to rats pretreated with quercetin. Eur. J. Pharm. Biopharm., 2004, 57(2), 313-318.
[http://dx.doi.org/10.1016/j.ejpb.2003.11.002] [PMID: 15018990]
[52]
Chen, H.Y.; Wu, T.S.; Su, S.F.; Kuo, S.C.; Chao, P.D. Marked decrease of cyclosporin absorption caused by phellamurin in rats. Planta Med., 2002, 68(2), 138-141.
[http://dx.doi.org/10.1055/s-2002-20244] [PMID: 11859464]
[53]
Li, Y.; Ning, J.; Wang, Y.; Wang, C.; Sun, C.; Huo, X.; Yu, Z.; Feng, L.; Zhang, B.; Tian, X.; Ma, X. Drug interaction study of flavonoids toward CYP3A4 and their quantitative structure activity relationship (QSAR) analysis for predicting potential effects. Toxicol. Lett., 2018, 294, 27-36.
[http://dx.doi.org/10.1016/j.toxlet.2018.05.008] [PMID: 29753067]
[54]
Shimada, T.; Kakimoto, K.; Takenaka, S.; Koga, N.; Uehara, S.; Murayama, N.; Yamazaki, H.; Kim, D.; Guengerich, F.P.; Komori, M. Roles of human CYP2A6 and monkey CYP2A24 and 2A26 cytochrome P450 enzymes in the oxidation of 2,5,2´,5´-tetrachlorobiphenyl. Drug Metab. Dispos., 2016, 44(12), 1899-1909.
[http://dx.doi.org/10.1124/dmd.116.072991] [PMID: 27625140]
[55]
Kakimoto, K.; Murayama, N.; Takenaka, S.; Nagayoshi, H.; Lim, Y.R.; Kim, V.; Kim, D.; Yamazaki, H.; Komori, M.; Guengerich, F.P.; Shimada, T. Cytochrome P450 2A6 and other human P450 enzymes in the oxidation of flavone and flavanone. Xenobiotica, 2019, 49(2), 131-142.
[56]
Bojic, M.; Benkovic, G.; Males, Z.; Zulj, R.T.; Tomic, S. Cytochromes P450 involved in metabolism of flavonoid aglycones. The FASEB J., 2018, 32(1), 564-567.
[57]
Litman, T.; Druley, T.E.; Stein, W.D.; Bates, S.E. From MDR to MXR: new understanding of multidrug resistance systems, their properties and clinical significance. Cell. Mol. Life Sci., 2001, 58(7), 931-959.
[http://dx.doi.org/10.1007/PL00000912] [PMID: 11497241]
[58]
Ferreira, A.; Rodrigues, M.; Fortuna, A.; Falcão, A.; Alves, G. Flavonoid compounds as reversing agents of the P-glycoprotein-mediated multidrug resistance: An in vitro evaluation with focus on antiepileptic drugs. Food Res. Int., 2018, 103, 110-120.
[http://dx.doi.org/10.1016/j.foodres.2017.10.010] [PMID: 29389596]
[59]
Bai, J.; Zhao, S.; Fan, X.; Chen, Y.; Zou, X.; Hu, M.; Wang, B.; Jin, J.; Wang, X.; Hu, J.; Zhang, D.; Li, Y. Inhibitory effects of flavonoids on P-glycoprotein in vitro and in vivo: Food/herb-drug interactions and structure-activity relationships. Toxicol. Appl. Pharmacol., 2019, 369, 49-59.
[http://dx.doi.org/10.1016/j.taap.2019.02.010] [PMID: 30790579]
[60]
Lonze, B.E.; Ginty, D.D. Function and regulation of CREB family transcription factors in the nervous system. Neuron, 2002, 35(4), 605-623.
[http://dx.doi.org/10.1016/S0896-6273(02)00828-0] [PMID: 12194863]
[61]
Ponti, C.; Gibellini, D.; Boin, F.; Melloni, E.; Manzoli, F.A.; Cocco, L.; Zauli, G.; Vitale, M. Role of CREB transcription factor in c-fos activation in natural killer cells. Eur. J. Immunol., 2002, 32(12), 3358-3365.
[http://dx.doi.org/10.1002/1521-4141(200212)32:12<3358:AID-IMMU3358>3.0.CO;2-Q] [PMID: 12432566]
[62]
Ortega-Martínez, S. A new perspective on the role of the CREB family of transcription factors in memory consolidation via adult hippocampal neurogenesis. Front. Mol. Neurosci., 2015, 8, 46.
[http://dx.doi.org/10.3389/fnmol.2015.00046] [PMID: 26379491]
[63]
Mantamadiotis, T.; Lemberger, T.; Bleckmann, S.C.; Kern, H.; Kretz, O.; Martin Villalba, A.; Tronche, F.; Kellendonk, C.; Gau, D.; Kapfhammer, J.; Otto, C.; Schmid, W.; Schütz, G. Disruption of CREB function in brain leads to neurodegeneration. Nat. Genet., 2002, 31(1), 47-54.
[http://dx.doi.org/10.1038/ng882] [PMID: 11967539]
[64]
Tully, T.; Bourtchouladze, R.; Scott, R.; Tallman, J. Targeting the CREB pathway for memory enhancers. Nat. Rev. Drug Discov., 2003, 2(4), 267-277.
[http://dx.doi.org/10.1038/nrd1061] [PMID: 12669026]
[65]
Dale, A.; George, J.; David, F.; William, C.; Anthony-Samuel, L.; McNamara, J.O.; White, L.E. Neuroscience, 4th ed; Sinauer Associates, 2008, pp. 170-176.
[66]
Dibner, C.; Schibler, U.; Albrecht, U. The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu. Rev. Physiol., 2010, 72, 517-549.
[http://dx.doi.org/10.1146/annurev-physiol-021909-135821] [PMID: 20148687]
[67]
Rogerson, T.; Jayaprakash, B.; Cai, D.J.; Sano, Y.; Lee, Y.S.; Zhou, Y.; Bekal, P.; Deisseroth, K.; Silva, A.J. Molecular and cellular mechanisms for trapping and activating emotional memories. PLoS One, 2016, 11(8)e0161655
[http://dx.doi.org/10.1371/journal.pone.0161655] [PMID: 27579481]
[68]
Zhu, X.; Han, X.; Blendy, J.A.; Porter, B.E. Decreased CREB levels suppress epilepsy. Neurobiol. Dis., 2012, 45(1), 253-263.
[http://dx.doi.org/10.1016/j.nbd.2011.08.009] [PMID: 21867753]
[69]
Moore, A.N.; Waxham, M.N.; Dash, P.K. Neuronal activity increases the phosphorylation of the transcription factor cAMP response element-binding protein (CREB) in rat hippocampus and cortex. J. Biol. Chem., 1996, 271(24), 14214-14220.
[http://dx.doi.org/10.1074/jbc.271.24.14214] [PMID: 8662977]
[70]
Guo, J.; Wang, H.; Wang, Q.; Chen, Y.; Chen, S. Expression of p-CREB and activity-dependent miR-132 in temporal lobe epilepsy. Int. J. Clin. Exp. Med., 2014, 7(5), 1297-1306.
[PMID: 24995086]
[71]
Reichardt, L.F. Neurotrophin-regulated signalling pathways. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2006, 361(1473), 1545-1564.
[http://dx.doi.org/10.1098/rstb.2006.1894] [PMID: 16939974]
[72]
Tabuchi, A.; Sakaya, H.; Kisukeda, T.; Fushiki, H.; Tsuda, M. Involvement of an upstream stimulatory factor as well as cAMP-responsive element-binding protein in the activation of brain-derived neurotrophic factor gene promoter I. J. Biol. Chem., 2002, 277(39), 35920-35931.
[http://dx.doi.org/10.1074/jbc.M204784200] [PMID: 12114522]
[73]
Nair, A.; Vaidya, V.A. Cyclic AMP response element binding protein and brain-derived neurotrophic factor: molecules that modulate our mood? J. Biosci., 2006, 31(3), 423-434.
[http://dx.doi.org/10.1007/BF02704114] [PMID: 17006024]
[74]
Park, H.; Poo, M.M. Neurotrophin regulation of neural circuit development and function. Nat. Rev. Neurosci., 2013, 14(1), 7-23.
[http://dx.doi.org/10.1038/nrn3379] [PMID: 23254191]
[75]
Spencer, J.P. Flavonoids: modulators of brain function? Br. J. Nutr., 2008, 99 E(Suppl. 1), ES60-ES77.
[http://dx.doi.org/10.1017/S0007114508965776] [PMID: 18503736]
[76]
Giralt, A.; Friedman, H.C.; Caneda-Ferrón, B.; Urbán, N.; Moreno, E.; Rubio, N.; Blanco, J.; Peterson, A.; Canals, J.M.; Alberch, J. BDNF regulation under GFAP promoter provides engineered astrocytes as a new approach for long-term protection in Huntington’s disease. Gene Ther., 2010, 17(10), 1294-1308.
[http://dx.doi.org/10.1038/gt.2010.71] [PMID: 20463759]
[77]
Scharfman, H.E. Brain-derived neurotrophic factor and epilepsy--a missing link? Epilepsy Curr., 2005, 5(3), 83-88.
[http://dx.doi.org/10.1111/j.1535-7511.2005.05312.x] [PMID: 16145610]
[78]
Heinrich, C.; Lähteinen, S.; Suzuki, F.; Anne-Marie, L.; Huber, S.; Häussler, U.; Haas, C.; Larmet, Y.; Castren, E.; Depaulis, A. Increase in BDNF-mediated TrkB signaling promotes epileptogenesis in a mouse model of mesial temporal lobe epilepsy. Neurobiol. Dis., 2011, 42(1), 35-47.
[http://dx.doi.org/10.1016/j.nbd.2011.01.001] [PMID: 21220014]
[79]
Malhi, S.M.; Jawed, H.; Hanif, F.; Ashraf, N.; Zubair, F.; Siddiqui, B.S.; Begum, S.; Kabir, N.; Simjee, S.U. Modulation of c-Fos and BDNF protein expression in pentylenetetrazole-kindled mice following the treatment with novel antiepileptic compound HHL-6. BioMed Res. Int., 2014, 2014876712
[http://dx.doi.org/10.1155/2014/876712] [PMID: 24605339]
[80]
Zhang, J.C.; Yao, W.; Hashimoto, K. Brain-derived neurotrophic factor (BDNF)-TrkB signaling in inflammation-related depression and potential therapeutic targets. Curr. Neuropharmacol., 2016, 14(7), 721-731.
[http://dx.doi.org/10.2174/1570159X14666160119094646] [PMID: 26786147]
[81]
Scharfman, H.E.; Goodman, J.H.; Sollas, A.L.; Croll, S.D. Spontaneous limbic seizures after intrahippocampal infusion of brain-derived neurotrophic factor. Exp. Neurol., 2002, 174(2), 201-214.
[http://dx.doi.org/10.1006/exnr.2002.7869] [PMID: 11922662]
[82]
Rivera, C.; Li, H.; Thomas-Crusells, J.; Lahtinen, H.; Viitanen, T.; Nanobashvili, A.; Kokaia, Z.; Airaksinen, M.S.; Voipio, J.; Kaila, K.; Saarma, M. BDNF-induced TrkB activation down-regulates the K+-Cl- cotransporter KCC2 and impairs neuronal Cl- extrusion. J. Cell Biol., 2002, 159(5), 747-752.
[http://dx.doi.org/10.1083/jcb.200209011] [PMID: 12473684]
[83]
Reibel, S.; Larmet, Y.; Carnahan, J.; Marescaux, C.; Depaulis, A. Endogenous control of hippocampal epileptogenesis: a molecular cascade involving brain-derived neurotrophic factor and neuropeptide Y. Epilepsia, 2000, 41(Suppl. 6), S127-S133.
[http://dx.doi.org/10.1111/j.1528-1157.2000.tb01571.x] [PMID: 10999534]
[84]
Xu, B.; Michalski, B.; Racine, R.J.; Fahnestock, M. The effects of brain-derived neurotrophic factor (BDNF) administration on kindling induction, Trk expression and seizure-related morphological changes. Neuroscience, 2004, 126(3), 521-531.
[http://dx.doi.org/10.1016/j.neuroscience.2004.03.044] [PMID: 15183502]
[85]
Quesseveur, G.; David, D.J.; Gaillard, M.C.; Pla, P.; Wu, M.V.; Nguyen, H.T.; Nicolas, V.; Auregan, G.; David, I.; Dranovsky, A.; Hantraye, P.; Hen, R.; Gardier, A.M.; Déglon, N.; Guiard, B.P. BDNF overexpression in mouse hippocampal astrocytes promotes local neurogenesis and elicits anxiolytic-like activities. Transl. Psychiatry, 2013, 3e, 253.
[http://dx.doi.org/10.1038/tp.2013.30] [PMID: 23632457]
[86]
Mazumder, A.G.; Sharma, P.; Patial, V.; Singh, D. Crocin attenuates kindling development and associated cognitive impairments in mice via inhibiting reactive oxygen species-mediated NF-kB activation. Basic Clin. Pharmacol. Toxicol., 2017, 120(5), 426-433.
[http://dx.doi.org/10.1111/bcpt.12694] [PMID: 27800651]
[87]
Vezzani, A.; French, J.; Bartfai, T.; Baram, T.Z. The role of inflammation in epilepsy. Nat. Rev. Neurol., 2011, 7(1), 31-40.
[http://dx.doi.org/10.1038/nrneurol.2010.178] [PMID: 21135885]
[88]
Shimizu, E.; Hashimoto, K.; Okamura, N.; Koike, K.; Komatsu, N.; Kumakiri, C.; Nakazato, M.; Watanabe, H.; Shinoda, N.; Okada, S.; Iyo, M. Alterations of serum levels of brain-derived neurotrophic factor (BDNF) in depressed patients with or without antidepressants. Biol. Psychiatry, 2003, 54(1), 70-75.
[http://dx.doi.org/10.1016/S0006-3223(03)00181-1] [PMID: 12842310]
[89]
Pan, W.; Banks, W.A.; Fasold, M.B.; Bluth, J.; Kastin, A.J. Transport of brain-derived neurotrophic factor across the blood-brain barrier. Neuropharmacology, 1998, 37(12), 1553-1561.
[http://dx.doi.org/10.1016/S0028-3908(98)00141-5] [PMID: 9886678]
[90]
de Almeida, A.A.; Gomes da Silva, S.; Lopim, G.M.; Vannucci Campos, D.; Fernandes, J.; Cabral, F.R.; Arida, R.M. Physical exercise alters the activation of downstream proteins related to BDNF-TrkB signaling in male Wistar rats with epilepsy. J. Neurosci. Res., 2018, 96(5), 911-920.
[http://dx.doi.org/10.1002/jnr.24196] [PMID: 29098710]
[91]
Gu, B.; Huang, Y.Z.; He, X.P.; Joshi, R.B.; Jang, W.; McNamara, J.O. A peptide uncoupling BDNF receptor TrkB from phospholipase Cγ1 prevents epilepsy induced by status epilepticus. Neuron, 2015, 88(3), 484-491.
[http://dx.doi.org/10.1016/j.neuron.2015.09.032] [PMID: 26481038]
[92]
Danelon, V.; Montroull, L.E.; Unsain, N.; Barker, P.A.; Mascó, D.H. Calpain-dependent truncated form of TrkB-FL increases in neurodegenerative processes. Mol. Cell. Neurosci., 2016, 75, 81-92.
[http://dx.doi.org/10.1016/j.mcn.2016.07.002] [PMID: 27449758]
[93]
He, X.P.; Kotloski, R.; Nef, S.; Luikart, B.W.; Parada, L.F.; McNamara, J.O. Conditional deletion of TrkB but not BDNF prevents epileptogenesis in the kindling model. Neuron, 2004, 43(1), 31-42.
[http://dx.doi.org/10.1016/j.neuron.2004.06.019] [PMID: 15233915]
[94]
Gandolfi, D.; Cerri, S.; Mapelli, J.; Polimeni, M.; Tritto, S.; Fuzzati-Armentero, M.T.; Bigiani, A.; Blandini, F.; Mapelli, L.; D’Angelo, E. Activation of the CREB/c-fos pathway during long-term synaptic plasticity in the cerebellum granular layer. Front. Cell. Neurosci., 2017, 11, 184.
[http://dx.doi.org/10.3389/fncel.2017.00184] [PMID: 28701927]
[95]
Carlezon, W.A., Jr; Duman, R.S.; Nestler, E.J. The many faces of CREB. Trends Neurosci., 2005, 28(8), 436-445.
[http://dx.doi.org/10.1016/j.tins.2005.06.005] [PMID: 15982754]
[96]
Hansel, D.E.; Eipper, B.A.; Ronnett, G.V. Neuropeptide Y functions as a neuroproliferative factor. Nature, 2001, 410(6831), 940-944.
[http://dx.doi.org/10.1038/35073601] [PMID: 11309620]
[97]
Spencer, J.P. The impact of fruit flavonoids on memory and cognition. Br. J. Nutr., 2010, 104(Suppl. 3), S40-S47.
[http://dx.doi.org/10.1017/S0007114510003934] [PMID: 20955649]
[98]
Conkright, M.D.; Guzmán, E.; Flechner, L.; Su, A.I.; Hogenesch, J.B.; Montminy, M. Genome-wide analysis of CREB target genes reveals a core promoter requirement for cAMP responsiveness. Mol. Cell, 2003, 11(4), 1101-1108.
[http://dx.doi.org/10.1016/S1097-2765(03)00134-5] [PMID: 12718894]
[99]
Jaeger, B.N.; Parylak, S.L.; Gage, F.H. Mechanisms of dietary flavonoid action in neuronal function and neuroinflammation. Mol. Aspects Med., 2018, 61, 50-62.
[http://dx.doi.org/10.1016/j.mam.2017.11.003] [PMID: 29117513]
[100]
Moosavi, F.; Hosseini, R.; Saso, L.; Firuzi, O. Modulation of neurotrophic signaling pathways by polyphenols. Drug Des. Devel. Ther., 2015, 10, 23-42.
[PMID: 26730179]
[101]
Moghbelinejad, S.; Nassiri-Asl, M.; Farivar, T.N.; Abbasi, E.; Sheikhi, M.; Taghiloo, M.; Farsad, F.; Samimi, A.; Hajiali, F. Rutin activates the MAPK pathway and BDNF gene expression on beta-amyloid induced neurotoxicity in rats. Toxicol. Lett., 2014, 224(1), 108-113.
[http://dx.doi.org/10.1016/j.toxlet.2013.10.010] [PMID: 24148604]
[102]
Patil, S.P.; Jain, P.D.; Sancheti, J.S.; Ghumatkar, P.J.; Tambe, R.; Sathaye, S. Neuroprotective and neurotrophic effects of Apigenin and Luteolin in MPTP induced parkinsonism in mice. Neuropharmacology, 2014, 86, 192-202.
[http://dx.doi.org/10.1016/j.neuropharm.2014.07.012] [PMID: 25087727]
[103]
Su, G.Y.; Yang, J.Y.; Wang, F.; Ma, J.; Zhang, K.; Dong, Y.X.; Song, S.J.; Lu, X.M.; Wu, C.F. Antidepressant-like effects of Xiaochaihutang in a rat model of chronic unpredictable mild stress. J. Ethnopharmacol., 2014, 152(1), 217-226.
[http://dx.doi.org/10.1016/j.jep.2014.01.006] [PMID: 24440317]
[104]
Cho, N.; Lee, K.Y.; Huh, J.; Choi, J.H.; Yang, H.; Jeong, E.J.; Kim, H.P.; Sung, S.H. Cognitive-enhancing effects of Rhus verniciflua bark extract and its active flavonoids with neuroprotective and anti-inflammatory activities. Food Chem. Toxicol., 2013, 58, 355-361.
[http://dx.doi.org/10.1016/j.fct.2013.05.007] [PMID: 23688860]
[105]
Maher, P.; Akaishi, T.; Abe, K. Flavonoid fisetin promotes ERK-dependent long-term potentiation and enhances memory. Proc. Natl. Acad. Sci. USA, 2006, 103(44), 16568-16573.
[http://dx.doi.org/10.1073/pnas.0607822103] [PMID: 17050681]
[106]
Perez-Vizcaino, F.; Fraga, C.G. Research trends in flavonoids and health. Arch. Biochem. Biophys., 2018, 646, 107-112.
[http://dx.doi.org/10.1016/j.abb.2018.03.022] [PMID: 29580946]
[107]
Verlaet, A.A.; Ceulemans, B.; Verhelst, H.; Van West, D.; De Bruyne, T.; Pieters, L.; Savelkoul, H.F.; Hermans, N. Effect of Pycnogenol® on attention-deficit hyperactivity disorder (ADHD): study protocol for a randomised controlled trial. Trials, 2017, 18(1), 145.
[http://dx.doi.org/10.1186/s13063-017-1879-6] [PMID: 28351412]
[108]
Herrlinger, K.A.; Nieman, K.M.; Sanoshy, K.D.; Fonseca, B.A.; Lasrado, J.A.; Schild, A.L.; Maki, K.C.; Wesnes, K.A.; Ceddia, M.A. Spearmint extract improves working memory in men and women with age-associated memory impairment. J. Altern. Complement. Med., 2018, 24(1), 37-47.
[http://dx.doi.org/10.1089/acm.2016.0379] [PMID: 29314866]
[109]
Malaguarnera, G.; Pennisi, M.; Bertino, G.; Motta, M.; Borzì, A.M.; Vicari, E.; Bella, R.; Drago, F.; Malaguarnera, M. Resveratrol in patients with minimal hepatic encephalopathy. Nutrients, 2018, 10(3)E329
[http://dx.doi.org/10.3390/nu10030329] [PMID: 29522439]
[110]
Boespflug, E.L.; Eliassen, J.C.; Dudley, J.A.; Shidler, M.D.; Kalt, W.; Summer, S.S.; Stein, A.L.; Stover, A.N.; Krikorian, R. Enhanced neural activation with blueberry supplementation in mild cognitive impairment. Nutr. Neurosci., 2018, 21(4), 297-305.
[http://dx.doi.org/10.1080/1028415X.2017.1287833] [PMID: 28221821]
[111]
Losso, J.N.; Finley, J.W.; Karki, N.; Liu, A.G.; Prudente, A.; Tipton, R.; Yu, Y.; Greenway, F.L. John, W.; Finley, Namrata, Karki.; Ann, G.; Liu, Alfredo.; Prudente, Russell.; Tipton, Ying Yu.; Frank, L.; Greenway. Pilot study of the Tart cherry juice for the treatment of insomnia and investigation of mechanisms. Am. J. Ther., 2018, 25(2), e194-e201.
[http://dx.doi.org/10.1097/MJT.0000000000000584] [PMID: 28901958]
[112]
Hirose, A.; Terauchi, M.; Akiyoshi, M.; Owa, Y.; Kato, K.; Kubota, T. Low-dose isoflavone aglycone alleviates psychological symptoms of menopause in Japanese women: a randomized, double-blind, placebo-controlled study. Arch. Gynecol. Obstet., 2016, 293(3), 609-615.
[http://dx.doi.org/10.1007/s00404-015-3849-0] [PMID: 26294070]
[113]
Karoly, P.J.; Nurse, E.S.; Freestone, D.R.; Ung, H.; Cook, M.J.; Boston, R. Bursts of seizures in long-term recordings of human focal epilepsy. Epilepsia, 2017, 58(3), 363-372.
[http://dx.doi.org/10.1111/epi.13636] [PMID: 28084639]
[114]
Murray, K.D.; Isackson, P.J.; Eskin, T.A.; King, M.A.; Montesinos, S.P.; Abraham, L.A.; Roper, S.N. Altered mRNA expression for brain-derived neurotrophic factor and type II calcium/calmodulin-dependent protein kinase in the hippocampus of patients with intractable temporal lobe epilepsy. J. Comp. Neurol., 2000, 418(4), 411-422.
[http://dx.doi.org/10.1002/(SICI)1096-9861(20000320) 418:4<411:AID-CNE4>3.0.CO;2-F] [PMID: 10713570]
[115]
Kanemoto, K.; Kawasaki, J.; Tarao, Y.; Kumaki, T.; Oshima, T.; Kaji, R.; Nishimura, M. Association of partial epilepsy with brain-derived neurotrophic factor (BDNF) gene polymorphisms. Epilepsy Res., 2003, 53(3), 255-258.
[http://dx.doi.org/10.1016/S0920-1211(03)00032-9] [PMID: 12694935]
[116]
Ferreira, A.; Pousinho, S.; Fortuna, A.; Falcão, A.; Alves, G. Flavonoid compounds as reversal agents of the P-glycoprotein-mediated multidrug resistance: biology, chemistry and pharmacology. Phytochem. Rev., 2015, 14, 233-272.
[http://dx.doi.org/10.1007/s11101-014-9358-0]
[117]
Panda, S.S.; Jhanji, N. Natural products as potential anti-alzheimer agents. Curr. Med. Chem., 2019. Epub ahead of print
[http://dx.doi.org/10.2174/0929867326666190618113613] [PMID: 31215372]
[118]
Han, J.Y.; Ahn, S.Y.; Kim, C.S.; Yoo, S.K.; Kim, S.K.; Kim, H.C.; Hong, J.T.; Oh, K.W. Protection of apigenin against kainate-induced excitotoxicity by anti-oxidative effects. Biol. Pharm. Bull., 2012, 35(9), 1440-1446.
[http://dx.doi.org/10.1248/bpb.b110686] [PMID: 22975493]
[119]
Liu, Y.F.; Gao, F.; Li, X.W.; Jia, R.H.; Meng, X.D.; Zhao, R.; Jing, Y.Y.; Wang, Y.; Jiang, W. The anticonvulsant and neuroprotective effects of baicalin on pilocarpine-induced epileptic model in rats. Neurochem. Res., 2012, 37(8), 1670-1680.
[http://dx.doi.org/10.1007/s11064-012-0771-8] [PMID: 22528832]
[120]
Rasilingam, D.; Duraisamy, S.; Subramanian, R. Anticonvulsant activity of bioflavonoid gossypin. Bangladesh J. Pharmacol., 2009, 4, 51-54.
[121]
Dimpfel, W. Different anticonvulsive effects of hesperidin and its aglycone hesperetin on electrical activity in the rat hippocampus in-vitro. J. Pharm. Pharmacol., 2006, 58(3), 375-379.
[http://dx.doi.org/10.1211/jpp.58.3.0012] [PMID: 16536905]
[122]
Kumar, A.; Lalitha, S.; Mishra, J. Hesperidin potentiates the neuroprotective effects of diazepam and gabapentin against pentylenetetrazole-induced convulsions in mice: Possible behavioral, biochemical and mitochondrial alterations. Indian J. Pharmacol., 2014, 46(3), 309-315.
[http://dx.doi.org/10.4103/0253-7613.132180] [PMID: 24987179]
[123]
Taiwe, G.S.; Tchoya, T.B.; Menanga, J.R.; Dabole, B.; De Waard, M. Anticonvulsant activity of an active fraction extracted from Crinum jagus L. (Amaryllidaceae), and its possible effects on fully kindled seizures, depression-like behaviour and oxidative stress in experimental rodent models. J. Ethnopharmacol., 2016, 194, 421-433.
[http://dx.doi.org/10.1016/j.jep.2016.10.023] [PMID: 27725241]
[124]
Busquets, O.; Ettcheto, M.; Verdaguer, E.; Castro-Torres, R.D.; Auladell, C.; Beas-Zarate, C.; Folch, J.; Camins, A. JNK1 inhibition by Licochalcone A leads to neuronal protection against excitotoxic insults derived of kainic acid. Neuropharmacology, 2018, 131, 440-452.
[http://dx.doi.org/10.1016/j.neuropharm.2017.10.030] [PMID: 29111385]
[125]
Zhen, J.L.; Chang, Y.N.; Qu, Z.Z.; Fu, T.; Liu, J.Q.; Wang, W.P. Luteolin rescues pentylenetetrazole-induced cognitive impairment in epileptic rats by reducing oxidative stress and activating PKA/CREB/BDNF signaling. Epilepsy Behav., 2016, 57, 177-184.
[126]
Jang, H.; Jeong, K.H.; Kim, S.R. Naringin attenuates granule cell dispersion in the dentate gyrus in a mouse model of temporal lobe epilepsy. Epilepsy Res., 2016, 123, 6-10.
[http://dx.doi.org/10.1016/j.eplepsyres.2016.03.001] [PMID: 27040812]
[127]
Shakeel, S.; Rehman, M.U.; Tabassum, N.; Amin, U.; Mir, M.U.R. Effect of naringenin (a naturally occurring flavanone) against pilocarpine-induced status epilepticus and oxidative stress in mice. Pharmacogn. Mag., 2017, 13(Suppl. 1), S154-S160.
[http://dx.doi.org/10.4103/0973-1296.203977] [PMID: 28479741]
[128]
Copmans, D.; Orellana-Paucar, A.M.; Steurs, G.; Zhang, Y.; Ny, A.; Foubert, K.; Exarchou, V.; Siekierska, A.; Kim, Y.; De Borggraeve, W.; Dehaen, W.; Pieters, L.; de Witte, P.A.M. Methylated flavonoids as anti-seizure agents: Naringenin 4′,7-dimethyl ether attenuates epileptic seizures in zebrafish and mouse models. Neurochem. Int., 2018, 112, 124-133.
[http://dx.doi.org/10.1016/j.neuint.2017.11.011] [PMID: 29174382]
[129]
Zhen, J.; Qu, Z.; Fang, H.; Fu, L.; Wu, Y.; Wang, H.; Zang, H.; Wang, W. Effects of grape seed proanthocyanidin extract on pentylenetetrazole-induced kindling and associated cognitive impairment in rats. Int. J. Mol. Med., 2014, 34(2), 391-398.
[http://dx.doi.org/10.3892/ijmm.2014.1796] [PMID: 24912930]
[130]
Sefil, F.; Kahraman, I.; Dokuyucu, R.; Gokce, H.; Ozturk, A.; Tutuk, O.; Aydin, M.; Ozkan, U.; Pinar, N. Ameliorating effect of quercetin on acute pentylenetetrazole induced seizures in rats. Int. J. Clin. Exp. Med., 2014, 7(9), 2471-2477.
[PMID: 25356099]
[131]
Nassiri-Asl, M.; Mortazavi, S.R.; Samiee-Rad, F.; Zangivand, A.A.; Safdari, F.; Saroukhani, S.; Abbasi, E. The effects of rutin on the development of pentylenetetrazole kindling and memory retrieval in rats. Epilepsy Behav., 2010, 18, 50-53.
[http://dx.doi.org/10.1016/j.yebeh.2010.03.005]
[132]
Wang, W.; Wang, F.; Yang, Y.J.; Hu, Z.L.; Long, L.H.; Fu, H.; Xie, N.; Chen, J.G. The flavonoid baicalein promotes NMDA receptor-dependent long-term potentiation and enhances memory. Br. J. Pharmacol., 2011, 162(6), 1364-1379.
[http://dx.doi.org/10.1111/j.1476-5381.2010.01143.x] [PMID: 21133890]
[133]
Sarvestani, N.N.; Khodagholi, F.; Ansari, N.; Farimani, M.M. Involvement of p-CREB and phase II detoxifying enzyme system in neuroprotection mediated by the flavonoid calycopterin isolated from Dracocephalum kotschyi. Phytomedicine, 2013, 20(10), 939-946.
[http://dx.doi.org/10.1016/j.phymed.2013.03.013] [PMID: 23639191]
[134]
Ren, Z.; Yan, P.; Zhu, L.; Yang, H.; Zhao, Y.; Kirby, B.P.; Waddington, J.L.; Zhen, X. Dihydromyricetin exerts a rapid antidepressant-like effect in association with enhancement of BDNF expression and inhibition of neuroinflammation. Psychopharmacology (Berl.), 2018, 235(1), 233-244.
[http://dx.doi.org/10.1007/s00213-017-4761-z] [PMID: 29058041]
[135]
Schroeter, H.; Bahia, P.; Spencer, J.P.; Sheppard, O.; Rattray, M.; Cadenas, E.; Rice-Evans, C.; Williams, R.J. (-)Epicatechin stimulates ERK-dependent cyclic AMP response element activity and up-regulates GluR2 in cortical neurons. J. Neurochem., 2007, 101(6), 1596-1606.
[http://dx.doi.org/10.1111/j.1471-4159.2006.04434.x] [PMID: 17298385]
[136]
Zheng, M.; Liu, C.; Pan, F.; Shi, D.; Zhang, Y. Antidepressant-like effect of hyperoside isolated from Apocynum venetum leaves: Possible cellular mechanisms. Phytomedicine, 2012, 19(2), 145-149.
[http://dx.doi.org/10.1016/j.phymed.2011.06.029] [PMID: 21802268]
[137]
Zhang, Y.; Zhen, W.; Maechler, P.; Liu, D. Small molecule kaempferol modulates PDX-1 protein expression and subsequently promotes pancreatic β-cell survival and function via CREB. J. Nutr. Biochem., 2013, 24(4), 638-646.
[http://dx.doi.org/10.1016/j.jnutbio.2012.03.008] [PMID: 22819546]
[138]
Xia, S.F.; Xie, Z.X.; Qiao, Y.; Li, L.R.; Cheng, X.R.; Tang, X.; Shi, Y.H.; Le, G.W. Differential effects of quercetin on hippocampus-dependent learning and memory in mice fed with different diets related with oxidative stress. Physiol. Behav., 2015, 138, 325-331.
[http://dx.doi.org/10.1016/j.physbeh.2014.09.008] [PMID: 25447470]
[139]
Hou, Y.; Aboukhatwa, M.A.; Lei, D.L.; Manaye, K.; Khan, I.; Luo, Y. Anti-depressant natural flavonols modulate BDNF and beta amyloid in neurons and hippocampus of double TgAD mice. Neuropharmacology, 2010, 58(6), 911-920.
[http://dx.doi.org/10.1016/j.neuropharm.2009.11.002] [PMID: 19917299]
[140]
Li, Y.J.; Li, Y.J.; Yang, L.D.; Zhang, K.; Zheng, K.Y.; Wei, X.M.; Yang, Q.; Niu, W.M.; Zhao, M.G.; Wu, Y.M. Silibinin exerts antidepressant effects by improving neurogenesis through BDNF/TrkB pathway. Behav. Brain Res., 2018, 348, 184-191.
[http://dx.doi.org/10.1016/j.bbr.2018.04.025] [PMID: 29680784]
[141]
Lee, Y.; Jeon, S.J.; Lee, H.E.; Jung, I.H.; Jo, Y.W.; Lee, S.; Cheong, J.H.; Jang, D.S.; Ryu, J.H. Spinosin, a C-glycoside flavonoid, enhances cognitive performance and adult hippocampal neurogenesis in mice. Pharmacol. Biochem. Behav., 2016, 145, 9-16.
[http://dx.doi.org/10.1016/j.pbb.2016.03.007] [PMID: 26997033]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 17
ISSUE: 12
Year: 2019
Page: [1158 - 1175]
Pages: 18
DOI: 10.2174/1570159X17666190809165549
Price: $58

Article Metrics

PDF: 17