Allocryptopine: A Review of Its Properties and Mechanism of Antiarrhythmic Effect

Author(s): Jie Li , Bin Li , Hailiang Huang , Tao Han* , Yang Li* .

Journal Name: Current Protein & Peptide Science

Volume 20 , Issue 10 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Abstract:Throughout the last decade, extensive efforts have been devoted to developing a percutaneous catheter ablation and implantable cardioverter-defibrillator technique for patients suffering from ventricular arrhythmia. Antiarrhythmic drug efficacy for preventing arrhythmias remains disappointing because of adverse cardiovascular effects. Allocryptopine is an isoquinoline alkaloid widely present in medicinal herbs. Studies have indicated that allocryptopine exhibits potential anti-arrhythmic actions in various animal models. The potential therapeutic benefit of allocryptopine in arrhythmia diseases is addressed in this study, focusing on multiple ion channel targets and reduced repolarization dispersion. The limitations of allocryptopine research are clear given a lack of parameters regarding toxicology and pharmacokinetics and clinical efficacy in patients with ventricular arrhythmias. Much remains to be revealed about the properties of allocryptopine.

Keywords: Allocryptopine, properties, anti-arrhythmic, ventricular arrhythmia, electrophysiological mechanism, proarrhythmia.

[1]
Al-Khatib, S.M.; Stevenson, W.G.; Ackerman, M.J.; Bryant, W.J.; Callans, D.J.; Curtis, A.B.; Deal, B.J.; Dickfeld, T.; Field, M.E.; Fonarow, G.C.; Gillis, A.M.; Granger, C.B.; Hammill, S.C.; Hlatky, M.A.; Joglar, J.A.; Kay, G.N.; Matlock, D.D.; Myerburg, R.J.; Page, R.L. 2017 AHA/ACC/HRS Guideline for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: Executive summary. Circulation, 2018, 138(13), e210-e271.
[2]
Zheng, Z.J.; Croft, J.B.; Giles, W.H.; Mensah, G.A. Sudden cardiac death in the United States, 1989 to 1998. Circulation, 2001, 104(18), 2158-2163.
[3]
(a) Al-Khatib, S.M.; Stevenson, W.G.; Ackerman, M.J.; Bryant, W.J.; Callans, D.J.; Curtis, A.B.; Deal, B.J.; Dickfeld, T.; Field, M.E.; Fonarow, G.C.; Gillis, A.M.; Granger, C.B.; Hammill, S.C.; Hlatky, M.A.; Joglar, J.A.; Kay, G.N.; Matlock, D.D.; Myerburg, R.J.; Page, R.L. 2017 AHA/ACC/HRS Guideline for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: Executive summary: A report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society. J. Am. Coll. Cardiol., 2018, 72(14), 1677-1749.
(b) Zipes, D.P.; Calkins, H.; Daubert, J.P.; Ellenbogen, K.A.; Field, M.E.; Fisher, J.D.; Fogel, R.I.; Frankel, D.S.; Gupta, A.; Indik, J.H.; Kusumoto, F.M.; Lindsay, B.D.; Marine, J.E.; Mehta, L.S.; Mendes, L.A.; Miller, J.M.; Munger, T.M.; Sauer, W.H.; Shen, W.K.; Stevenson, W.G.; Su, W.W.; Tracy, C.M.; Tsiperfal, A. 2015 ACC/AHA/HRS advanced training statement on clinical cardiac electrophysiology (A revision of the ACC/AHA 2006 update of the clinical competence statement on invasive electrophysiology studies, catheter ablation, and cardioversion). J. Am. Coll. Cardiol., 2015, 66(24), 2767-2802.
[4]
(a) Deneke, T.; Muller, P.; Krug, J.; Nentwich, K.; Shin, D.I.; Grewe, P.; Mugge, A.; Schade, A. Catheter ablation in patients with electrical storm: Benefit of a network of cooperating clinics. Herzschrittmacherther. Elektrophysiol., 2014, 25(2), 105-108.
(b) Carbucicchio, C.; Santamaria, M.; Trevisi, N.; Maccabelli, G.; Giraldi, F.; Fassini, G.; Riva, S.; Moltrasio, M.; Cireddu, M.; Veglia, F.; Della Bella, P. Catheter ablation for the treatment of electrical storm in patients with implantable cardioverter-defibrillators: Short- and long-term outcomes in a prospective single-center study. Circulation, 2008, 117(4), 462-469.
[5]
(a) Schleifer, J.W.; Sorajja, D.; Shen, W.K. Advances in the pharmacologic treatment of ventricular arrhythmias. Expert Opin. Pharmacother., 2015, 16(17), 2637-2651.
(b) Lei, M.; Wu, L.; Terrar, D.A.; Huang, C.L. Modernized classification of cardiac antiarrhythmic drugs. Circulation, 2018, 138(17), 1879-1896.
[6]
(a) Cardiac Arrhythmia Suppression Trial I. Preliminary report: effect of encainide and flecainide on mortality in a randomized trial of arrhythmia suppression after myocardial infarction. N. Engl. J. Med., 1989, 321(6), 406-412.
(b) Waldo, A.L.; Camm, A.J.; deRuyter, H.; Freidman, P.L.; MacNeil, D.J.; Pitt, B.; Pratt, C.M.; Rodda, B.E.; Schwartz, P.J. Survival with oral d-sotalol in patients with left ventricular dysfunction after myocardial infarction: Rationale, design, and methods (the SWORD trial). Am. J. Cardiol., 1995, 75(15), 1023-1027.
[7]
(a) Agusala, K.; Oesterle, A.; Kulkarni, C.; Caprio, T.; Subacius, H.; Passman, R. Risk prediction for adverse events during initiation of sotalol and dofetilide for the treatment of atrial fibrillation. Pacing Clin. Electrophysiol., 2015, 38(4), 490-498.
(b) Kobayashi, Y. Clinical characteristics and management of proarrhythmias during antiarrhythmic therapy. Nihon Rinsho, 2013, 71(1), 79-85.
(c) Schleifer, J.W.; Srivathsan, K. Ventricular arrhythmias: State of the art. Cardiol. Clin., 2013, 31(4), 595-605. [ix.].
[8]
(a) Costache, I.I.; Aprotosoaie, A.C. Clinical and therapeutic aspects of amiodarone induced thyroid dysfunction. Rev. Med. Chir. Soc. Med. Nat. Iasi, 2013, 117(2), 375-379.
(b) Van Cott, T.E.; Yehle, K.S.; DeCrane, S.K.; Thorlton, J.R. Amiodarone-induced pulmonary toxicity: Case study with syndrome analysis. Heart Lung, 2013, 42(4), 262-266.
[9]
(a) Zemzemi, N.; Rodriguez, B. Effects of L-type calcium channel and human ether-a-go-go related gene blockers on the electrical activity of the human heart: a simulation study. Europace, 2015, 17(2), 326-333.
(b) Coetzee, W.A. Multiplicity of effectors of the cardioprotective agent, diazoxide. Pharmacol. Ther., 2013, 140(2), 167-175.
[10]
Chen, Y.Z.; Liu, G.Z.; Shen, Y.; Chen, B.; Zeng, J.G. Analysis of alkaloids in Macleaya cordata (Willd.) R. Br. using high-performance liquid chromatography with diode array detection and electrospray ionization mass spectrometry. J. Chromatogr. A, 2009, 1216(11), 2104-2110.
[11]
Li, Y.; Wang, S.; Liu, Y.; Li, Z.; Yang, X.; Wang, H.; Wen, Y.; Chen, Y. Effect of alpha-allocryptopine on transient outward potassium current in rabbit ventricular myocytes. Cardiology, 2008, 111(4), 229-236.
[12]
(a) Huang, Y.J.; Xiao, S.; Sun, Z.L.; Zeng, J.G.; Liu, Y.S.; Liu, Z.Y. Identification of allocryptopine and protopine metabolites in rat liver S9 by high-performance liquid chromatography/quadrupole-time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom., 2016, 30(13), 1549-1559.
(b) Huang, Y.J.; Cheng, P.; Zhang, Z.Y.; Tian, S.J.; Sun, Z.L.; Zeng, J.G.; Liu, Z.Y. Biotransformation and tissue distribution of protopine and allocryptopine and effects of Plume Poppy Total Alkaloid on liver drug-metabolizing enzymes. Sci. Rep., 2018, 8(1), 537.
[13]
Lee, D.U.; Park, J.H.; Wessjohann, L.; Schmidt, J. Alkaloids from Papaver coreanum. Nat. Prod. Commun., 2011, 6(11), 1593-1594.
[14]
(a) Soine, T.O.; Willette, R.E. The isolation of beta-allocryptopine from Argemone squarrosa subsp. squarrosa. J. Am. Pharm. Assoc. Am. Pharm. Assoc., 1960, 49, 368-370.
(b) Brochmann-Hanssen, E.; Nielsen, B. Opium alkaloids. 3. Isolation of alpha-allocryptopine. J. Pharm. Sci., 1966, 55(7), 743-744.
(c) Stermitz, F.R.; Muralidharan, V.P. Alkaloids of the Papaveraceae. VI. Protopine and allocryptopine from Arctomecon alifornica. J. Pharm. Sci., 1967, 56(6), 762.
[15]
Gregorova, J.; Babica, J.; Marek, R.; Paulova, H.; Taborska, E.; Dostal, J. Extractions of isoquinoline alkaloids with butanol and octanol. Fitoterapia, 2010, 81(6), 565-568.
[16]
Zhong, M.; Huang, K.L.; Zeng, J.G.; Li, S.; She, J.M.; Li, G.; Zhang, L. Optimization of microwave-assisted extraction of protopine and allocryptopine from stems of Macleaya cordata (Willd) R. Br. using response surface methodology. J. Sep. Sci., 2010, 33(14), 2160-2167.
[17]
Liu, Y.; Chen, X.; Liu, J.; Di, D. Three-phase solvent systems for the comprehensive separation of a wide variety of compounds from Dicranostigma leptopodum by high-speed counter-current chromatography. J. Sep. Sci., 2015, 38(12), 2038-2045.
[18]
Siatka, T.; Adamcova, M.; Opletal, L.; Cahlikova, L.; Jun, D.; Hrabinova, M.; Kunes, J.; Chlebek, J. Cholinesterase and prolyl oligopeptidase inhibitory activities of alkaloids from Argemone platyceras (Papaveraceae). Molecules, 2017, 22(7)E1181
[19]
Wu, H.; Waldbauer, K.; Tang, L.; Xie, L.; McKinnon, R.; Zehl, M.; Yang, H.; Xu, H.; Kopp, B. Influence of vinegar and wine processing on the alkaloid content and composition of the traditional Chinese medicine Corydalis Rhizoma (Yanhusuo). Molecules, 2014, 19(8), 11487-11504.
[20]
Wada, Y.; Kaga, H.; Uchiito, S.; Kumazawa, E.; Tomiki, M.; Onozaki, Y.; Kurono, N.; Tokuda, M.; Ohkuma, T.; Orito, K. On the synthesis of protopine alkaloids. J. Org. Chem., 2007, 72(19), 7301-7306.
[21]
Hou, Y.; Wu, T.; Liu, Y.; Wang, H.; Chen, Y.; Chen, B.; Sun, W. Direct analysis of quaternary alkaloids by in situ reactive desorption corona beam ionization MS. Analyst, 2014, 139(20), 5185-5191.
[22]
Xiaowen, L.; Ling, T.; Yunfei, L.; Guoxiang, S.; Dailin, Y.; Herry, S. Simultaneous determination of seven alkaloids in rat plasma by UFLC-MS/MS and its application to a pharmacokinetic study after oral administration of Cerebralcare Granule. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2016, 1017-1018, 28-35.
[23]
Zhang, X.; Zhang, S.; Yang, Q.; Cao, W.; Xie, Y.; Qiu, P.; Wang, S. Simultaneous quantitative determination of 12 active components in yuanhu zhitong prescription by RP-HPLC coupled with photodiode array detection. Pharmacogn. Mag., 2015, 11(41), 61-68.
[24]
Sun, W.; Qin, Y.; Hou, Z.; Yao, Y.; Zhou, L. Dihydro-allocryptopine. Acta Crystallogr. Sect. E Struct. Rep. Online, 2012, 68(Pt 1), 69.
[25]
Tao, Y.; Xu, H.; Wang, S.; Wang, B.; Zhang, Y.; Wang, W.; Huang, B.; Wu, H.; Li, D.; Zhang, Y.; Xiao, X.; Li, Y.; Yang, H.; Huang, L. Identification of the absorbed constituents after oral administration of Yuanhu Zhitong prescription extract and its pharmacokinetic study by rapid resolution liquid chromatography/quadrupole time-of-flight. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2013, 935, 1-9.
[26]
Manda, V.K.; Ibrahim, M.A.; Dale, O.R.; Kumarihamy, M.; Cutler, S.J.; Khan, I.A.; Walker, L.A.; Muhammad, I.; Khan, S.I. Modulation of CYPs, P-gp, and PXR by Eschscholzia californica (California Poppy) and its alkaloids. Planta Med., 2016, 82(6), 551-558.
[27]
Mandal, P.; Sahoo, D.; Saha, S.; Chowdhury, J. Sensing of different human telomeric G-quadruplex DNA topologies by natural alkaloid allocryptopine using spectroscopic techniques. J. Phys. Chem. B, 2018, 122(45), 10279-10290.
[28]
(a) Scazzocchio, F.; Cometa, M.F.; Tomassini, L.; Palmery, M. Antibacterial activity of Hydrastis canadensis extract and its major isolated alkaloids. Planta Med., 2001, 67(6), 561-564.
(b) Ivanovska, N.; Philipov, S. Study on the anti-inflammatory action of Berberis vulgaris root extract, alkaloid fractions and pure alkaloids. Int. J. Immunopharmacol., 1996, 18(10), 553-561.
(c) Rubio-Pina, J.; Vazquez-Flota, F. Pharmaceutical applications of the benzylisoquinoline alkaloids from Argemone mexicana L. Curr. Top. Med. Chem., 2013, 13(17), 2200-2207.
[29]
Liu, M.; Li, Y.; Wen, Y.; Wang, Li. Effect of allocryptopine on arrhythmia and monophasic action potentials. Chin. J. Multiple Organ Dis. Elderly, 2006, 1, 48-50.
[30]
Li, Y.; Wang, L.; Cheng, R.; Liu, P.; Xue, Q. Effects of allocryptoine on arrhythmia of animals and action potential of the papillary muscles of guinea pigs. Chin. J. Multiple Organ Dis. Elderly, 2005, 14, 123-126.
[31]
Weiwan, Liu T.Y.; Yuan, X.; Chen, X. Effects of allocryptopine on experimental myocardial infarction, cardiac function and hemodynamics in rabbits. J. Hubei Med. Coll., 1992, 13, 212-216.
[32]
Xu, B.; Fu, Y.; Liu, L.; Lin, K.; Zhao, X.; Zhang, Y.; Chen, X.; Cai, Z.; Huang, Y.; Li, Y. Effect of alpha-allocryptopine on delayed afterdepolarizations and triggered activities in mice cardiomyocytes treated with isoproterenol. Evid. Based Complement. Alternat. Med., 2015, 2015634172
[33]
(a) Snider, M.; Kalbfleisch, S.; Carnes, C.A. Initial experience with antiarrhythmic medication monitoring by clinical pharmacists in an outpatient setting: A retrospective review. Clin. Ther., 2009, 31(6), 1209-1218.
(b) Sugrue, A.; Kremen, V.; Qiang, B.; Sheldon, S.H.; DeSimone, C.V.; Sapir, Y.; Striemer, B.L.; Brady, P.; Asirvatham, S.J.; Ackerman, M.J.; Friedman, P.; Noseworthy, P.A. Electrocardiographic predictors of torsadogenic risk during dofetilide or sotalol initiation: Utility of a novel T wave analysis program. Cardiovasc. Drugs Ther., 2015, 29(5), 433-441.
[34]
Perry, M.D.; Ng, C.A.; Mann, S.A.; Sadrieh, A.; Imtiaz, M.; Hill, A.P.; Vandenberg, J.I. Getting to the heart of hERG K(+) channel gating. J. Physiol., 2015, 593(12), 2575-2585.
[35]
Lin, K.; Liu, Y.Q.; Xu, B.; Gao, J.L.; Fu, Y.C.; Chen, Y.; Xue, Q.; Li, Y. Allocryptopine and benzyltetrahydropalmatine block hERG potassium channels expressed in HEK293 cells. Acta Pharmacol. Sin., 2013, 34(6), 847-858.
[36]
Perrin, M.J.; Adler, A.; Green, S.; Al-Zoughool, F.; Doroshenko, P.; Orr, N.; Uppal, S.; Healey, J.S.; Birnie, D.; Sanatani, S.; Gardner, M.; Champagne, J.; Simpson, C.; Ahmad, K.; van den Berg, M.P.; Chauhan, V.; Backx, P.H.; van Tintelen, J.P.; Krahn, A.D.; Gollob, M.H. Evaluation of genes encoding for the transient outward current (Ito) identifies the KCND2 gene as a cause of J-wave syndrome associated with sudden cardiac death. Circ Cardiovasc Genet, 2014, 7(6), 782-789.
[37]
Meregalli, P.G.; Tan, H.L.; Probst, V.; Koopmann, T.T.; Tanck, M.W.; Bhuiyan, Z.A.; Sacher, F.; Kyndt, F.; Schott, J.J.; Albuisson, J.; Mabo, P.; Bezzina, C.R.; Le Marec, H.; Wilde, A.A. Type of SCN5A mutation determines clinical severity and degree of conduction slowing in loss-of-function sodium channelopathies. Heart Rhythm, 2009, 6(3), 341-348.
[38]
Zhang, J.; Chen, Y.; Yang, J.; Xu, B.; Wen, Y.; Xiang, G.; Wei, G.; Zhu, C.; Xing, Y.; Li, Y. Electrophysiological and trafficking defects of the SCN5A T353I mutation in Brugada syndrome are rescued by alpha-allocryptopine. Eur. J. Pharmacol., 2015, 746, 333-343.
[39]
Pfahnl, A.E.; Viswanathan, P.C.; Weiss, R.; Shang, L.L.; Sanyal, S.; Shusterman, V.; Kornblit, C.; London, B.; Dudley, S.C., Jr A sodium channel pore mutation causing Brugada syndrome. Heart Rhythm, 2007, 4(1), 46-53.
[40]
Ruan, Y.; Denegri, M.; Liu, N.; Bachetti, T.; Seregni, M.; Morotti, S.; Severi, S.; Napolitano, C.; Priori, S.G. Trafficking defects and gating abnormalities of a novel SCN5A mutation question gene-specific therapy in long QT syndrome type 3. Circ. Res., 2010, 106(8), 1374-1383.
[41]
Zhao, Y.; Sun, Y.M.; Cai, Z.Q. Effect of allocryptopine on late sodium current of atrial myocytes in spontaneously hypertensive rats. J. Geriatr. Cardiol., 2017, 14, 1-7.
[42]
Drouin, E.; Lande, G.; Charpentier, F. Amiodarone reduces transmural heterogeneity of repolarization in the human heart. J. Am. Coll. Cardiol., 1998, 32(4), 1063-1067.
[43]
Ozcan, E.E.; Szilagyi, S.; Sallo, Z.; Molnar, L.; Zima, E.; Szeplaki, G.; Osztheimer, I.; Ozturk, A.; Merkely, B.; Geller, L. Comparison of the effects of epicardial and endocardial cardiac resynchronization therapy on transmural dispersion of repolarization. Pacing Clin. Electrophysiol., 2015, 38(9), 1099-1105.
[44]
Kato, S.; Honjo, H.; Takemoto, Y.; Takanari, H.; Suzuki, T.; Okuno, Y.; Opthof, T.; Sakuma, I.; Inada, S.; Nakazawa, K.; Ashihara, T.; Kodama, I.; Kamiya, K. Pharmacological blockade of IKs destabilizes spiral-wave reentry under beta-adrenergic stimulation in favor of its early termination. J. Pharmacol. Sci., 2012, 119(1), 52-63.
[45]
Fu, Y.C.; Li, Y. Effect of allocryptopine on transmural repolarization of dispersion in ischemia-reperfusion rabbit heart; Postgraduate Students Theses, 2012.
[46]
Gao, J.; Sun, X.; Potapova, I.A.; Cohen, I.S.; Mathias, R.T.; Kim, J.H. Autocrine A2 in the T-system of ventricular myocytes creates transmural gradients in ion transport: A mechanism to match contraction with load? Biophys. J., 2014, 106(11), 2364-2374.
[47]
Fu, Y.C.; Zhang, Y.; Tian, L.Y.; Li, N.; Chen, X.; Cai, Z.Q.; Zhu, C.; Li, Y. Effects of allocryptopine on outward potassium current and slow delayed rectifier potassium current in rabbit myocardium. J. Geriatr. Cardiol., 2016, 13(4), 316-325.
[48]
(a) Despa, S.; Bers, D.M. Na(+) transport in the normal and failing heart - remember the balance. J. Mol. Cell. Cardiol., 2013, 61, 2-10.
(b) Wu, S.H.; Chen, Y.C.; Higa, S.; Lin, C.I. Oscillatory transient inward currents in ventricular myocytes of healthy versus myopathic Syrian hamster. Clin. Exp. Pharmacol. Physiol., 2004, 31(10), 668-676.
[49]
(a) Zhao, Y.T.; Valdivia, C.R.; Gurrola, G.B.; Hernandez, J.J.; Valdivia, H.H. Arrhythmogenic mechanisms in ryanodine receptor channelopathies. Sci. China Life Sci., 2015, 58(1), 54-58.
(b) Asakura, K.; Cha, C.Y.; Yamaoka, H.; Horikawa, Y.; Memida, H.; Powell, T.; Amano, A.; Noma, A. EAD and DAD mechanisms analyzed by developing a new human ventricular cell model. Prog. Biophys. Mol. Biol., 2014, 116(1), 11-24.
[50]
Greenstein, J.L.; Wu, R.; Po, S.; Tomaselli, G.F.; Winslow, R.L. Role of the calcium-independent transient outward current I(to1) in shaping action potential morphology and duration. Circ. Res., 2000, 87(11), 1026-1033.
[51]
Tsuji, Y.; Opthof, T.; Kamiya, K.; Yasui, K.; Liu, W.; Lu, Z.; Kodama, I. Pacing-induced heart failure causes a reduction of delayed rectifier potassium currents along with decreases in calcium and transient outward currents in rabbit ventricle. Cardiovasc. Res., 2000, 48(2), 300-309.
[52]
Li, G.R.; Lau, C.P.; Leung, T.K.; Nattel, S. Ionic current abnormalities associated with prolonged action potentials in cardiomyocytes from diseased human right ventricles. Heart Rhythm, 2004, 1(4), 460-468.
[53]
Kiehn, J.; Thomas, D.; Karle, C.A.; Schols, W.; Kubler, W. Inhibitory effects of the class III antiarrhythmic drug amiodarone on cloned HERG potassium channels. Naunyn Schmiedebergs Arch. Pharmacol., 1999, 359(3), 212-219.
[54]
Terricabras, M.; Piccini, J.P., Sr; Verma, A. Randomized clinical trials of catheter ablation of atrial fibrillation in congestive heart failure: knowns and unmet needs. Cardiol. Clin., 2019, 37(2), 167-176.
[55]
Ansari, J.; Carvalho, B.; Shafer, S.L.; Flood, P. Pharmacokinetics and pharmacodynamics of drugs commonly used in pregnancy and parturition. Anesth. Analg., 2016, 122(3), 786-804.
[56]
Esposito, A.; Viale, G.; Curigliano, G. Safety, tolerability, and management of toxic effects of phosphatidylinositol 3-kinase inhibitor treatment in patients with cancer: A review. JAMA Oncol., 2019. [Epub ahead of print].
[57]
Povsic, T.J.; Scott, R.; Mahaffey, K.W.; Blaustein, R.; Edelberg, J.M.; Lefkowitz, M.P.; Solomon, S.D.; Fox, J.C.; Healy, K.E.; Khakoo, A.Y.; Losordo, D.W.; Malik, F.I.; Monia, B.P.; Montgomery, R.L.; Riesmeyer, J.; Schwartz, G.G.; Zelenkofske, S.L.; Wu, J.C.; Wasserman, S.M.; Roe, M.T. Navigating the future of cardiovascular drug development-leveraging novel approaches to drive innovation and drug discovery: Summary of findings from the novel cardiovascular therapeutics conference. Cardiovasc. Drugs Ther., 2017, 31(4), 445-458.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 20
ISSUE: 10
Year: 2019
Page: [996 - 1003]
Pages: 8
DOI: 10.2174/1389203720666190807123609
Price: $58

Article Metrics

PDF: 13
HTML: 1