Joint Computational and Experimental Investigations on the Synthesis and Properties of Hantzsch-type Compounds: An Overview

Author(s): Tayebeh Hosseinnejad*, Marzieh Omrani-Pachin, Majid M. Heravi*.

Journal Name: Current Organic Chemistry

Volume 23 , Issue 13 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

In this review, we try to highlight the significance, mechanism propositions, computational and experimental assessments of Hantzsch dihydropyridine (DHPs) which readily oxidized to the corresponding pyridines as one of the most important aromatic heterocycles. We also try to give an overview to its ability in transfer hydrogenation, acting as hydride donors from computational and experimental points of view. Our survey is also extended to computational assessments on the structural and biological properties of Hantzsch DHPs.

Keywords: Hantzsch synthesis, dihydropyridines, computational chemistry, calcium channel blockers, asymmetric transfer hydrogenation, biological properties.

[1]
Hantzsch, A. Ueber die synthese pyridinartiger verbindungenaus acetessigäther und aldehyd ammoniak. Justus Liebigs Ann. Chem., 1882, 215, 1-82.
[http://dx.doi.org/10.1002/jlac.18822150102]
[2]
Wan, J.P.; Liu, Y. Recent advances in new multicomponent synthesis of structurally diversi-fied 1,4-dihydropyridines. RSC Advances, 2012, 2, 9763-9777.
[http://dx.doi.org/10.1039/c2ra21406g]
[3]
Heravi, M.M.; Behbahani, F.K.; Oskooie, H.A.; Shoar, R.H. Catalytic aromatization of Hantzsch 1, 4-dihydropyridines by ferric perchlorate in acetic acid. Tetrahedron Lett., 2005, 46, 2775-2777.
[http://dx.doi.org/10.1016/j.tetlet.2005.02.147]
[4]
Xia, J.J.; Wang, G.W. One-Pot Synthesis and aromatization of 1,4-dihydropyridines in refluxing water. Chem. Commun. (Camb.), 2005, 14, 2379-2383.
[5]
Katritzky, A.R.; Ostercamp, D.L.; Yousaf, T.I. The mechanisms of heterocyclic ring closures. Tetrahedron, 1987, 43, 5171-5186.
[http://dx.doi.org/10.1016/S0040-4020(01)87693-6]
[6]
Mollazadeh, S.; Moosavi, F.; Hadizadeh, F.; Seifi, M.; Behravan, J.; Iman, M. Synthesis and DFT Study on hantzsch reaction to produce asymmetrical compounds of 1,4-dihydropyridine derivatives for P-glycoprotein inhibition as anticancer agent. Recent Patents Anticancer Drug Discov., 2018, 13(2), 255-264.
[http://dx.doi.org/10.2174/1574892813666180220112613] [PMID: 29468983]
[7]
Sharma, M.G.; Rajani, D.P.; Patel, H.M. Green approach for synthesis of bioactive Hantzsch 1,4-dihydropyridine derivatives based on thiophene moiety via multicomponent reaction. R. Soc. Open Sci., 2017, 4(6)170006
[http://dx.doi.org/10.1098/rsos.170006] [PMID: 28680664]
[8]
Niaz, H.; Kashtoh, H.; Khan, J.A.; Khan, A.; Wahab, A.T.; Alam, M.T.; Khan, K.M.; Perveen, S.; Choudhary, M.I. Synthesis of diethyl 4-substituted-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylates as a new series of inhibitors against yeast α-glucosidase. Eur. J. Med. Chem., 2015, 95, 199-209.
[http://dx.doi.org/10.1016/j.ejmech.2015.03.018] [PMID: 25817770]
[9]
Fernandes, M.A.S.; Pereira, S.P.S.; Jurado, A.S.; Custódio, J.B.A.; Santos, M.S.; Moreno, A.J.M.; Duburs, G.; Vicente, J.A.F. Comparative effects of three 1,4-dihydropyridine derivatives [OSI-1210, OSI-1211 (etaftoron), and OSI-3802] on rat liver mitochondrial bioenergetics and on the physical properties of membrane lipid bilayers: Relevance to the length of the alkoxyl chain in positions 3 and 5 of the DHP ring. Chem. Biol. Interact., 2008, 173(3), 195-204.
[http://dx.doi.org/10.1016/j.cbi.2008.03.001] [PMID: 18452904]
[10]
Duburs, G.; Vigante, B.; Plotniece, A.; Krauze, A. Dihydropyridine derivatives as bioprotectors. Chim. Oggi, 2008, 26, 68-70.
[11]
Xiaofang, Li.; Yankui, M.; Pinggui, Yi.; Marcin, S.; Piotr, J. Pyridine‐fused bis(Norcorrole) through Hantzsch‐Type cyclization: Enhancement of antiaromaticity by an aromatic bridge. Angew. Chem., 2017, 56, 10609-10955.
[12]
Shen, L.; Cao, S.; Wu, J.J.; Zhang, J.; Li, H.; Liu, N.J.; Qian, X.H. A revisit to the Hantzsch reaction unexpected products beyond. Green Chem., 2009, 11, 1414-1420.
[http://dx.doi.org/10.1039/b906358g]
[13]
Hammad, M.A.; Omar, M.A.; Salman, B.I. Utility of Hantzsch reaction for development of highly sensitive spectrofluorimetric method for determination of alfuzosin and terazosin in bulk, dosage forms and human plasma. Luminescence, 2017, 32(6), 1066-1071.
[http://dx.doi.org/10.1002/bio.3292] [PMID: 28303653]
[14]
Zheng, C.; You, S.L. Transfer hydrogenation with Hantzsch esters and related organic hydride donors. Chem. Soc. Rev., 2012, 41(6), 2498-2518.
[http://dx.doi.org/10.1039/c1cs15268h] [PMID: 22282764]
[15]
Zhao, F.; Li, N.; Zhu, Y.F.; Han, Z.Y. Enantioselective construction of functionalized tetrahydrocarbazoles enabled by asymmetric relay catalysis of gold complex and chiral brønsted acid. Org. Lett., 2016, 18(7), 1506-1509.
[http://dx.doi.org/10.1021/acs.orglett.6b00012] [PMID: 26974554]
[16]
Xu, H.; Zuend, S.J.; Woll, M.G.; Tao, Y.; Jacobsen, E.N. Asymmetric cooperative catalysis of strong Brønsted acid-promoted reactions using chiral ureas. Science, 2010, 327(5968), 986-990.
[http://dx.doi.org/10.1126/science.1182826] [PMID: 20167783]
[17]
You, S.L. Recent developments in asymmetric transfer hydrogenation with Hantzsch esters: A biomimetic approach. Chem. Asian J., 2007, 2(7), 820-827.
[http://dx.doi.org/10.1002/asia.200700081] [PMID: 17551915]
[18]
Kappe, C.O. Biologically active dihydropyrimidones of the Biginelli-type--a literature survey. Eur. J. Med. Chem., 2000, 35(12), 1043-1052.
[http://dx.doi.org/10.1016/S0223-5234(00)01189-2] [PMID: 11248403]
[19]
Venugopala, K.N.; Govender, R.; Khedr, M.A.; Venugopala, R.; Aldhubiab, B.E.; Harsha, S.; Odhav, B. Design, synthesis, and computational studies on dihydropyrimidine scaffolds as potential lipoxygenase inhibitors and cancer chemopreventive agents. Drug Des. Devel. Ther., 2015, 9, 911-921.
[http://dx.doi.org/10.2147/DDDT.S73890] [PMID: 25733811]
[20]
Grover, G.J.; Dzwonczyk, S.; McMullen, D.M.; Normandin, D.E.; Parham, C.S.; Sleph, P.G.; Moreland, S. Pharmacologic profile of the dihydropyrimidine calcium channel blockers SQ 32,547 and SQ 32,926 [correction of SQ 32,946]. J. Cardiovasc. Pharmacol., 1995, 26(2), 289-294.
[http://dx.doi.org/[10.1097/00005344-199508000-00015] [PMID: 7475054]
[21]
Barrow, J.C.; Nantermet, P.G.; Selnick, H.G.; Glass, K.L.; Rittle, K.E.; Gilbert, K.F.; Steele, T.G.; Homnick, C.F.; Freidinger, R.M.; Ransom, R.W.; Kling, P.; Reiss, D.; Broten, T.P.; Schorn, T.W.; Chang, R.S.L.; O’Malley, S.S.; Olah, T.V.; Ellis, J.D.; Barrish, A.; Kassahun, K.; Leppert, P.; Nagarathnam, D.; Forray, C. In vitro and in vivo evaluation of dihydropyrimidinone C-5 amides as potent and selective α(1A) receptor antagonists for the treatment of benign prostatic hyperplasia. J. Med. Chem., 2000, 43(14), 2703-2718.
[http://dx.doi.org/10.1021/jm990612y] [PMID: 10893308]
[22]
Rovnyak, G.C.; Atwal, K.S.; Hedberg, A.; Kimball, S.D.; Moreland, S.; Gougoutas, J.Z.; O’Reilly, B.C.; Schwartz, J.; Malley, M.F. Dihydropyrimidine calcium channel blockers. 4. Basic 3-substituted-4-aryl-1,4-dihydropyrimidine-5-carboxylic acid esters. Potent antihypertensive agents. J. Med. Chem., 1992, 35(17), 3254-3263.
[http://dx.doi.org/10.1021/jm00095a023] [PMID: 1387168]
[23]
Prashantha Kumar, B.R.; Sankar, G.; Nasir Baig, R.B.; Chandrashekaran, S. Novel Biginelli dihydropyrimidines with potential anticancer activity: A parallel synthesis and CoMSIA study. Eur. J. Med. Chem., 2009, 44(10), 4192-4198.
[http://dx.doi.org/10.1016/j.ejmech.2009.05.014] [PMID: 19525040]
[24]
Oliver Kappe, C. 4-Aryldihydropyrimidines via the Biginelli Condensation: Aza-analogs of nifedipine-type calcium channel modulators. Molecules, 1998, 3, 1-9.
[http://dx.doi.org/10.3390/30100001]
[25]
Wan, J.P.; Pan, Y. Recent advance in the pharmacology of dihydropyrimidinone. Mini Rev. Med. Chem., 2012, 12(4), 337-349.
[http://dx.doi.org/10.2174/138955712799829267] [PMID: 22303940]
[26]
Kaur, N.; Kaur, K.; Raj, T.; Kaur, G.; Singh, A.; Aree, T.; Park, S.J.; Kim, T.J.; Singh, N.; Jang, D. One-pot synthesis of tricyclic dihydropyrimidine derivatives and their biological evaluation. Tetrahedron, 2015, 71, 332-337.
[http://dx.doi.org/10.1016/j.tet.2014.11.039]
[27]
Adhikari, A.; Kalluraya, B.; Sujith, K.V. Gouthamchandra.; Mahmood, R. Synthesis, characterization and biological evaluation of dihydropyrimidine derivatives. Saudi Pharm. J., 2012, 20(1), 75-79.
[http://dx.doi.org/10.1016/j.jsps.2011.04.002] [PMID: 23960779]
[28]
Prashantha Kumar, B.R.; Masih, P.; Karthikeyan, E.; Bansal, A. Suja.; Vijayan, P. Synthesis of novel Hantzsch dihydropyridines and Biginelli dihydropyrimidines of biological interest: A 3D-QSAR study on their cytotoxicity. Med. Chem. Res., 2010, 19, 344-363.
[http://dx.doi.org/10.1007/s00044-009-9195-7]
[29]
Falsone, F.S.; Kappe, C.O. The Biginelli dihydropyrimidone synthesis using polyphosphate ester as a mild and efficient cyclocondensation/dehydration reagent. ARKIVOC, 2001, 2, 122-134.
[30]
(a)Talaei, B.; Heravi, M.M. Chapter One - Diketene a privileged synthon in the synthesis of heterocycles. Part 2: Six-membered ring heterocycles. Adv. Heterocycl. Chem., 2018, 125, 1-106.
[http://dx.doi.org/10.1016/bs.aihch.2017.10.004]
(b)Heravi, M.M.; Talaei, B. Chapter Five - Ketenes as privileged synthons in the synthesis of heterocyclic compounds part 3: Six-membered heterocycles. Adv. Heterocycl. Chem., 2016, 118, 195-291.
[http://dx.doi.org/10.1016/bs.aihch.2015.10.007]
(c)Heravi, M.M.; Zadsirjan, V. Chapter Five - recent advances in the synthesis of benzo[b]furans. Adv. Heterocycl. Chem., 2015, 117, 261-376.
[http://dx.doi.org/10.1016/bs.aihch.2015.08.003]
(d)Heravi, M.M.; Talaei, B. Chapter Three - ketenes as privileged synthons in the syntheses of heterocyclic compounds part 2: Five-membered heterocycles. Adv. Heterocycl. Chem., 2015, 114, 147-225.
[http://dx.doi.org/10.1016/bs.aihch.2015.02.001]
(e)Khaghaninejad, S.; Heravi, M.M. Chapter three - Paal–Knorr reaction in the synthesis of heterocyclic compounds. Adv. Heterocycl. Chem., 2014, 111, 95-146.
[http://dx.doi.org/10.1016/B978-0-12-420160-6.00003-3]
(f)Heravi, M.M.; Alishiri, T. Chapter one - Dimethyl acetylenedicarboxylate as a building block in heterocyclic synthesis. Adv. Heterocycl. Chem., 2014, 113, 1-66.
[http://dx.doi.org/10.1016/B978-0-12-800170-7.00001-8]
(g)g|) Heravi, M.M.; Talaei, B. Chapter four - Ketenes as privileged synthons in the syntheses of heterocyclic compounds. Part 1: Three- and four-membered heterocycles. Adv. Heterocycl. Chem., 2014, 113, 143-244.
[http://dx.doi.org/10.1016/B978-0-12-800170-7.00004-3]
(h)Heravi, M.M. FathiVavsari, V. Chapter Two - Recent advances in application of amino acids: Key building blocks in design and syntheses of heterocyclic compounds. Adv. Heterocycl. Chem., 2015, 114, 77-145.
[http://dx.doi.org/10.1016/bs.aihch.2015.02.002]
(i)Heravi, M.M.; Khaghaninejad, S.; Mostofi, M. Chapter One - Pechmann reaction in the synthesis of coumarin derivatives. Adv. Heterocycl. Chem., 2014, 112, 1-50.
[http://dx.doi.org/10.1016/B978-0-12-800171-4.00001-9]
(j)Heravi, M.M.; Khaghaninejad, S.; Nazari, N. Chapter five - bischler–napieralski reaction in the syntheses of isoquinolines. Adv. Heterocycl. Chem., 2014, 112, 183-234.
[http://dx.doi.org/10.1016/B978-0-12-800171-4.00005-6]
[31]
Aday, B.; Yıldız, Y.; Ulus, R.; Eris, S.; Sen, F.; Kaya, M. One-pot, efficient and green synthesis of acridinedione derivatives using highly monodisperse platinum nanoparticles supported with reduced graphene oxide. New J. Chem., 2016, 40, 748-754.
[http://dx.doi.org/10.1039/C5NJ02098K]
[32]
Pamuk, H.; Aday, B.; Şen, F.; Kaya, M. Pt NPs@GO as a highly efficient and reusable catalyst for one-pot synthesis of acridinedione derivatives. RSC Adv. Heterocycl. Chem., 2015, 5, 49295-49300.
[http://dx.doi.org/10.1039/C5RA06441D]
[33]
Erken, E.; Esirden, I.; Kaya, M.; Sen, F. A rapid and novel method for the synthesis of 5-substituted 1H-tetrazole catalyzed by exceptional reusable monodisperse Pt NPs@AC under the microwave irradiation. RSC Adv. Heterocycl. Chem., 2015, 5, 68558-68564.
[34]
Esirden, I.; Erken, E.; Kaya, M.; Sen, F. Monodisperse Pt NPs@rGO as highly efficient and reusable heterogeneous catalysts for the synthesis of 5-substituted 1H-tetrazole derivatives. Catal. Sci. Technol., 2015, 5, 4452-4457.
[http://dx.doi.org/10.1039/C5CY00864F]
[35]
Xianglin, Zh. Peng, Wang.; Mengmeng, Li.; Qianqian, Zh.; Elena A.R.; Xiaoyan, Q.; Xiaoyang, Zh.; Ying, D.; Zeyan, W.; Baibiao, H. Novel high-efficiency visible-light responsive Ag4(GeO4) photocatalyst. Catal. Sci. Technol., 2017, 6, 2318-2324.
[36]
Akocak, S.; Şen, B.; Lolak, N.; Şavk, A.; Koca, M.; Kuzu, S.; Şen, F. One-pot three-component synthesis of 2-Amino-4H-Chromene derivatives by using monodisperse Pd nanomaterials anchored graphene oxide as highly efficient and recyclable catalyst. Nano-Structures Nano-Objects, 2017, 11, 25-31.
[http://dx.doi.org/10.1016/j.nanoso.2017.06.002]
[37]
Yıldız, Y.; Esirden, I.; Erken, E.; Demir, E.; Kaya, M.; Şen, F. Microwave(Mw)‐assisted Synthesis of 5‐Substituted 1H‐Tetrazoles via [3+2] cycloaddition catalyzed by Mw‐Pd/Co nanoparticles decorated on multi‐walled carbon nanotubes. ChemistrySelect, 2016, 1, 1695-1701.
[http://dx.doi.org/10.1002/slct.201600265]
[38]
Şen, B.; Lolak, N.; Paralı, O.; Koca, M.; Şavk, A.; Akocak, S.; Şen, F. Bimetallic PdRu/graphene oxide based Catalysts for one-pot three-component synthesis of 2-amino-4H-chromene derivatives. Nano-Structures & Nano-Objects, 2017, 12, 33-40.
[http://dx.doi.org/10.1016/j.nanoso.2017.08.013]
[39]
Ulus, R.; Yıldız, Y.; Eriş, S.; Aday, B.; Sen, F.; Kaya, M. Functionalized multi‐walled carbon nanotubes (f‐MWCNT) as highly efficient and reusable heterogeneous catalysts for the synthesis of acridinedione derivatives. ChemistrySelect, 2016, 1, 3861-3865.
[http://dx.doi.org/10.1002/slct.201600719]
[40]
Göksu, H.; Yıldız, Y.; Çelik, B.; Yazıcı, M.; Kilbas, B.; Sen, F. Highly efficient and monodisperse graphene oxide furnished ru/pd nanoparticles for the dehalogenation of aryl halides via ammonia borane. ChemistrySelect, 2016, 1, 953-958.
[http://dx.doi.org/10.1002/slct.201600207]
[41]
Goksu, H.; Zengin, N.; Karaosman, A.; Sen, F. Highly active and reusable Pd/AlO(OH) nanoparticles for the suzuki cross-coupling reaction. Curr. Org. Cat., 2018, 5, 34-41.
[http://dx.doi.org/10.2174/2213337205666180614114550]
[42]
Heravi, M.M.; Bakhtiari, K.H. Javadi, N.; Bamoharram, F.; Saeedi, M.; Oskooie, H.A. K7[PW11CoO40]-catalyzed one-pot synthesis of polyhydroquinoline derivatives via the Hantzsch three component condensation. J. Mol. Cat. A., 2007, 264, 50-52.
[http://dx.doi.org/10.1016/j.molcata.2006.09.004]
[43]
Heravi, M.M.; Saeedi, M.; Karimi, N.; Zakeri, M.; Beheshtiha, Y.S.; Davoodnia, A. Brønsted Acid Ionic Liquid [(CH2)4SO3HMIM][HSO4] as novel catalyst for one-pot synthesis of Hantzsch Polyhydroquinoline derivatives. J. Mol. Cat. A., 2010, 40, 523-529.
[http://dx.doi.org/10.1080/00397910902994194]
[44]
Heravi, M.M.; Derikvand, F.; Hassan-Pour, S.; Bakhtiari, K.; Bamoharram, F.F.; Oskooie, H.A. Oxidative aromatization of Hantzsch 1,4-dihydropyridines in the presence of mixed-addenda vanadomolybdophosphate heteropolyacid, H6PMo9V3O40. Bioorg. Med. Chem. Lett., 2007, 17(12), 3305-3309.
[http://dx.doi.org/10.1016/j.bmcl.2007.04.002] [PMID: 17452103]
[45]
Heravi, M.M.; Hosseinnejad, T.; Nazari, N. Computational investigations on structural and electronic properties of CuI nanoparticles immobilized on modified poly(styrene-co-maleic anhydride), leading to unexpected but an efficient catalyzed synthesis of 1,4-dihydropyridine via Hantzsch pyridine synthesis. Can. J. Chem., 2017, 95, 530-536.
[http://dx.doi.org/10.1139/cjc-2016-0507]
[46]
Hosseinnejad, T.; Ebrahimpour-Malmir, F.; Fattahi, B. Computational investigations of click-derived 1,2,3-triazoles as keystone ligands for complexation with transition metals: A review. RSC Advances, 2018, 8, 12232-12259.
[http://dx.doi.org/10.1039/C8RA00283E]
[47]
Heravi, M.M.; Hosseinnejad, T.; Tamimi, M.; Yahyavi, H. Huisgen’s cycloaddition reactions: A full perspective. Curr. Org. Chem., 2016, 20, 1591-1647.
[http://dx.doi.org/10.2174/1385272820666151217183010]
[48]
Hosseinnejad, T.; Fattahi, B.; Heravi, M.M. Computational studies on the regioselectivity of metal-catalyzed synthesis of 1,2,3 triazoles via click reaction: A review. J. Mol. Model., 2015, 21(10), 264-301.
[http://dx.doi.org/10.1007/s00894-015-2810-2] [PMID: 26385849]
[49]
Steevens, J.B.; Pandit, U.K. Nad(p)h models-xvii: Metal ion catalyzed reduction of imines by 3,5-diethoxycarbonyl 2,6-dimethyl-1,4-dihydropyridine (hantzsch ester). Tetrahedron, 1983, 39, 1395-1400.
[http://dx.doi.org/10.1016/S0040-4020(01)91910-6]
[50]
Dahl, G.E.; Jaitly, N.; Salakhutdinov, R. Multitask Neural Networks for QSAR Predictions. arXiv preprint arXiv, 2104, 6, 1231.
[51]
Jasinski, J.P.; Guild, C.J.; Pek, A.E.; Samshuddin, S.; Narayana, B.; Yathirajan, H.S.; Butcher, R.J. Synthesis and crystal structures of four new dihydropyridine derivatives. J. Chem. Crystallogr., 2013, 43, 429-442.
[http://dx.doi.org/10.1007/s10870-013-0440-z]
[52]
Becke, A.D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A Gen. Phys., 1988, 38(6), 3098-3100.
[http://dx.doi.org/10.1103/PhysRevA.38.3098] [PMID: 9900728]
[53]
Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B Condens. Matter, 1988, 37(2), 785-789.
[http://dx.doi.org/10.1103/PhysRevB.37.785] [PMID: 9944570]
[54]
Suarez, M.; de Armas, M.; Ramırez, O.; Alvarez, A.; Martinez-Alvarez, R.; Molero, D.; Seoane, C.; Liz, R.; Martin, N. Synthesis and structural study of new highly lipophilic 1,4-dihydropyridines. New J. Chem., 2005, 29, 1567-1576.
[http://dx.doi.org/10.1039/b506018d]
[55]
Dewar, M.J.S.; Zoebisch, E.G.; Hearly, E.F.; Stewart, J.J.P. Development and use of quantum mechanical molecular models. 76. AM1: A new general purpose quantum mechanical molecular model. J. Am. Chem. Soc., 1985, 107, 3902-3909.
[http://dx.doi.org/10.1021/ja00299a024]
[56]
Hehre, W.J.; Ditchfield, R.; Pople, J.A. Self-consistent molecular orbital methods. XII. further extensions of gaussian-type basis sets for use in molecular orbital studies of organic molecules. J. Chem. Phys., 1972, 56, 2257-2261.
[http://dx.doi.org/10.1063/1.1677527]
[57]
Xiaofang, Li.; Yankui, M.; Pinggui, Yi.; Marcin, S.; Piotr, J. Pyridine‐fused bis(Norcorrole) through Hantzsch‐Type Cyclization: Enhancement of antiaromaticity by an aromatic bridge. Angew. Chem. Int. Ed., 2017, 56, 10609-10955.
[58]
Bröring, M.; Köhler, S.; Kleeberg, C. Norcorrole: Observation of the smallest porphyrin variant with a N4 core. Angew. Chem. Int. Ed. Engl., 2008, 47(30), 5658-5660.
[http://dx.doi.org/10.1002/anie.200801196] [PMID: 18567031]
[59]
Ito, T.; Hayashi, Y.; Shimizu, S.; Shin, J.Y.; Kobayashi, N.; Shinokubo, H. Gram-scale synthesis of nickel(II) norcorrole: The smallest antiaromatic porphyrinoid. Angew. Chem. Int. Ed. Engl., 2012, 51(34), 8542-8545.
[http://dx.doi.org/10.1002/anie.201204395] [PMID: 22811074]
[60]
Shin, J.Y.; Yamada, T.; Yoshikawa, H.; Awaga, K.; Shinokubo, H. An antiaromatic electrode-active material enabling high capacity and stable performance of rechargeable batteries. Angew. Chem. Int. Ed. Engl., 2014, 53(12), 3096-3101.
[http://dx.doi.org/10.1002/anie.201310374] [PMID: 24554515]
[61]
Goto, K.; Yamaguchi, R.; Hiroto, S.; Ueno, H.; Kawai, T.; Shinokubo, H. Intermolecular oxidative annulation of 2-aminoanthracenes to diazaacenes and aza[7]helicenes. Angew. Chem. Int. Ed. Engl., 2012, 51(41), 10333-10336.
[http://dx.doi.org/10.1002/anie.201204863] [PMID: 22965455]
[62]
Deng, Z.; Li, X.; Stępień, M.; Chmielewski, P.J. Nitration of norcorrolatonickel(II): First observation of a diatropic current in a system comprising a norcorrole ring. Chemistry, 2016, 22(12), 4231-4246.
[http://dx.doi.org/10.1002/chem.201504584] [PMID: 26879706]
[63]
Liu, B.; Li, X.; Stępień, M.; Chmielewski, P.J. Towards norcorrin: Hydrogenation chemistry and the heterodimerization of nickel(II) norcorrole. Chemistry, 2015, 21(21), 7790-7797.
[http://dx.doi.org/10.1002/chem.201500736] [PMID: 25899073]
[64]
Heravi, M.M.; Hashemi, E.; Shirazi Beheshtiha, Y.; Ahmadi, Sh.; Hosseinnejad, T. PdCl2on modified poly(styrene-co-maleic anhydride): A highly active and recyclable catalyst for the Suzuki–Miyaura and Sonogashira reactions. J. Mol. Cat. A., 2014, 394, 74-82.
[http://dx.doi.org/10.1016/j.molcata.2014.07.001]
[65]
Heravi, M.M.; Malmir, M.; Sadjadi, S.; Hosseinnejad, T. Ultrasonic and bio‐assisted synthesis of Ag@HNTs‐T as a novel heterogeneous catalyst for the green synthesis of propargylamines: A combination of experimental and computational study. Appl. Organomet. Chem., 2018, 32, 4291-4299.
[http://dx.doi.org/10.1002/aoc.4291]
[66]
Heravi, M.M.; Taheri Kal-Kashvandi, A.; Ahmadi, S.H.; Hosseinnejad, T. Copper nanoparticles in polyvinyl alcohol–acrylic acid matrix: An efficient heterogeneous catalyst for the regioselective synthesis of 1,4-Disubstituted 1,2,3-Triazoles via click reaction. J. Inorg. Organomet. Polym., 2018, 28, 1457-1467.
[http://dx.doi.org/10.1007/s10904-018-0811-1]
[67]
Sadjadi, S.; Hosseinnejad, T.; Malmir, M.; Heravi, M.M. Cu@furfural imine-decorated halloysite as an efficient heterogeneous catalyst for promoting ultrasonic-assisted A3 and KA2coupling reactions: A combination of experimental and computational study. New J. Chem., 2017, 41, 13935-13951.
[http://dx.doi.org/10.1039/C7NJ02272G]
[68]
Heravi, M.M.; Ebrahimpour, F.; Malamir, M.; Hosseinnejad, T.; Mirsafaei, R. Synthesis, characterization and computational study of CuI nanoparticles immobilized on modified poly (styrene‐co‐maleic anhydride) as a green, efficient and recyclable heterogeneous catalyst in the synthesis of 1,4‐disubstituted 1,2,3‐triazoles via click reaction. Appl. Organomet. Chem., 2018, 32, 3913-3920.
[http://dx.doi.org/10.1002/aoc.3913]
[69]
Heravi, M.M. BaieLashaki, T.; Oskooie, H.A.; Hosseinnejad, T. CuI nanoparticles on modified poly(styrene-co-maleic anhydride) as an effective catalyst in regioselective synthesis of 1,2,3-triazoles via click reaction: A joint experimental and computational study. J. Coord. Chem., 2017, 70, 1815-1834.
[http://dx.doi.org/10.1080/00958972.2017.1321742]
[70]
Hosseinnejad, T.; Daraie, M.; Heravi, M.M.; Tajoddin, N.N. Computational and experimental investigation of immobilization of cui nanoparticles on 3-aminopyridine modified poly(styrene-co-maleic anhydride) and Its catalytic application in regioselective synthesis of 1,2,3-triazoles. J. Inorg. Organomet. Polym., 2017, 27, 861-870.
[http://dx.doi.org/10.1007/s10904-017-0530-z]
[71]
Hosseinnejad, T.; Heravi, M.M.; Faghihi, Z.; Shiri, M.; Vazinfard, M. Synthesis of 2-amino-3-cyano 4-H-chromenes containing quinoline in water: Computational study on substituent effects. J. Iran. Chem. Soc., 2017, 14, 823-832.
[http://dx.doi.org/10.1007/s13738-016-1032-6]
[72]
Heravi, M.M.; Shiri, M.; Hosseinnejad, T.; Zadsirjan, V.; Shintre, S.A.; Koorbanally, N.A. Molecular diversity in cyclization of Ugi-products leading to the synthesis of 2,5-diketopiperazines: computational study. Res. Chem. Intermed., 2017, 43, 2119-2142.
[http://dx.doi.org/10.1007/s11164-016-2750-1]
[73]
Hosseinnejad, T.; Heravi, M.M.; Mirsafaei, R.; Ahmadi, S.H. Copper (II) nanoparticles: An efficient and reusable catalyst in green oxidation of benzyl alcohols to benzaldehydes in water. Appl. Organomet. Chem., 2016, 30, 823-830.
[http://dx.doi.org/10.1002/aoc.3509]
[74]
Hosseinnejad, T.; Heravi, M.M.; Zadsirjan, V.; Tajbakhsh, M.; Oskooie, H.A.; Shiri, M. Hydroarylation of cinnamic acid with phenols catalyzed by acidic ionic liquid [H-NMP] HSO4: Computational assessment on substituent effect. Res. Chem. Intermed., 2016, 42, 6407-6422.
[http://dx.doi.org/10.1007/s11164-016-2471-5]
[75]
Heravi, M.M.; Hosseinnejad, T.; Khaghaninejad, S.; Oskooie, H.A.; Bakavoli, M. Regio-selective synthesis of 5-substituted 1H-tetrazoles using ionic liquid [BMIM]N3 in solvent-free conditions: A click reaction. Res. Chem. Intermed., 2016, 42, 1593-1610.
[http://dx.doi.org/10.1007/s11164-015-2105-3]
[76]
Heravi, M.M.; Hosseinnejad, T.; Mirsafaei, R.; Ahmadi, S.H. Synthesis and properties of novel reusable nano-ordered KIT-5-N-sulfamic acid as a heterogeneous catalyst for solvent-free synthesis of 2,4,5-triaryl-1 H-imidazoles. Chem. Pap., 2016, 70, 418-429.
[77]
Valero, R.; Costa, R. de P R Moreira, I.; Truhlar, D.G.; Illas, F. Performance of the M06 family of exchange-correlation functionals for predicting magnetic coupling in organic and inorganic molecules. J. Chem. Phys., 2008, 128(11)114103
[http://dx.doi.org/10.1063/1.2838987] [PMID: 18361550]
[78]
Truhlar, D.G.; Zhao, Y. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc., 2008, 120, 215-241.
[http://dx.doi.org/10.1007/s00214-007-0310-x]
[79]
Barone, V.; Cossi, M. Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. J. Phys. Chem., 1998, 102, 1995-2001.
[http://dx.doi.org/10.1021/jp9716997]
[80]
Bader, R.F.W. Atoms in Molecules: a Quantum Theory; Oxford University Press: Oxford, 1990.
[81]
Hoffmann, S.; Seayad, A.M.; List, B. A powerful Brønsted acid catalyst for the organocatalytic asymmetric transfer hydrogenation of imines. Angew. Chem. Int. Ed. Engl., 2005, 44(45), 7424-7427.
[http://dx.doi.org/10.1002/anie.200503062] [PMID: 16245265]
[82]
Ouellet, S.G.; Walji, A.M.; MacMillan, D.W. Enantioselective organocatalytic transfer hydrogenation reactions using Hantzsch esters. Acc. Chem. Res., 2007, 40(12), 1327-1339.
[http://dx.doi.org/10.1021/ar7001864] [PMID: 18085748]
[83]
Brieger, G.; Nestrick, T.G. Catalytic transfer hydrogenation. Chem. Rev., 1974, 74, 567-580.
[http://dx.doi.org/10.1021/cr60291a003]
[84]
Martin, N.J.; List, B. Highly enantioselective transfer hydrogenation of α,β-unsaturated ketones. J. Am. Chem. Soc., 2006, 128(41), 13368-13369.
[http://dx.doi.org/10.1021/ja065708d] [PMID: 17031944]
[85]
Marcelli, T. Asymmetric transfer hydrogenations using hantzsch esters., book chapter, enantioselective organocatalyzed reactions I: Enantioselective oxidation, reduction. Functionalization Desymmetrization, 2011, 2, 43-65.
[86]
Ouellet, S.G.; Walji, A.M.; MacMillan, D.W. Enantioselective organocatalytic transfer hydrogenation reactions using Hantzsch esters. Acc. Chem. Res., 2007, 40(12), 1327-1339.
[http://dx.doi.org/10.1021/ar7001864] [PMID: 18085748]
[87]
Schoffers, E.; Golebiowski, A.; Johnson, C.R. Enantioselective synthesis through enzymatic asymmetrization. Tetrahedron, 1996, 52, 3769-3826.
[http://dx.doi.org/10.1016/S0040-4020(95)01021-1]
[88]
Yang, J.W.; Hechavarria Fonseca, M.T.; List, B. A metal-free transfer hydrogenation: organocatalytic conjugate reduction of alpha, beta-unsaturated aldehydes. Angew. Chem. Int. Ed. Engl., 2004, 43(48), 6660-6662.
[http://dx.doi.org/10.1002/anie.200461816] [PMID: 15540245]
[89]
Ouellet, S.G.; Tuttle, J.B.; MacMillan, D.W.C. Enantioselective organocatalytic hydride reduction. J. Am. Chem. Soc., 2005, 127(1), 32-33.
[http://dx.doi.org/10.1021/ja043834g] [PMID: 15631434]
[90]
Gutierrez, O.; Iafe, R.G.; Houk, K.N. Origin of stereoselectivity in the imidazolidinone-catalyzed reductions of cyclic α,β-unsaturated ketones. Org. Lett., 2009, 11(19), 4298-4301.
[http://dx.doi.org/10.1021/ol901586t] [PMID: 19722547]
[91]
Abe, H.; Amii, H.; Uneyama, K. Pd-catalyzed asymmetric hydrogenation of α-fluorinated iminoesters in fluorinated alcohol: A new and catalytic enantioselective synthesis of fluoro α-amino acid derivatives. Org. Lett., 2001, 3(3), 313-315.
[http://dx.doi.org/10.1021/ol0002471] [PMID: 11428002]
[92]
Chen, M.W.; Duan, Y.; Chen, Q.A.; Wang, D.S.; Yu, C.B.; Zhou, Y.G. Enantioselective Pd-catalyzed hydrogenation of fluorinated imines: Facile access to chiral fluorinated amines. Org. Lett., 2010, 12(21), 5075-5077.
[http://dx.doi.org/10.1021/ol1020256] [PMID: 20919725]
[93]
Marcelli, T.; Hammar, P.; Himo, F. Phosphoric acid catalyzed enantioselective transfer hydrogenation of imines: A DFT study of reaction mechanism and the origins of enantioselectivity. Chemistry, 2008, 14, 8562-8571.
[http://dx.doi.org/10.1002/chem.200800890] [PMID: 18683177]
[94]
Marcelli, T.; Hammar, P.; Himo, F. Origin of enantioselectivity in the organocatalytic reductive amination of α-Branched aldehydes. Adv. Synth. Catal., 2009, 351, 525-529.
[http://dx.doi.org/10.1002/adsc.200800613]
[95]
Shibata, Y.; Yamanaka, M. DFT study of the mechanism and origin of enantioselectivity in chiral BINOL-phosphoric acid catalyzed transfer hydrogenation of ketimine and α-imino ester using benzothiazoline. J. Org. Chem., 2013, 78(8), 3731-3736.
[http://dx.doi.org/10.1021/jo4002195] [PMID: 23521654]
[96]
Simón, L.; Goodman, J.M. Theoretical study of the mechanism of hantzsch ester hydrogenation of imines catalyzed by chiral BINOL-phosphoric acids. J. Am. Chem. Soc., 2008, 130(27), 8741-8747.
[http://dx.doi.org/10.1021/ja800793t] [PMID: 18543923]
[97]
Connon, S.J. Asymmetric organocatalytic reductions mediated by dihydropyridines. Org. Biomol. Chem., 2007, 5(21), 3407-3417.
[http://dx.doi.org/10.1039/b711499k] [PMID: 17943197]
[98]
Akiyama, T. Stronger Brønsted acids. Chem. Rev., 2007, 107(12), 5744-5758.
[http://dx.doi.org/10.1021/cr068374j] [PMID: 17983247]
[99]
Tapia, O.; Goscinski, O. Self-consistent reaction field theoryof solvent effects. Mol. Phys., 1975, 29, 1653-1661.
[http://dx.doi.org/10.1080/00268977500101461]
[100]
Sun, W.; Trinchera, P.; Kurdi, N.; Palomas, D.; Crespo-Otero, R.; Afshinjavid, S.; Javid, F. Aryne-Mediated arylation of hantzsch esters: Access to highly substituted aryl-dihydropyridines, aryl-tetrahydropyridines and spiro. Synthesis, 2018, 50, 4591-4605. [benzocyclobutene-1,1′-(3′,4′-dihydropyridines)
[http://dx.doi.org/10.1055/s-0037-1611065]
[101]
Xing, R.G.; Li, Y.N.; Liu, Q.; Meng, Q.Y.; Li, J.; Shen, X.X.; Liu, Z.H.; Zhou, B.; Yao, X.; Liu, Z.L. Facile and efficient synthesis of benzoxazoles and benzimidazoles: The application of hantzsch ester 1,4‐dihydropyridines in reductive cyclization reactions. Eur. J. Org. Chem., 2010, 34, 6627-6632.
[http://dx.doi.org/10.1002/ejoc.201000985]
[102]
Zhao, Y.; Liu, Q.; Li, J.; Liu, Z.; Zhou, B. Highly selective semihydrogenation of phenylalkynes to (Z)-styrenes using hantzsch ester 1,4-dihydropyridine catalyzed by Pd/C. Synlett, 2010, 121, 1870-1872.
[103]
Saito, K.; Horiguchi, K.; Shibata, Y.; Yamanaka, M.; Akiyama, T. Chiral phosphoric-acid-catalyzed transfer hydrogenation of ethyl ketimine derivatives by using benzothiazoline. Chemistry, 2014, 20(25), 7616-7620.
[http://dx.doi.org/10.1002/chem.201402763] [PMID: 24802377]
[104]
He, W.; Ge, Y.C.; Tan, C.H. Halogen-bonding-induced hydrogen transfer to C═N bond with Hantzsch ester. Org. Lett., 2014, 16(12), 3244-3247.
[http://dx.doi.org/10.1021/ol501259q] [PMID: 24904974]
[105]
Bruckmann, A.; Pena, M.A.; Bolm, C. Organocatalysis through Halogen-Bond activation. Synlett, 2008, 3, 900-902.
[106]
Walter, S.M.; Kniep, F.; Herdtweck, E.; Huber, S.M. Halogen-bond-induced activation of a carbon-heteroatom bond. Angew. Chem. Int. Ed. Engl., 2011, 50(31), 7187-7191.
[http://dx.doi.org/10.1002/anie.201101672] [PMID: 21717536]
[107]
Amino, V.; Meille, S.V.; Corradi, E.; Messina, M.T.; Resnati, G.J. Perfluorocarbon−Hydrocarbon self-assembling. 1D infinite chain formation driven by nitrogen iodine interactions. Am. Chem. Soc., 1998, 120, 8261-8262.
[http://dx.doi.org/10.1021/ja9810686]
[108]
Trinchera, P.; Sun, W.; Smith, J.E.; Palomas, D.; Crespo-Otero, R.; Jones, C.R. Intermolecular aryne ene reaction of Hantzsch Esters: Stable covalent ene adducts from a 1,4-Dihydropyridine reaction. Org. Lett., 2017, 19(17), 4644-4647.
[http://dx.doi.org/10.1021/acs.orglett.7b02272] [PMID: 28817286]
[109]
Ilic, S.; Pandey Kadel, U.; Basdogan, Y.; Keith, J.A.; Glusac, K.D. Thermodynamic hydricities of biomimetic organic hydride donors. J. Am. Chem. Soc., 2018, 140(13), 4569-4579.
[http://dx.doi.org/10.1021/jacs.7b13526] [PMID: 29547268]
[110]
Trinchera, P.; Sun, W.; Smith, J.E.; Palomas, D.; Crespo-Otero, R.; Jones, C.R. Intermolecular aryne ene reaction of hantzsch esters: Stable covalent ene adducts from a 1,4-Dihydropyridine reaction. Org. Lett., 2017, 19(17), 4644-4647.
[http://dx.doi.org/10.1021/acs.orglett.7b02272] [PMID: 28817286]
[111]
Kamachi, T.; Yoshizawa, K. Low-Mode conformational search method with semiempirical quantum mechanical calculations: Application to enantioselective organocatalysis. J. Chem. Inf. Model., 2016, 56(2), 347-353.
[http://dx.doi.org/10.1021/acs.jcim.5b00671] [PMID: 26815336]
[112]
Wang, Z.; Ai, F.; Wang, Z.; Zhao, W.; Zhu, G.; Lin, Z.; Sun, J. Organocatalytic asymmetric synthesis of 1,1-diarylethanes by transfer hydrogenation. J. Am. Chem. Soc., 2015, 137(1), 383-389.
[http://dx.doi.org/10.1021/ja510980d] [PMID: 25482291]
[113]
Azizi, S.; Ulrich, G.; Guglielmino, M.; le Calvé, S.; Hagon, J.P.; Harriman, A.; Ziessel, R. Photoinduced proton transfer promoted by peripheral subunits for some Hantzsch esters. J. Phys. Chem. A, 2015, 119(1), 39-49.
[http://dx.doi.org/10.1021/jp5078246] [PMID: 25474121]
[114]
Liu, X.Y.; Guo, Z.; Dong, S.S.; Li, X.H.; Che, C.M. Highly efficient and diastereoselective gold(I)-catalyzed synthesis of tertiary amines from secondary amines and alkynes: Substrate scope and mechanistic insights. Chemistry, 2011, 17(46), 12932-12945.
[http://dx.doi.org/10.1002/chem.201101982] [PMID: 22012740]
[115]
Herrera, R.P. Organocatalytic transfer hydrogenation and Hydrosilylation reactions. Top. Curr. Chem. (Cham), 2016, 374(3), 29-37.
[http://dx.doi.org/10.1007/s41061-016-0032-4] [PMID: 27573269]
[116]
Zhu, C.; Saito, K.; Yamanaka, M.; Akiyama, T. Benzothiazoline: Versatile hydrogen donor for organocatalytic transfer hydrogenation. Acc. Chem. Res., 2015, 48(2), 388-398.
[http://dx.doi.org/10.1021/ar500414x] [PMID: 25611073]
[117]
Gutierrez, O.; Iafe, R.G.; Houk, K.N. Origin of stereoselectivity in the imidazolidinone-catalyzed reductions of cyclic α,β-unsaturated ketones. Org. Lett., 2009, 11(19), 4298-4301.
[http://dx.doi.org/10.1021/ol901586t] [PMID: 19722547]
[118]
Rueping, M.; Tato, F.; Schoepke, F.R. The first general, efficient and highly enantioselective reduction of quinoxalines and quinoxalinones. Chemistry, 2010, 16(9), 2688-2691.
[http://dx.doi.org/10.1002/chem.200902907] [PMID: 20140920]
[119]
Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E. Gaussian 09, Revision B.01; Gaussian, Inc.: Wallingford, 2010.
[120]
McSkimming, A.; Colbran, S.B. The coordination chemistry of organo-hydride donors: New prospects for efficient multi-electron reduction. Chem. Soc. Rev., 2013, 42(12), 5439-5488.
[http://dx.doi.org/10.1039/c3cs35466k] [PMID: 23507957]
[121]
Wang, H.L.; Liu, F.T.; Ding, A.X.; Ma, S.F.; He, L.; Lin, L.; Lu, Z.L. Water-soluble Hantzsch ester as switch-on fluorescent probe for efficiently detecting nitric oxide. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2016, 169, 1-6.
[http://dx.doi.org/10.1016/j.saa.2016.06.014] [PMID: 27299481]
[122]
Fassihi, A.; Mahnam, K.; Moeinifard, B.; Bahmanziari, M.; Zarghi, A.; Salim, M. Synthesis, calcium-channel blocking activity, and conformational analysis of some novel 1,4-dihydropyridines: Application of PM3 and DFT computational methods. Med. Chem. Res., 2012, 21, 2749-2761.
[http://dx.doi.org/10.1007/s00044-011-9807-x]
[123]
Zarghi, A.; Sadeghi, H.; Fassihi, A.; Faizi, M.; Shafiee, A. Synthesis and calcium antagonist activity of 1,4-DHPs containing phenylamino imidazolyl substituents. Med. Chem. Res., 2011, 58, 1077-1081.
[124]
Bladen, C.; Gündüz, M.G.; Şimşek, R.; Şafak, C.; Zamponi, G.W. Synthesis and evaluation of 1,4-dihydropyridine derivatives with calcium channel blocking activity. Pflugers Arch., 2014, 466(7), 1355-1363.
[http://dx.doi.org/10.1007/s00424-013-1376-z] [PMID: 24149495]
[125]
Meyer, H.; Bossert, F.; Wehinger, E.; Stoepel, K.; Vater, W. [Synthesis and comparative pharmacological studies of 1,4-dihydro-2,6-dimethyl-4-(3-nitrophenyl)pyridine-3,5-dicarboxylates with non-identical ester functions (author’s transl) Arzneimittelforschung, 1981, 31(3), 407-409.
[PMID: 7194663]
[126]
Kappe, C.O.; Fabian, W.M.F.; Semones, M. A Conformational analysis of 4-aryl-dihydropyrimidine calcium channel modulators. A comparison of ab initio, semiempirical and X-ray crystallographic studies. Tetrahedron, 1997, 53, 2803-2816.
[http://dx.doi.org/10.1016/S0040-4020(97)00022-7]
[127]
Fabian, W.M.F.; Semones, M.A.; Kappe, C.O. Ring conformation and ester orientation in dihydropyrimidinecarboxylates: A combined theoretical (ab initio, density functional) and X-ray crystallographic study. Theochem. J. Mol. Struct., 1998, 432, 219-229.
[http://dx.doi.org/10.1016/S0166-1280(98)00061-X]
[128]
Shishkin, O.V.; Solomovich, E.V.; Vakula, V.M.; Yaremenko, F.G. Molecular structure and conformation flexibility of 2-oxo- and 2-thioxo-1,2,3,4-tetrahydropyrimidines and their derivatives. Russ. Chem. Bull., 1997, 46, 1838-1843.
[http://dx.doi.org/10.1007/BF02503768]
[129]
Kappe, C.O.; Shishkin, O.V.; Uray, G.; Verdino, P. X-Ray Structure, conformational analysis, Enantioseparation, and determination of absolute configuration of the mitotic kinesin Eg5 inhibitor monastrol. Tetrahedron, 2000, 56, 1859-1862.
[http://dx.doi.org/10.1016/S0040-4020(00)00116-2]
[130]
Jauk, B.; Pernat, T.; Kappe, C.O. Design and synthesis of a conformationally rigid mimic of the dihydropyrimidine calcium channel Modulator SQ 32,926. Molecules, 2000, 5, 227-239.
[http://dx.doi.org/10.3390/50300227]
[131]
Rovnyak, G.C.; Kimball, S.D.; Beyer, B.; Cucinotta, G.; DiMarco, J.D.; Gougoutas, J.; Hedberg, A.; Malley, M.; McCarthy, J.P.; Zhang, R.; Moreland, S. Calcium entry blockers and activators: Conformational and structural determinants of dihydropyrimidine calcium channel modulators. J. Med. Chem., 1995, 38(1), 119-129.
[http://dx.doi.org/10.1021/jm00001a017] [PMID: 7837222]
[132]
Prashantha Kumar, B.R.; Masih, P.; Karthikeyan, E.; Bansal, A.; Pottekad, V. Syn-thesis of novel Hantzsch dihydropyridines and Biginelli dihydropyrimidines of biological inter-est: A 3D-QSAR study on their cytotoxicity. Med. Chem. Res., 2010, 19, 344-363.
[http://dx.doi.org/10.1007/s00044-009-9195-7]
[133]
Maciejewska, D.; Zołek, T.; Herold, F. CoMFA methodology in structure-activity analysis of hexahydro- and octahydropyrido[1,2-c]pyrimidine derivatives based on affinity towards 5-HT1A, 5-HT2A and α1-adrenergic receptors. J. Mol. Graph. Model., 2006, 25(3), 353-362.
[http://dx.doi.org/10.1016/j.jmgm.2006.02.002] [PMID: 16542863]
[134]
SYBYL Molecular modelling, TRIPOS, Inc. Available at http://www.tripos.com
[135]
Oyebamiji, K.A.; Banjo, S. Studies of antihypertensive activity of 1, 4dihydropyridine derivatives: combinations of DFT-QSAR and docking approaches. Bull. Pharm. Res. Inst., 2016, 9, 105-118.
[136]
Ramsden, C.A. Quantitative drug design of comprehensive medicinal chemistry. Med chem. Pergamon Pr., 1990, 4, 561-587.
[137]
Williams, M.A.; Westley, B.R.; May, F.E.; Feeney, J. The solution structure of the Disulphide-linked Dimeric of the human Trefoil protein Tffi. FEBS let., 2001, 493, 70-74.
[138]
Yang, L.; Feng, J.; Ren, A. Theoretical studies on the electronic and optical properties of two thiophene–fluorene based π-conjugated copolymers. Polymer (Guildf.), 2005, 46, 10970-10982.
[http://dx.doi.org/10.1016/j.polymer.2005.09.050]
[139]
Semire, B.; Oyebamiji, A.; Ahmad, M. Theoretical study on structure and electronic properties of 2, 5-Bis [4-N, N Diethylaminostyryl] thiophene and its furan and pyrrole derivatives using DFT. Pak. J. Chem., 2012, 2, 166-173.
[http://dx.doi.org/10.15228/2012.v02.i04.p02]
[140]
Bouachrine, M.; Hamidi, M.; Bouzzine, S.M.; Taoufik, H. Theoretical study on the structure and electronic properties of new materials based on thiophene and oxadiazole. J. Chem. Res., 2009, 10, 29-37.
[141]
Manna, D.; Bhuyan, R.; Saikh, F.; Ghosh, S.; Basak, J.; Ghosh, R. Novel 1,4-dihydropyridine induces apoptosis in human cancer cells through overexpression of Sirtuin1. Apoptosis, 2018, 23(9-10), 532-553.
[http://dx.doi.org/10.1007/s10495-018-1483-6] [PMID: 30203236]
[142]
Azzouz, R.; Peauger, L.; Gembus, V.; Ţînţaş, M.L.; Sopková-de Oliveira Santos, J.; Papamicaël, C.; Levacher, V. Novel donepezil-like N-benzylpyridinium salt derivatives as AChE inhibitors and their corresponding dihydropyridine “bio-oxidizable” prodrugs: Synthesis, biological evaluation and structure-activity relationship. Eur. J. Med. Chem., 2018, 145, 165-190.
[http://dx.doi.org/10.1016/j.ejmech.2017.12.084] [PMID: 29324339]
[143]
Marco-Contelles, J.; León, R.; de Los Ríos, C.; Guglietta, A.; Terencio, J.; López, M.G.; García, A.G.; Villarroya, M. Novel multipotent tacrine-dihydropyridine hybrids with improved acetylcholinesterase inhibitory and neuroprotective activities as potential drugs for the treatment of Alzheimer’s disease. J. Med. Chem., 2006, 49(26), 7607-7610.
[http://dx.doi.org/10.1021/jm061047j] [PMID: 17181144]
[144]
Tommonaro, G.; García-Font, N.; Vitale, R.M.; Pejin, B.; Iodice, C.; Cañadas, S.; Marco-Contelles, J.; Oset-Gasque, M.J. Avarol derivatives as competitive AChE inhibitors, non hepatotoxic and neuroprotective agents for Alzheimer’s disease. Eur. J. Med. Chem., 2016, 122, 326-338.
[http://dx.doi.org/10.1016/j.ejmech.2016.06.036] [PMID: 27376495]
[145]
Pejin, B.; Iodice, C.; Tommonaro, G.; De Rosa, S. Synthesis and biological activities of thio-avarol derivatives. J. Nat. Prod., 2008, 71(11), 1850-1853.
[http://dx.doi.org/10.1021/np800318m] [PMID: 19007183]
[146]
Iman, M.; Davood, A.; Nematollahi, A.R.; Dehpoor, A.R.; Shafiee, A. Design and synthesis of new 1,4-dihydropyridines containing 4(5)-chloro-5(4)-imidazolyl substituent as a novel calcium channel blocker. Arch. Pharm. Res., 2011, 34(9), 1417-1426.
[http://dx.doi.org/10.1007/s12272-011-0902-9] [PMID: 21975802]
[147]
Miri, R.; Javidnia, K.; Mirkhani, H.; Hemmateenejad, B.; Sepeher, Z.; Zalpour, M.; Behzad, T.; Khoshneviszadeh, M.; Edraki, N.; Mehdipour, A.R. Synthesis, QSAR and calcium channel modulator activity of new hexahydroquinoline derivatives containing nitroimidazole. Chem. Biol. Drug Des., 2007, 70(4), 329-336.
[http://dx.doi.org/10.1111/j.1747-0285.2007.00565.x] [PMID: 17937778]
[148]
Safarpour, M.A.; Hemmateenejad, B.; Miri, R.; Jamali, R. Quantum chemical‐QSAR study of some newly synthesized 1,4‐Dihydropyridine calcium channel blockers. Mol. Inform., 2004, 22, 997-1005.
[149]
Nguyen, J.; McEwen, C.A.; Knaus, E. Hantzsch 1,4‐dihydropyridines containing a nitrooxyalkyl ester moiety to study calcium channel antagonist structure-activity relationships and nitric oxide release. Drug Dev. Res., 2000, 51, 233-243.
[http://dx.doi.org/10.1002/ddr.4]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 23
ISSUE: 13
Year: 2019
Page: [1421 - 1438]
Pages: 18
DOI: 10.2174/1385272823666190808110837
Price: $58

Article Metrics

PDF: 13
HTML: 1