Comparative RNA-Seq Analysis of Differentially Expressed Genes in the Epididymides of Yak and Cattleyak

Author(s): Wangsheng Zhao, Kifayatullah Mengal, Meng Yuan, Eugene Quansah, Pengcheng Li, Shixin Wu, Chuanfei Xu, Chuanping Yi, Xin Cai*.

Journal Name: Current Genomics

Volume 20 , Issue 4 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Cattleyak are the Fl hybrids between (♀) yak (Bos grunniens) and (♂) cattle (Bos taurus). Cattleyak exhibit higher capability in adaptability to a harsh environment and display much higher performances in production than the yak and cattle. The cattleyak, however, are females fertile but males sterile. All previous studies greatly focused on testes tissues to study the mechanism of male infertility in cattleyak. However, so far, no transcriptomic study has been conducted on the epididymides of yak and cattleyak.

Objective: Our objective was to perform comparative transcriptome analysis between the epididymides of yak and cattleyak and predict the etiology of male infertility in cattleyak.

Methods: We performed comparative transcriptome profiles analysis by mRNA sequencing in the epididymides of yak and cattleyak.

Results: In total 3008 differentially expressed genes (DEGs) were identified in cattleyak, out of which 1645 DEGs were up-regulated and 1363 DEGs were down-regulated. Thirteen DEGs were validated by quantitative real-time PCR. DEGs included certain genes that were associated with spermatozoal maturation, motility, male fertility, water and ion channels, and beta-defensins. LCN9, SPINT4, CES5A, CD52, CST11, SERPINA1, CTSK, FABP4, CCR5, GRIA2, ENTPD3, LOC523530 and DEFB129, DEFB128, DEFB127, DEFB126, DEFB124, DEFB122A, DEFB122, DEFB119 were all downregulated, whereas NRIP1 and TMEM212 among top 30 DEGs were upregulated. Furthermore, protein processing in endoplasmic reticulum pathway was ranked at top-listed three significantly enriched KEGG pathways that as a consequence of abnormal expression of ER-associated genes in the entire ER protein processing pathway might have been disrupted in male cattleyak which resulted in the downregulation of several important genes. All the DEGs enriched in this pathway were downregulated except NEF.

Conclusion: Taken together, our findings revealed that there were marked differences in the epididymal transcriptomic profiles of yak and cattleyak. The DEGs were involved in spermatozoal maturation, motility, male fertility, water and ion channels, and beta-defensins. Abnormal expression of ERassociated genes in the entire ER protein processing pathway may have disrupted protein processing pathway in male cattleyak resulting in the downregulation of several important genes involved in sperm maturation, motility and defense.

Keywords: Cattleyak, epididymis, male infertility, mRNA sequencing, comparative analysis, gene expression.

[1]
Takase, H.; Tumennasan, K.; Hiratsuka, K.; Chandley, A.C.; Hotta, Y. Fertility investigation in F1 hybrid and backcross progeny of cattle (Bos Taurus) and yak (B. Gruniens) in Mongolia: Ii. Little variation in gene products studied in male sterile and fertile animals. Niigata J. Heal. Welf., 2002, 2, 42-52.
[2]
Xian, L. QiFa, L.; XingBo, Z.; HongTao, X.; Yao, G.; Xiang, Z.; Zhuang, X.; HongLin, L. Sequence analysis and study on the expression level of Dmc1 mRNA in yak and cattle-yak testis. Zhongguo Nong Ye Ke Xue, 2010, 43(15), 3221-3229.
[3]
Turner, T.T. On the epididymis and its role in the development of the fertile ejaculate. J. Androl., 1995, 16(4), 292-298.
[http://dx.doi.org/10.1002/j.1939-4640.1995.tb00532.x] [PMID: 8537245]
[4]
Visconti, P.E.; Bailey, J.L.; Moore, G.D.; Pan, D.; Olds-Clarke, P.; Kopf, G.S. Capacitation of mouse spermatozoa. I. Correlation between the capacitation state and protein tyrosine phosphorylation. Development, 1995, 121(4), 1129-1137.
[PMID: 7743926]
[5]
Dubé, E.; Chan, P.T.; Hermo, L.; Cyr, D.G. Gene expression profiling and its relevance to the blood-epididymal barrier in the human epididymis. Biol. Reprod., 2007, 76(6), 1034-1044.
[http://dx.doi.org/10.1095/biolreprod.106.059246] [PMID: 17287494]
[6]
Thimon, V.; Koukoui, O.; Calvo, E.; Sullivan, R. Region-specific gene expression profiling along the human epididymis. Mol. Hum. Reprod., 2007, 13(10), 691-704.
[http://dx.doi.org/10.1093/molehr/gam051] [PMID: 17881722]
[7]
Jelinsky, S.A.; Turner, T.T.; Bang, H.J.; Finger, J.N.; Solarz, M.K.; Wilson, E.; Brown, E.L.; Kopf, G.S.; Johnston, D.S. The rat epididymal transcriptome: Comparison of segmental gene expression in the rat and mouse epididymides. Biol. Reprod., 2007, 76(4), 561-570.
[http://dx.doi.org/10.1095/biolreprod.106.057323] [PMID: 17167166]
[8]
Bedford, J.M. Maturation Transport and Fate of Spermatozoa in the Epididymis; American Physiological Society: Washington, DC, 1975.
[9]
Patrick, C.W. Physiology of Male Reproduction: The Testis, Epididymis and Ductus Deference Campbaell’s Urol, 1998, 1254-1286.
[10]
Robaire, B.; Pryor, J.L.; Trasler, J.M. Handbook of Andrology., 1995 The American Society of Andrology: The University of Michigan. , 1-83.
[11]
Sonnenberg-Riethmacher, E.; Walter, B.; Riethmacher, D.; Gödecke, S.; Birchmeier, C. The c-ros tyrosine kinase receptor controls regionalization and differentiation of epithelial cells in the epididymis. Genes Dev., 1996, 10(10), 1184-1193.
[http://dx.doi.org/10.1101/gad.10.10.1184] [PMID: 8675006]
[12]
Yeung, C-H.; Sonnenberg-Riethmacher, E.; Cooper, T.G. Infertile spermatozoa of c-ros tyrosine kinase receptor knockout mice show flagellar angulation and maturational defects in cell volume regulatory mechanisms. Biol. Reprod., 1999, 61(4), 1062-1069.
[http://dx.doi.org/10.1095/biolreprod61.4.1062] [PMID: 10491645]
[13]
Yeung, C-H.; Wagenfeld, A.; Nieschlag, E.; Cooper, T.G. The cause of infertility of male c-ros tyrosine kinase receptor knockout mice. Biol. Reprod., 2000, 63(2), 612-618.
[http://dx.doi.org/10.1095/biolreprod63.2.612] [PMID: 10906072]
[14]
Ghyselinck, N.B.; Jimenez, C.; Courty, Y.; Dufaure, J.P. Androgen-dependent messenger RNA(s) related to secretory proteins in the mouse epididymis. J. Reprod. Fertil., 1989, 85(2), 631-639.
[http://dx.doi.org/10.1530/jrf.0.0850631] [PMID: 2704000]
[15]
Ghyselinck, N.B.; Dufaure, I.; Lareyre, J.J.; Rigaudière, N.; Mattéi, M.G.; Dufaure, J.P. Structural organization and regulation of the gene for the androgen-dependent glutathione peroxidase-like protein specific to the mouse epididymis. Mol. Endocrinol., 1993, 7(2), 258-272.
[PMID: 8469239]
[16]
Eberspaecher, U.; Roosterman, D.; Krätzschmar, J.; Haendler, B.; Habenicht, U.F.; Becker, A.; Quensel, C.; Petri, T.; Schleuning, W.D.; Donner, P. Mouse androgen-dependent epididymal glycoprotein CRISP-1 (DE/AEG): Isolation, biochemical characterization, and expression in recombinant form. Mol. Reprod. Dev., 1995, 42(2), 157-172.
[http://dx.doi.org/10.1002/mrd.1080420205] [PMID: 8562061]
[17]
Schwaab, V.; Lareyre, J.J.; Vernet, P.; Pons, E.; Faure, J.; Dufaure, J.P.; Drevet, J.R. Characterization, regulation of the expression and putative roles of two glutathione peroxidase proteins found in the mouse epididymis. J. Reprod. Fertil. Suppl., 1998, 53, 157-162.
[PMID: 10645275]
[18]
Diao, R.; Wang, T.; Fok, K.L.; Li, X.; Ruan, Y.; Yu, M.K.; Cheng, Y.; Chen, Y.; Chen, H.; Mou, L.; Cai, X.; Wang, Y.; Cai, Z.; Zeng, X.; Chan, H.C. CCR6 is required for ligand-induced CatSper activation in human sperm. Oncotarget, 2017, 8(53), 91445-91458.
[http://dx.doi.org/10.18632/oncotarget.20651] [PMID: 29207656]
[19]
Osterhoff, C.; Ivell, R.; Kirchhoff, C. Cloning of a human epididymis-specific mRNA, HE6, encoding a novel member of the seven transmembrane-domain receptor superfamily. DNA Cell Biol., 1997, 16(4), 379-389.
[http://dx.doi.org/10.1089/dna.1997.16.379] [PMID: 9150425]
[20]
Neto, F.T.L.; Bach, P.V.; Najari, B.B.; Li, P.S.; Goldstein, M. Spermatogenesis in humans and its affecting factors. Semin. Cell Dev. Biol., 2016, 59, 10-26.
[http://dx.doi.org/10.1016/j.semcdb.2016.04.009]
[21]
Fouchécourt, S.; Métayer, S.; Locatelli, A.; Dacheux, F.; Dacheux, J-L. Stallion epididymal fluid proteome: Qualitative and quantitative characterization; secretion and dynamic changes of major proteins. Biol. Reprod., 2000, 62(6), 1790-1803.
[http://dx.doi.org/10.1095/biolreprod62.6.1790] [PMID: 10819784]
[22]
Syntin, P.; Dacheux, F.; Druart, X.; Gatti, J.L.; Okamura, N.; Dacheux, J-L. Characterization and identification of proteins secreted in the various regions of the adult boar epididymis. Biol. Reprod., 1996, 55(5), 956-974.
[http://dx.doi.org/10.1095/biolreprod55.5.956] [PMID: 8902205]
[23]
Deng, Y.Y.; Li, J.Q.; Wu, S.F.; Zhu, Y.P.; Chen, Y.W.; He, F.C. Integrated Nr database in protein annotation system and its localization. Comput Eng, 2006, 32(5), 71-72.
[24]
Apweiler, R.; Bairoch, A.; Wu, C. H.; Barker, W. C.; Boeckmann, B.; Ferro, S.; Gasteiger, E.; Huang, H.; Lopez, R.; Magrane, M. UniProt: The universal protein knowledgebase Nucleic Acids Res., 2004, 32((Suppl_1)), D115-D119.
[25]
Ashburner, M.; Ball, C.A.; Blake, J.A.; Botstein, D.; Butler, H.; Cherry, J.M.; Davis, A.P.; Dolinski, K.; Dwight, S.S.; Eppig, J.T.; Harris, M.A.; Hill, D.P.; Issel-Tarver, L.; Kasarskis, A.; Lewis, S.; Matese, J.C.; Richardson, J.E.; Ringwald, M.; Rubin, G.M.; Sherlock, G. Gene ontology: Tool for the unification of biology. Nat. Genet., 2000, 25(1), 25-29.
[http://dx.doi.org/10.1038/75556] [PMID: 10802651]
[26]
Tatusov, R.L.; Galperin, M.Y.; Natale, D.A.; Koonin, E.V. The COG database: A tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res., 2000, 28(1), 33-36.
[http://dx.doi.org/10.1093/nar/28.1.33] [PMID: 10592175]
[27]
Kanehisa, M.; Goto, S.; Kawashima, S.; Okuno, Y.; Hattori, M. The KEGG resource for deciphering the genome. Nucleic Acids Res., 2004, 32(Suppl_1), D277-D280..
[http://dx.doi.org/10.1093/nar/gkh063]
[28]
Altschul, S.F.; Madden, T.L.; Schäffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res., 1997, 25(17), 3389-3402.
[http://dx.doi.org/10.1093/nar/25.17.3389] [PMID: 9254694]
[29]
Schulze, S.K.; Kanwar, R.; Gölzenleuchter, M.; Therneau, T.M.; Beutler, A.S. SERE: Single-parameter quality control and sample comparison for RNA-seq. BMC Genomics, 2012, 13(1), 524.
[http://dx.doi.org/10.1186/1471-2164-13-524] [PMID: 23033915]
[30]
Hjerpe, R.; Bett, J.S.; Keuss, M.J.; Solovyova, A.; McWilliams, T.G.; Johnson, C.; Sahu, I.; Varghese, J.; Wood, N.; Wightman, M.; Osborne, G.; Bates, G.P.; Glickman, M.H.; Trost, M.; Knebel, A.; Marchesi, F.; Kurz, T. UBQLN2 mediates autophagy-independent protein aggregate clearance by the proteasome. Cell, 2016, 166(4), 935-949.
[http://dx.doi.org/10.1016/j.cell.2016.07.001] [PMID: 27477512]
[31]
Légaré, C.; Akintayo, A.; Blondin, P.; Calvo, E.; Sullivan, R. Impact of male fertility status on the transcriptome of the bovine epididymis. Mol. Hum. Reprod., 2017, 23(6), 355-369.
[http://dx.doi.org/10.1093/molehr/gax019] [PMID: 28379507]
[32]
Ribeiro, C.M.; Silva, E.J.R.; Hinton, B.T.; Avellar, M.C.W. β-defensins and the epididymis: Contrasting influences of prenatal, postnatal, and adult scenarios. Asian J. Androl., 2016, 18(2), 323-328.
[http://dx.doi.org/10.4103/1008-682X.168791] [PMID: 26763543]
[33]
Rodríguez-Jiménez, F-J.; Krause, A.; Schulz, S.; Forssmann, W-G.; Conejo-Garcia, J-R.; Schreeb, R.; Motzkus, D. Distribution of new human β-defensin genes clustered on chromosome 20 in functionally different segments of epididymis. Genomics, 2003, 81(2), 175-183.
[http://dx.doi.org/10.1016/S0888-7543(02)00034-4] [PMID: 12620395]
[34]
Wilson, G.J.; Marakalala, M.J.; Hoving, J.C.; van Laarhoven, A.; Drummond, R.A.; Kerscher, B.; Keeton, R.; van de Vosse, E.; Ottenhoff, T.H.M.; Plantinga, T.S.; Alisjahbana, B.; Govender, D.; Besra, G.S.; Netea, M.G.; Reid, D.M.; Willment, J.A.; Jacobs, M.; Yamasaki, S.; van Crevel, R.; Brown, G.D. The C-type lectin receptor CLECSF8/CLEC4D is a key component of anti-mycobacterial immunity. Cell Host Microbe, 2015, 17(2), 252-259.
[http://dx.doi.org/10.1016/j.chom.2015.01.004] [PMID: 25674984]
[35]
Cai, X.; Yu, S.; Mipam, T.; Yang, F.; Zhao, W.; Liu, W.; Cao, S.; Shen, L.; Zhao, F.; Sun, L.; Xu, C.; Wu, S. Comparative analysis of testis transcriptomes associated with male infertility in cattleyak. Theriogenology, 2017, 88, 28-42.
[http://dx.doi.org/10.1016/j.theriogenology.2016.09.047] [PMID: 27865410]
[36]
Yudin, A.I.; Generao, S.E.; Tollner, T.L.; Treece, C.A.; Overstreet, J.W.; Cherr, G.N. Beta-defensin 126 on the cell surface protects sperm from immunorecognition and binding of anti-sperm antibodies. Biol. Reprod., 2005, 73(6), 1243-1252.
[http://dx.doi.org/10.1095/biolreprod.105.042432] [PMID: 16079310]
[37]
Yudin, A.I.; Treece, C.A.; Tollner, T.L.; Overstreet, J.W.; Cherr, G.N. The carbohydrate structure of DEFB126, the major component of the cynomolgus Macaque sperm plasma membrane glycocalyx. J. Membr. Biol., 2005, 207(3), 119-129.
[http://dx.doi.org/10.1007/s00232-005-0806-z] [PMID: 16550483]
[38]
Richardson, R.T.; Sivashanmugam, P.; Hall, S.H.; Hamil, K.G.; Moore, P.A.; Ruben, S.M.; French, F.S.; O’Rand, M. Cloning and sequencing of human Eppin: A novel family of protease inhibitors expressed in the epididymis and testis. Gene, 2001, 270(1-2), 93-102.https://doi.org/https://doi.org/10.1016/S0378-1119(01)00462-0
[http://dx.doi.org/10.1016/S0378-1119(01)00462-0] [PMID: 11404006]
[39]
Patil, A.A.; Cai, Y.; Sang, Y.; Blecha, F.; Zhang, G. Cross-species analysis of the mammalian beta-defensin gene family: Presence of syntenic gene clusters and preferential expression in the male reproductive tract. Physiol. Genomics, 2005, 23(1), 5-17.
[http://dx.doi.org/10.1152/physiolgenomics.00104.2005] [PMID: 16033865]
[40]
Pazgier, M.; Hoover, D.M.; Yang, D.; Lu, W.; Lubkowski, J. Human β-defensins. Cell. Mol. Life Sci., 2006, 63(11), 1294-1313.
[http://dx.doi.org/10.1007/s00018-005-5540-2] [PMID: 16710608]
[41]
Yamaguchi, Y.; Ouchi, Y. Antimicrobial peptide defensin: Identification of novel isoforms and the characterization of their physiological roles and their significance in the pathogenesis of diseases. Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci., 2012, 88(4), 152-166.
[http://dx.doi.org/10.2183/pjab.88.152] [PMID: 22498979]
[42]
Hall, S.H.; Yenugu, S.; Radhakrishnan, Y.; Avellar, M.C.; Petrusz, P.; French, F.S. Characterization and functions of beta defensins in the epididymis. Asian J. Androl., 2007, 9(4), 453-462.
[http://dx.doi.org/10.1111/j.1745-7262.2007.00298.x] [PMID: 17589782]
[43]
Ribeiro, C.M.; Romano, R.M.; Avellar, M.C. Beta-defensins in the epididymis: Clues to multifunctional roles. Anim. Reprod., 2012, 9, 751-759.
[44]
Yenugu, S.; Hamil, K.G.; Birse, C.E.; Ruben, S.M.; French, F.S.; Hall, S.H. Antibacterial properties of the sperm-binding proteins and peptides of human epididymis 2 (HE2) family; salt sensitivity, structural dependence and their interaction with outer and cytoplasmic membranes of Escherichia coli. Biochem. J., 2003, 372(Pt 2), 473-483.
[http://dx.doi.org/10.1042/bj20030225] [PMID: 12628001]
[45]
Zanich, A.; Pascall, J.C.; Jones, R. Secreted epididymal glycoprotein 2D6 that binds to the sperm’s plasma membrane is a member of the β-defensin superfamily of pore-forming glycopeptides. Biol. Reprod., 2003, 69(6), 1831-1842.
[http://dx.doi.org/10.1095/biolreprod.103.018606] [PMID: 12890730]
[46]
Zhou, C.X.; Zhang, Y-L.; Xiao, L.; Zheng, M.; Leung, K.M.; Chan, M.Y.; Lo, P.S.; Tsang, L.L.; Wong, H.Y.; Ho, L.S.; Chung, Y.W.; Chan, H.C. An epididymis-specific β-defensin is important for the initiation of sperm maturation. Nat. Cell Biol., 2004, 6(5), 458-464.
[http://dx.doi.org/10.1038/ncb1127] [PMID: 15122269]
[47]
Roberts, K.P.; Ensrud, K.M.; Wooters, J.L.; Nolan, M.A.; Johnston, D.S.; Hamilton, D.W. Epididymal secreted protein Crisp-1 and sperm function. Mol. Cell. Endocrinol., 2006, 250(1-2), 122-127.
[http://dx.doi.org/10.1016/j.mce.2005.12.034] [PMID: 16414181]
[48]
Wang, Z.; Widgren, E.E.; Sivashanmugam, P.; O’Rand, M.G.; Richardson, R.T. Association of eppin with semenogelin on human spermatozoa. Biol. Reprod., 2005, 72(5), 1064-1070.
[http://dx.doi.org/10.1095/biolreprod.104.036483] [PMID: 15590901]
[49]
Suzuki, K.; Yu, X.; Chaurand, P.; Araki, Y.; Lareyre, J.J.; Caprioli, R.M.; Orgebin-Crist, M.C.; Matusik, R.J. Epididymis-specific lipocalin promoters. Asian J. Androl., 2007, 9(4), 515-521.
[http://dx.doi.org/10.1111/j.1745-7262.2007.00300.x] [PMID: 17589789]
[50]
Li, X.; Zhan, X.; Liu, S.; Hu, S.; Zhu, C.; Hall, S.H.; French, F.S.; Liu, Q.; Zhang, Y. Cloning and primary characterizations of rLcn9, a new member of epididymal lipocalins in rat. Acta Biochim. Biophys. Sin. (Shanghai), 2012, 44(10), 876-885.
[http://dx.doi.org/10.1093/abbs/gms072] [PMID: 23017836]
[51]
Jervis, K.M.; Robaire, B. Dynamic changes in gene expression along the rat epididymis. Biol. Reprod., 2001, 65(3), 696-703.
[http://dx.doi.org/10.1095/biolreprod65.3.696] [PMID: 11514330]
[52]
Kirchhoff, C.; Osterhoff, C.; Pera, I.; Schröter, S. Function of human epididymal proteins in sperm maturation. Andrologia, 1998, 30(4-5), 225-232.
[http://dx.doi.org/10.1111/j.1439-0272.1998.tb01164.x] [PMID: 9739419]
[53]
Ru, Y-F.; Xue, H-M.; Ni, Z-M.; Xia, D.; Zhou, Y-C.; Zhang, Y-L. An epididymis-specific carboxyl esterase CES5A is required for sperm capacitation and male fertility in the rat. Asian J. Androl., 2015, 17(2), 292-297.
[http://dx.doi.org/10.4103/1008-682X.143314] [PMID: 25475668]
[54]
Ito, K.; Hasegawa, A.; Komori, S.; Koyama, K. Biochemical property and immunogenicity of mouse male reproductive tract CD52 (mrt-CD52). J. Reprod. Immunol., 2007, 75(1), 32-39.
[http://dx.doi.org/10.1016/j.jri.2007.03.001] [PMID: 17418902]
[55]
Koyama, K.; Ito, K.; Hasegawa, A. Role of male reproductive tract CD52 (mrt-CD52) in reproduction. Soc. Reprod. Fertil. Suppl., 2007, 63, 103-110.
[PMID: 17566265]
[56]
Uhrin, P.; Dewerchin, M.; Hilpert, M.; Chrenek, P.; Schöfer, C.; Zechmeister-Machhart, M.; Krönke, G.; Vales, A.; Carmeliet, P.; Binder, B.R.; Geiger, M. Disruption of the protein C inhibitor gene results in impaired spermatogenesis and male infertility. J. Clin. Invest., 2000, 106(12), 1531-1539.
[http://dx.doi.org/10.1172/JCI10768] [PMID: 11120760]
[57]
Yin, Y.; Wang, G.; Liang, N.; Zhang, H.; Liu, Z.; Li, W.; Sun, F. Nuclear export factor 3 is involved in regulating the expression of TGF-β3 in an mRNA export activity-independent manner in mouse Sertoli cells. Biochem. J., 2013, 452(1), 67-78.
[http://dx.doi.org/10.1042/BJ20121006] [PMID: 23438076]
[58]
Ijiri, T.W.; Vadnais, M.L.; Huang, A.P.; Lin, A.M.; Levin, L.R.; Buck, J.; Gerton, G.L. Thiol changes during epididymal maturation: A link to flagellar angulation in mouse spermatozoa? Andrology, 2014, 2(1), 65-75.
[http://dx.doi.org/10.1111/j.2047-2927.2013.00147.x] [PMID: 24254994]
[59]
Martín-Satué, M.; Lavoie, E.G.; Pelletier, J.; Fausther, M.; Csizmadia, E.; Guckelberger, O.; Robson, S.C.; Sévigny, J. Localization of plasma membrane bound NTPDases in the murine reproductive tract. Histochem. Cell Biol., 2009, 131(5), 615-628.
[http://dx.doi.org/10.1007/s00418-008-0551-3] [PMID: 19125273]
[60]
Forman, M.S.; Lee, V.M.Y.; Trojanowski, J.Q. ‘Unfolding’ pathways in neurodegenerative disease. Trends Neurosci., 2003, 26(8), 407-410.
[http://dx.doi.org/10.1016/S0166-2236(03)00197-8] [PMID: 12900170]
[61]
Gow, A.; Sharma, R. The unfolded protein response in protein aggregating diseases. Neuromolecular Med., 2003, 4(1-2), 73-94.
[http://dx.doi.org/10.1385/NMM:4:1-2:73] [PMID: 14528054]
[62]
Paschen, W.; Mengesdorf, T. Endoplasmic reticulum stress response and neurodegeneration. Cell Calcium, 2005, 38(3-4), 409-415.
[http://dx.doi.org/10.1016/j.ceca.2005.06.019] [PMID: 16087231]
[63]
Kelly, E.; Greene, C.M.; Carroll, T.P.; McElvaney, N.G.; O’Neill, S.J. Selenoprotein S/SEPS1 modifies endoplasmic reticulum stress in Z variant alpha1-antitrypsin deficiency. J. Biol. Chem., 2009, 284(25), 16891-16897.
[http://dx.doi.org/10.1074/jbc.M109.006288] [PMID: 19398551]
[64]
Schröder, M.; Kaufman, R.J. ER stress and the unfolded protein response. Mutat. Res., 2005, 569(1-2), 29-63.
[http://dx.doi.org/10.1016/j.mrfmmm.2004.06.056] [PMID: 15603751]
[65]
Yoshida, H. ER stress and diseases. FEBS J., 2007, 274(3), 630-658.
[http://dx.doi.org/10.1111/j.1742-4658.2007.05639.x] [PMID: 17288551]
[66]
Gross, E.; Kastner, D.B.; Kaiser, C.A.; Fass, D. Structure of Ero1p, source of disulfide bonds for oxidative protein folding in the cell. Cell, 2004, 117(5), 601-610.
[http://dx.doi.org/10.1016/S0092-8674(04)00418-0] [PMID: 15163408]
[67]
Bhamidipati, A.; Denic, V.; Quan, E.M.; Weissman, J.S. Exploration of the topological requirements of ERAD identifies Yos9p as a lectin sensor of misfolded glycoproteins in the ER lumen. Mol. Cell, 2005, 19(6), 741-751.
[http://dx.doi.org/10.1016/j.molcel.2005.07.027] [PMID: 16168370]
[68]
Buschhorn, B.A.; Kostova, Z.; Medicherla, B.; Wolf, D.H. A genome-wide screen identifies Yos9p as essential for ER-associated degradation of glycoproteins. FEBS Lett., 2004, 577(3), 422-426.
[http://dx.doi.org/10.1016/j.febslet.2004.10.039] [PMID: 15556621]
[69]
Szathmary, R.; Bielmann, R.; Nita-Lazar, M.; Burda, P.; Jakob, C.A. Yos9 protein is essential for degradation of misfolded glycoproteins and may function as lectin in ERAD. Mol. Cell, 2005, 19(6), 765-775.
[http://dx.doi.org/10.1016/j.molcel.2005.08.015] [PMID: 16168372]
[70]
Liu, J.B.; Yan, H.L.; Cao, S.C.; Liu, J.; Zhang, H.F. Effect of feed intake level on the determination of apparent and standardized Total tract digestibility of phosphorus for growing pigs. Anim. Feed Sci. Technol., 2018, 246, 137-143.
[http://dx.doi.org/10.1016/j.anifeedsci.2018.10.012]
[71]
Du, S.; Sang, Y.; Liu, X.; Xing, S.; Li, J.; Tang, H.; Sun, L. Transcriptome profile analysis from different sex types of Ginkgo biloba L. Front. Plant Sci., 2016, 7, 871.
[http://dx.doi.org/10.3389/fpls.2016.00871] [PMID: 27379148]
[72]
Frey, F.P.; Urbany, C.; Hüttel, B.; Reinhardt, R.; Stich, B. Genome-wide expression profiling and phenotypic evaluation of European maize inbreds at seedling stage in response to heat stress. BMC Genomics, 2015, 16(1), 123.
[http://dx.doi.org/10.1186/s12864-015-1282-1] [PMID: 25766122]
[73]
Zhao, W.; Yuan, M.; Li, P.; Yan, H.; Zhang, H.; Liu, J. Short-chain fructo-oligosaccharides enhances intestinal barrier function by attenuating mucosa inflammation and altering colonic microbiota composition of weaning piglets. Ital. J. Anim. Sci., 2019, 18(1), 976-986.
[http://dx.doi.org/10.1080/1828051X.2019.1612286]
[74]
Liu, J.; Zhang, Y.; Li, Y.; Yan, H.; Zhang, H. L-tryptophan enhances intestinal integrity in diquat-challenged piglets associated with improvement of redox status and mitochondrial function. Animals (Basel), 2019, 9(5), 266.
[http://dx.doi.org/10.3390/ani9050266] [PMID: 31121956]
[75]
Conesa, A.; Götz, S. Blast2GO: A comprehensive suite for functional analysis in plant genomics. Int. J. Plant Genomics, 2008, 2008619832
[http://dx.doi.org/10.1155/2008/619832]
[76]
Mao, X.; Cai, T.; Olyarchuk, J.G.; Wei, L. Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics, 2005, 21(19), 3787-3793.
[http://dx.doi.org/10.1093/bioinformatics/bti430] [PMID: 15817693]
[77]
Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods, 2001, 25(4), 402-408.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 20
ISSUE: 4
Year: 2019
Page: [293 - 305]
Pages: 13
DOI: 10.2174/1389202920666190809092819
Price: $65

Article Metrics

PDF: 32
HTML: 3
EPUB: 1
PRC: 1