Nanoantibiotics: A Novel Rational Approach to Antibiotic Resistant Infections

Author(s): Ayse Basak Engin*, Atilla Engin.

Journal Name: Current Drug Metabolism

Volume 20 , Issue 9 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: The main drawbacks for using conventional antimicrobial agents are the development of multiple drug resistance due to the use of high concentrations of antibiotics for extended periods. This vicious cycle often generates complications of persistent infections, and intolerable antibiotic toxicity. The problem is that while all new discovered antimicrobials are effective and promising, they remain as only short-term solutions to the overall challenge of drug-resistant bacteria.

Objective: Recently, nanoantibiotics (nAbts) have been of tremendous interest in overcoming the drug resistance developed by several pathogenic microorganisms against most of the commonly used antibiotics. Compared with free antibiotic at the same concentration, drug delivered via a nanoparticle carrier has a much more prominent inhibitory effect on bacterial growth, and drug toxicity, along with prolonged drug release. Additionally, multiple drugs or antimicrobials can be packaged within the same smart polymer which can be designed with stimuli-responsive linkers. These stimuli-responsive nAbts open up the possibility of creating multipurpose and targeted antimicrobials. Biofilm formation still remains the leading cause of conventional antibiotic treatment failure. In contrast to conventional antibiotics nAbts easily penetrate into the biofilm, and selectively target biofilm matrix constituents through the introduction of bacteria specific ligands. In this context, various nanoparticles can be stabilized and functionalized with conventional antibiotics. These composites have a largely enhanced bactericidal efficiency compared to the free antibiotic.

Conclusion: Nanoparticle-based carriers deliver antibiotics with better biofilm penetration and lower toxicity, thus combating bacterial resistance. However, the successful adaptation of nanoformulations to clinical practice involves a detailed assessment of their safety profiles and potential immunotoxicity.

Keywords: Nanoantibiotics, biofilm, blood-brain barrier, stimuli-responsive linkers, nanoparticle-based carriers, toxicity, targeted antimicrobials.

[1]
Mouton, J.W.; Ambrose, P.G.; Canton, R.; Drusano, G.L.; Harbarth, S.; MacGowan, A.; Theuretzbacher, U.; Turnidge, J. Conserving antibiotics for the future: new ways to use old and new drugs from a pharmacokinetic and pharmacodynamic perspective. Drug Resist. Updat., 2011, 14(2), 107-117.
[http://dx.doi.org/10.1016/j.drup.2011.02.005] [PMID: 21440486]
[2]
De Velde, F.; Mouton, J.W.; De Winter, B.C.M.; Van Gelder, T.; Koch, B.C.P. Clinical applications of population pharmacokinetic models of antibiotics: Challenges and perspectives. Pharmacol. Res., 2018, 134, 280-288.
[http://dx.doi.org/10.1016/j.phrs.2018.07.005] [PMID: 30033398]
[3]
Fasano, M.; Curry, S.; Terreno, E.; Galliano, M.; Fanali, G.; Narciso, P.; Notari, S.; Ascenzi, P. The extraordinary ligand binding properties of human serum albumin. IUBMB Life, 2005, 57(12), 787-796.
[http://dx.doi.org/10.1080/15216540500404093] [PMID: 16393781]
[4]
Ulldemolins, M.; Roberts, J.A.; Wallis, S.C.; Rello, J.; Lipman, J. Flucloxacillin dosing in critically ill patients with hypoalbuminaemia: Special emphasis on unbound pharmacokinetics. J. Antimicrob. Chemother., 2010, 65(8), 1771-1778.
[http://dx.doi.org/10.1093/jac/dkq184] [PMID: 20530507]
[5]
Wise, R. Protein binding of beta-lactams: The effects on activity and pharmacology particularly tissue penetration. II. Studies in man. J. Antimicrob. Chemother., 1983, 12(2), 105-118.
[http://dx.doi.org/10.1093/jac/12.2.105] [PMID: 6619052]
[6]
Zeitlinger, M.A.; Derendorf, H.; Mouton, J.W.; Cars, O.; Craig, W.A.; Andes, D.; Theuretzbacher, U. Protein binding: Do we ever learn? Antimicrob. Agents Chemother., 2011, 55(7), 3067-3074.
[http://dx.doi.org/10.1128/AAC.01433-10] [PMID: 21537013]
[7]
Craig, W.A. Pharmacokinetic/pharmacodynamic parameters: Rationale for antibacterial dosing of mice and men. Clin. Infect. Dis., 1998, 26(1), 1-10.
[http://dx.doi.org/10.1086/516284] [PMID: 9455502]
[8]
Ambrose, P.G.; Bhavnani, S.M.; Rubino, C.M.; Louie, A.; Gumbo, T.; Forrest, A.; Drusano, G.L. Pharmacokinetics-pharmacodynamics of antimicrobial therapy: It’s not just for mice anymore. Clin. Infect. Dis., 2007, 44(1), 79-86.
[http://dx.doi.org/10.1086/510079] [PMID: 17143821]
[9]
Roberts, J.A.; Abdul-Aziz, M.H.; Lipman, J.; Mouton, J.W.; Vinks, A.A.; Felton, T.W.; Hope, W.W.; Farkas, A.; Neely, M.N.; Schentag, J.J.; Drusano, G.; Frey, O.R.; Theuretzbacher, U.; Kuti, J.L. Individualised antibiotic dosing for patients who are critically ill: Challenges and potential solutions. Lancet Infect. Dis., 2014, 14(6), 498-509.
[http://dx.doi.org/10.1016/S1473-3099(14)70036-2] [PMID: 24768475]
[10]
Sime, F.B.; Roberts, M.S.; Peake, S.L.; Lipman, J.; Roberts, J.A. Does beta-lactam pharmacokinetic variability in critically ill patients justify therapeutic drug monitoring? A systematic review. Ann. Intensive Care, 2012, 2(1), 35.
[http://dx.doi.org/10.1186/2110-5820-2-35] [PMID: 22839761]
[11]
Roberts, J.A. Using PK/PD to optimize antibiotic dosing for critically ill patients. Curr. Pharm. Biotechnol., 2011, 12(12), 2070-2079.
[http://dx.doi.org/10.2174/138920111798808329] [PMID: 21554211]
[12]
Wong, G.; Brinkman, A.; Benefield, R.J.; Carlier, M.; De Waele, J.J.; El Helali, N.; Frey, O.; Harbarth, S.; Huttner, A.; McWhinney, B.; Misset, B.; Pea, F.; Preisenberger, J.; Roberts, M.S.; Robertson, T.A.; Roehr, A.; Sime, F.B.; Taccone, F.S.; Ungerer, J.P.; Lipman, J.; Roberts, J.A. An international, multicentre survey of β-lactam antibiotic therapeutic drug monitoring practice in intensive care units. J. Antimicrob. Chemother., 2014, 69(5), 1416-1423.
[http://dx.doi.org/10.1093/jac/dkt523] [PMID: 24443514]
[13]
Berthoin, K.; Ampe, E.; Tulkens, P.M.; Carryn, S. Correlation between free and total vancomycin serum concentrations in patients treated for Gram-positive infections. Int. J. Antimicrob. Agents, 2009, 34(6), 555-560.
[http://dx.doi.org/10.1016/j.ijantimicag.2009.08.005] [PMID: 19782538]
[14]
Mouton, J.W.; Brown, D.F.J.; Apfalter, P.; Cantón, R.; Giske, C.G.; Ivanova, M.; MacGowan, A.P.; Rodloff, A.; Soussy, C.J.; Steinbakk, M.; Kahlmeter, G. The role of pharmacokinetics/pharmacodynamics in setting clinical MIC breakpoints: The EUCAST approach. Clin. Microbiol. Infect., 2012, 18(3), E37-E45.
[http://dx.doi.org/10.1111/j.1469-0691.2011.03752.x] [PMID: 22264314]
[15]
Allen, H.K.; Donato, J.; Wang, H.H.; Cloud-Hansen, K.A.; Davies, J.; Handelsman, J. Call of the wild: antibiotic resistance genes in natural environments. Nat. Rev. Microbiol., 2010, 8(4), 251-259.
[http://dx.doi.org/10.1038/nrmicro2312] [PMID: 20190823]
[16]
Davies, J.; Davies, D. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev., 2010, 74(3), 417-433.
[http://dx.doi.org/10.1128/MMBR.00016-10] [PMID: 20805405]
[17]
Gniadkowski, M. Evolution of extended-spectrum beta-lactamases by mutation. Clin. Microbiol. Infect., 2008, 14(Suppl. 1), 11-32.
[http://dx.doi.org/10.1111/j.1469-0691.2007.01854.x] [PMID: 18154525]
[18]
Piddock, L.J.V. Multidrug-resistance efflux pumps - not just for resistance. Nat. Rev. Microbiol., 2006, 4(8), 629-636.
[http://dx.doi.org/10.1038/nrmicro1464] [PMID: 16845433]
[19]
Matzov, D.; Bashan, A.; Yonath, A. A bright future for antibiotics? Annu. Rev. Biochem., 2017, 86, 567-583.
[http://dx.doi.org/10.1146/annurev-biochem-061516-044617] [PMID: 28654325]
[20]
Muzammil, S.; Hayat, S. Fakhar-E-Alam, M.; Aslam, B.; Siddique, M.H.; Nisar, M.A.; Saqalein, M.; Atif, M.; Sarwar, A.; Khurshid, A.; Amin, N.; Wang, Z. Nanoantibiotics: Future nanotechnologies to combat antibiotic resistance. Front. Biosci. (Elite Ed.), 2018, 10, 352-374.
[http://dx.doi.org/10.2741/e827] [PMID: 29293463]
[21]
Fernandez-Moure, J.S.; Evangelopoulos, M.; Colvill, K.; Van Eps, J.L.; Tasciotti, E. Nanoantibiotics: A new paradigm for the treatment of surgical infection. Nanomedicine (Lond.), 2017, 12(11), 1319-1334.
[http://dx.doi.org/10.2217/nnm-2017-0401] [PMID: 28520517]
[22]
Huh, A.J.; Kwon, Y.J. “Nanoantibiotics”: A new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J. Control. Release, 2011, 156(2), 128-145.
[http://dx.doi.org/10.1016/j.jconrel.2011.07.002] [PMID: 21763369]
[23]
Edson, J.A.; Kwon, Y.J. Design, challenge, and promise of stimuli-responsive nanoantibiotics. Nano Converg., 2016, 3(1), 26.
[http://dx.doi.org/10.1186/s40580-016-0085-7] [PMID: 28191436]
[24]
Li, H.; Chen, Q.; Zhao, J.; Urmila, K. Enhancing the antimicrobial activity of natural extraction using the synthetic ultrasmall metal nanoparticles. Sci. Rep., 2015, 5, 11033.
[http://dx.doi.org/10.1038/srep11033] [PMID: 26046938]
[25]
Armentano, I.; Arciola, C.R.; Fortunati, E.; Ferrari, D.; Mattioli, S.; Amoroso, C.F.; Rizzo, J.; Kenny, J.M.; Imbriani, M.; Visai, L. The interaction of bacteria with engineered nanostructured polymeric materials: A review. Sci. World J., 2014, 2014410423
[http://dx.doi.org/10.1155/2014/410423] [PMID: 25025086]
[26]
Gao, W.; Thamphiwatana, S.; Angsantikul, P.; Zhang, L. Nanoparticle approaches against bacterial infections. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2014, 6(6), 532-547.
[http://dx.doi.org/10.1002/wnan.1282] [PMID: 25044325]
[27]
Luan, B.; Huynh, T.; Zhou, R. Complete wetting of graphene by biological lipids. Nanoscale, 2016, 8(10), 5750-5754.
[http://dx.doi.org/10.1039/C6NR00202A] [PMID: 26910517]
[28]
Zhu, M.; Nie, G.; Meng, H.; Xia, T.; Nel, A.; Zhao, Y. Physicochemical properties determine nanomaterial cellular uptake, transport, and fate. Acc. Chem. Res., 2013, 46(3), 622-631.
[http://dx.doi.org/10.1021/ar300031y] [PMID: 22891796]
[29]
Gao, H.; Shi, W.; Freund, L.B. Mechanics of receptor-mediated endocytosis. Proc. Natl. Acad. Sci. USA, 2005, 102(27), 9469-9474.
[http://dx.doi.org/10.1073/pnas.0503879102] [PMID: 15972807]
[30]
Newcomb, C.J.; Sur, S.; Ortony, J.H.; Lee, O.S.; Matson, J.B.; Boekhoven, J.; Yu, J.M.; Schatz, G.C.; Stupp, S.I. Cell death versus cell survival instructed by supramolecular cohesion of nanostructures. Nat. Commun., 2014, 5, 3321.
[http://dx.doi.org/10.1038/ncomms4321] [PMID: 24531236]
[31]
Liao, C.; Li, Y.; Tjong, S.C. Bactericidal and cytotoxic properties of silver nanoparticles. Int. J. Mol. Sci., 2019, 20(2)E449
[http://dx.doi.org/10.3390/ijms20020449] [PMID: 30669621]
[32]
Slavin, Y.N.; Asnis, J.; Häfeli, U.O.; Bach, H. Metal nanoparticles: Understanding the mechanisms behind antibacterial activity. J. Nanobiotechnology, 2017, 15(1), 65.
[http://dx.doi.org/10.1186/s12951-017-0308-z] [PMID: 28974225]
[33]
Oh, Y.J.; Plochberger, B.; Rechberger, M.; Hinterdorfer, P. Characterizing the effect of polymyxin B antibiotics to lipopolysaccharide on Escherichia coli surface using atomic force microscopy. J. Mol. Recognit., 2017, 30(6)e2605
[http://dx.doi.org/10.1002/jmr.2605] [PMID: 28054415]
[34]
Mukha, IuP.; Eremenko, A.M.; Smirnova, N.P.; Mikhienkova, A.I.; Korchak, G.I.; Gorchev, V.F.; Chunikhin, A.I. Antimicrobial activity of stable silver nanoparticles of a certain size. Prikl. Biokhim. Mikrobiol., 2013, 49(2), 215-223.
[PMID: 23795483]
[35]
Ramalingam, B.; Parandhaman, T.; Das, S.K. Antibacterial effects of biosynthesized silver nanoparticles on surface ultrastructure and nanomechanical properties of Gram-negative bacteria viz. Escherichia coli and Pseudomonas aeruginosa. ACS Appl. Mater. Interfaces, 2016, 8(7), 4963-4976.
[http://dx.doi.org/10.1021/acsami.6b00161] [PMID: 26829373]
[36]
Li, W.R.; Xie, X.B.; Shi, Q.S.; Zeng, H.Y.; Ou-Yang, Y.S.; Chen, Y.B. Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl. Microbiol. Biotechnol., 2010, 85(4), 1115-1122.
[http://dx.doi.org/10.1007/s00253-009-2159-5] [PMID: 19669753]
[37]
Sondi, I.; Salopek-Sondi, B. Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for Gram-negative bacteria. J. Colloid Interface Sci., 2004, 275(1), 177-182.
[http://dx.doi.org/10.1016/j.jcis.2004.02.012] [PMID: 15158396]
[38]
Jahnke, J.P.; Cornejo, J.A.; Sumner, J.J.; Schuler, A.J.; Atanassov, P.; Ista, L.K. Conjugated gold nanoparticles as a tool for probing the bacterial cell envelope: The case of Shewanella oneidensis MR-1. Biointerphases, 2016, 11(1)011003
[http://dx.doi.org/10.1116/1.4939244] [PMID: 26746161]
[39]
Kim, J.S.; Kuk, E.; Yu, K.N.; Kim, J.H.; Park, S.J.; Lee, H.J.; Kim, S.H.; Park, Y.K.; Park, Y.H.; Hwang, C.Y.; Kim, Y.K.; Lee, Y.S.; Jeong, D.H.; Cho, M.H. Antimicrobial effects of silver nanoparticles. Nanomedicine (Lond.), 2007, 3(1), 95-101.
[http://dx.doi.org/10.1016/j.nano.2006.12.001] [PMID: 17379174]
[40]
Wang, L.; He, H.; Yu, Y.; Sun, L.; Liu, S.; Zhang, C.; He, L. Morphology-dependent bactericidal activities of Ag/CeO2 catalysts against Escherichia coli. J. Inorg. Biochem., 2014, 135, 45-53.
[http://dx.doi.org/10.1016/j.jinorgbio.2014.02.016] [PMID: 24662462]
[41]
Hong, W.; Gao, X.; Qiu, P.; Yang, J.; Qiao, M.; Shi, H.; Zhang, D.; Tian, C.; Niu, S.; Liu, M. Synthesis, construction, and evaluation of self-assembled nano-bacitracin A as an efficient antibacterial agent in vitro and in vivo. Int. J. Nanomedicine, 2017, 12, 4691-4708.
[http://dx.doi.org/10.2147/IJN.S136998] [PMID: 28721045]
[42]
Kansara, K.; Patel, P.; Shah, D.; Shukla, R.K.; Singh, S.; Kumar, A.; Dhawan, A. TiO2 nanoparticles induce DNA double strand breaks and cell cycle arrest in human alveolar cells. Environ. Mol. Mutagen., 2015, 56(2), 204-217.
[http://dx.doi.org/10.1002/em.21925] [PMID: 25524809]
[43]
Xu, Y.; Wei, M.T.; Ou-Yang, H.D.; Walker, S.G.; Wang, H.Z.; Gordon, C.R.; Guterman, S.; Zawacki, E.; Applebaum, E.; Brink, P.R.; Rafailovich, M.; Mironava, T. Exposure to TiO2 nanoparticles increases Staphylococcus aureus infection of HeLa cells. J. Nanobiotechnology, 2016, 14, 34.
[http://dx.doi.org/10.1186/s12951-016-0184-y] [PMID: 27102228]
[44]
Yang, W.; Shen, C.; Ji, Q.; An, H.; Wang, J.; Liu, Q.; Zhang, Z. Food storage material silver nanoparticles interfere with DNA replication fidelity and bind with DNA. Nanotechnology, 2009, 20(8)085102
[http://dx.doi.org/10.1088/0957-4484/20/8/085102] [PMID: 19417438]
[45]
Wang, L.; Hu, C.; Shao, L. The antimicrobial activity of nanoparticles: Present situation and prospects for the future. Int. J. Nanomedicine, 2017, 12, 1227-1249.
[http://dx.doi.org/10.2147/IJN.S121956] [PMID: 28243086]
[46]
Kalhapure, R.S.; Suleman, N.; Mocktar, C.; Seedat, N.; Govender, T. Nanoengineered drug delivery systems for enhancing antibiotic therapy. J. Pharm. Sci., 2015, 104(3), 872-905.
[http://dx.doi.org/10.1002/jps.24298] [PMID: 25546108]
[47]
Ranghar, S.; Sirohi, P.; Verma, P.; Agarwal, V. Nanoparticle-based drug delivery systems: Promising approaches against infections. Braz. Arch. Biol. Technol., 2013, 57(2), 209-222.
[http://dx.doi.org/10.1590/S1516-89132013005000011]
[48]
Singh, H.; Jindal, S.; Singh, M.; Sharma, G.; Kaur, I.P. Nano-formulation of rifampicin with enhanced bioavailability: Development, characterization and in vivo safety. Int. J. Pharm., 2015, 485(1-2), 138-151.
[http://dx.doi.org/10.1016/j.ijpharm.2015.02.050] [PMID: 25769294]
[49]
Liu, J.L.; Zhang, W.J.; Li, X.D.; Yang, N.; Pan, W.S.; Kong, J.; Zhang, J.S. Sustained-release genistein from nanostructured lipid carrier suppresses human lens epithelial cell growth. Int. J. Ophthalmol., 2016, 9(5), 643-649.
[PMID: 27275415]
[50]
Duan, F.; Feng, X.; Jin, Y.; Liu, D.; Yang, X.; Zhou, G.; Liu, D.; Li, Z.; Liang, X.J.; Zhang, J. Metal-carbenicillin framework-based nanoantibiotics with enhanced penetration and highly efficient inhibition of MRSA. Biomaterials, 2017, 144, 155-165.
[http://dx.doi.org/10.1016/j.biomaterials.2017.08.024] [PMID: 28834764]
[51]
Jamil, B.; Bokhari, H.; Imran, M. Mechanism of action: How nano-antimicrobials act? Curr. Drug Targets, 2017, 18(3), 363-373.
[http://dx.doi.org/10.2174/1389450116666151019101826] [PMID: 26477460]
[52]
Hussein-Al-Ali, S.H.; El Zowalaty, M.E.; Hussein, M.Z.; Ismail, M.; Webster, T.J. Synthesis, characterization, controlled release, and antibacterial studies of a novel streptomycin chitosan magnetic nanoantibiotic. Int. J. Nanomedicine, 2014, 9, 549-557.
[PMID: 24549109]
[53]
Gounani, Z.; Asadollahi, M.A.; Pedersen, J.N.; Lyngsø, J.; Skov Pedersen, J.; Arpanaei, A.; Meyer, R.L. Mesoporous silica nanoparticles carrying multiple antibiotics provide enhanced synergistic effect and improved biocompatibility. Colloids Surf. B Biointerfaces, 2019, 175, 498-508.
[http://dx.doi.org/10.1016/j.colsurfb.2018.12.035] [PMID: 30572158]
[54]
Wang, Y.L.; He, M.; Miron, R.J.; Chen, A.Y.; Zhao, Y.B.; Zhang, Y.F. Temperature/pH-sensitive nanoantibiotics and their sequential assembly for optimal collaborations between antibacterial and immunoregulation. ACS Appl. Mater. Interfaces, 2017, 9(37), 31589-31599.
[http://dx.doi.org/10.1021/acsami.7b10384] [PMID: 28856893]
[55]
Daneshmand, S.; Golmohammadzadeh, S.; Jaafari, M.R.; Movaffagh, J.; Rezaee, M.; Sahebkar, A.; Malaekeh-Nikouei, B. Encapsulation challenges, the substantial issue in solid lipid nanoparticles characterization. J. Cell. Biochem., 2018, 119(6), 4251-4264.
[http://dx.doi.org/10.1002/jcb.26617] [PMID: 29243841]
[56]
Delmas, T.; Piraux, H.; Couffin, A.C.; Texier, I.; Vinet, F.; Poulin, P.; Cates, M.E.; Bibette, J. How to prepare and stabilize very small nanoemulsions. Langmuir, 2011, 27(5), 1683-1692.
[http://dx.doi.org/10.1021/la104221q] [PMID: 21226496]
[57]
Kalhapure, R.S.; Mocktar, C.; Sikwal, D.R.; Sonawane, S.J.; Kathiravan, M.K.; Skelton, A.; Govender, T. Ion pairing with linoleic acid simultaneously enhances encapsulation efficiency and antibacterial activity of vancomycin in solid lipid nanoparticles. Colloids Surf. B Biointerfaces, 2014, 117, 303-311.
[http://dx.doi.org/10.1016/j.colsurfb.2014.02.045] [PMID: 24667076]
[58]
Kumar, R.; Singh, A.; Garg, N.; Siril, P.F. Solid lipid nanoparticles for the controlled delivery of poorly water soluble non-steroidal anti-inflammatory drugs.. Ultrason Sonochem., 2018, 40(Pt A),686-696,
[http://dx.doi.org/10.1016/j.ultsonch.2017.08.018]
[59]
Sonawane, S.J.; Kalhapure, R.S.; Rambharose, S.; Mocktar, C.; Vepuri, S.B.; Soliman, M.; Govender, T. Ultra-small lipid-dendrimer hybrid nanoparticles as a promising strategy for antibiotic delivery: In vitro and in silico studies. Int. J. Pharm., 2016, 504(1-2), 1-10.
[http://dx.doi.org/10.1016/j.ijpharm.2016.03.021] [PMID: 26992817]
[60]
Iqbal, M.A.; Md, S.; Sahni, J.K.; Baboota, S.; Dang, S.; Ali, J. Nanostructured lipid carriers system: Recent advances in drug delivery. J. Drug Target., 2012, 20(10), 813-830.
[http://dx.doi.org/10.3109/1061186X.2012.716845] [PMID: 22931500]
[61]
Puri, A.; Loomis, K.; Smith, B.; Lee, J.H.; Yavlovich, A.; Heldman, E.; Blumenthal, R. Lipid-based nanoparticles as pharmaceutical drug carriers: From concepts to clinic. Crit. Rev. Ther. Drug Carrier Syst., 2009, 26(6), 523-580.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v26.i6.10] [PMID: 20402623]
[62]
Wasan, K.M.; Lopez-Berestein, G. The influence of serum lipoproteins on the pharmacokinetics and pharmacodynamics of lipophilic drugs and drug carriers. Arch. Med. Res., 1993, 24(4), 395-401.
[PMID: 8118164]
[63]
Khan, M.A.; Owais, M. Toxicity, stability and pharmacokinetics of amphotericin B in immunomodulator tuftsin-bearing liposomes in a murine model. J. Antimicrob. Chemother., 2006, 58(1), 125-132.
[http://dx.doi.org/10.1093/jac/dkl177] [PMID: 16709592]
[64]
Li, X.H.; Lee, J.H. Antibiofilm agents: A new perspective for antimicrobial strategy. J. Microbiol., 2017, 55(10), 753-766.
[http://dx.doi.org/10.1007/s12275-017-7274-x] [PMID: 28956348]
[65]
Lebeaux, D.; Ghigo, J.M.; Beloin, C. Biofilm-related infections: Bridging the gap between clinical management and fundamental aspects of recalcitrance toward antibiotics. Microbiol. Mol. Biol. Rev., 2014, 78(3), 510-543.
[http://dx.doi.org/10.1128/MMBR.00013-14] [PMID: 25184564]
[66]
Høiby, N.; Bjarnsholt, T.; Givskov, M.; Molin, S.; Ciofu, O. Antibiotic resistance of bacterial biofilms. Int. J. Antimicrob. Agents, 2010, 35(4), 322-332.
[http://dx.doi.org/10.1016/j.ijantimicag.2009.12.011] [PMID: 20149602]
[67]
O’Toole, G.; Kaplan, H.B.; Kolter, R. Biofilm formation as microbial development. Annu. Rev. Microbiol., 2000, 54, 49-79.
[http://dx.doi.org/10.1146/annurev.micro.54.1.49] [PMID: 11018124]
[68]
Anderl, J.N.; Franklin, M.J.; Stewart, P.S. Role of antibiotic penetration limitation in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrob. Agents Chemother., 2000, 44(7), 1818-1824.
[http://dx.doi.org/10.1128/AAC.44.7.1818-1824.2000] [PMID: 10858336]
[69]
Lazar, V. Quorum sensing in biofilms-how to destroy the bacterial citadels or their cohesion/power? Anaerobe, 2011, 17(6), 280-285.
[http://dx.doi.org/10.1016/j.anaerobe.2011.03.023] [PMID: 21497662]
[70]
Jacqueline, C.; Caillon, J. Impact of bacterial biofilm on the treatment of prosthetic joint infections. J. Antimicrob. Chemother., 2014, 69(Suppl. 1), i37-i40.
[http://dx.doi.org/10.1093/jac/dku254] [PMID: 25135088]
[71]
Stewart, P.S.; Costerton, J.W. Antibiotic resistance of bacteria in biofilms. Lancet, 2001, 358(9276), 135-138.
[http://dx.doi.org/10.1016/S0140-6736(01)05321-1] [PMID: 11463434]
[72]
Williams, I.; Venables, W.A.; Lloyd, D.; Paul, F.; Critchley, I. The effects of adherence to silicone surfaces on antibiotic susceptibility in Staphylococcus aureus. Microbiology, 1997, 143(Pt 7), 2407-2413.
[http://dx.doi.org/10.1099/00221287-143-7-2407] [PMID: 9245822]
[73]
Høiby, N.; Bjarnsholt, T.; Moser, C.; Bassi, G.L.; Coenye, T.; Donelli, G.; Hall-Stoodley, L.; Holá, V.; Imbert, C.; Kirketerp-Møller, K.; Lebeaux, D.; Oliver, A.; Ullmann, A.J.; Williams, C. ESCMID guideline for the diagnosis and treatment of biofilm infections 2014. Clin. Microbiol. Infect., 2015, 21(Suppl. 1), S1-S25.
[http://dx.doi.org/10.1016/j.cmi.2014.10.024] [PMID: 25596784]
[74]
Flemming, H.C.; Wingender, J. The biofilm matrix. Nat. Rev. Microbiol., 2010, 8(9), 623-633.
[http://dx.doi.org/10.1038/nrmicro2415] [PMID: 20676145]
[75]
Serra, D.O.; Richter, A.M.; Klauck, G.; Mika, F.; Hengge, R. Microanatomy at cellular resolution and spatial order of physiological differentiation in a bacterial biofilm. MBio, 2013, 4(2), e00103-e00113.
[http://dx.doi.org/10.1128/mBio.00103-13] [PMID: 23512962]
[76]
Hobley, L.; Harkins, C.; MacPhee, C.E.; Stanley-Wall, N.R. Giving structure to the biofilm matrix: An overview of individual strategies and emerging common themes. FEMS Microbiol. Rev., 2015, 39(5), 649-669.
[http://dx.doi.org/10.1093/femsre/fuv015] [PMID: 25907113]
[77]
Bales, P.M.; Renke, E.M.; May, S.L.; Shen, Y.; Nelson, D.C. Purification and characterization of biofilm-associated EPS exopolysaccharides from ESKAPE organisms and other pathogens. PLoS One, 2013, 8(6)e67950
[http://dx.doi.org/10.1371/journal.pone.0067950] [PMID: 23805330]
[78]
Das, T.; Sehar, S.; Koop, L.; Wong, Y.K.; Ahmed, S.; Siddiqui, K.S.; Manefield, M. Influence of calcium in extracellular DNA mediated bacterial aggregation and biofilm formation. PLoS One, 2014, 9(3)e91935
[http://dx.doi.org/10.1371/journal.pone.0091935] [PMID: 24651318]
[79]
Ostrowski, A.; Mehert, A.; Prescott, A.; Kiley, T.B.; Stanley-Wall, N.R. YuaB functions synergistically with the exopolysaccharide and TasA amyloid fibers to allow biofilm formation by Bacillus subtilis. J. Bacteriol., 2011, 193(18), 4821-4831.
[http://dx.doi.org/10.1128/JB.00223-11] [PMID: 21742882]
[80]
Gualdi, L.; Tagliabue, L.; Bertagnoli, S.; Ieranò, T.; De Castro, C.; Landini, P. Cellulose modulates biofilm formation by counteracting curli-mediated colonization of solid surfaces in Escherichia coli. Microbiology, 2008, 154(Pt 7), 2017-2024.
[http://dx.doi.org/10.1099/mic.0.2008/018093-0] [PMID: 18599830]
[81]
Peterson, B.W.; Van Der Mei, H.C.; Sjollema, J.; Busscher, H.J.; Sharma, P.K. A distinguishable role of eDNA in the viscoelastic relaxation of biofilms. MBio, 2013, 4(5), e00497-13.
[http://dx.doi.org/10.1128/mBio.00497-13] [PMID: 24129256]
[82]
Flemming, H.C.; Wingender, J.; Szewzyk, U.; Steinberg, P.; Rice, S.A.; Kjelleberg, S. Biofilms: An emergent form of bacterial life. Nat. Rev. Microbiol., 2016, 14(9), 563-575.
[http://dx.doi.org/10.1038/nrmicro.2016.94] [PMID: 27510863]
[83]
Peterson, B.W.; He, Y.; Ren, Y.; Zerdoum, A.; Libera, M.R.; Sharma, P.K.; Van Winkelhoff, A.J.; Neut, D.; Stoodley, P.; Van Der Mei, H.C.; Busscher, H.J. Viscoelasticity of biofilms and their recalcitrance to mechanical and chemical challenges. FEMS Microbiol. Rev., 2015, 39(2), 234-245.
[http://dx.doi.org/10.1093/femsre/fuu008] [PMID: 25725015]
[84]
Gunn, J.S.; Bakaletz, L.O.; Wozniak, D.J. What’s on the Outside Matters: The role of the extracellular polymeric substance of Gram-negative biofilms in evading host immunity and as a target for therapeutic intervention. J. Biol. Chem., 2016, 291(24), 12538-12546.
[http://dx.doi.org/10.1074/jbc.R115.707547] [PMID: 27129225]
[85]
Poelstra, K.A.; Van Der Mei, H.C.; Gottenbos, B.; Grainger, D.W.; Van Horn, J.R.; Busscher, H.J. Pooled human immunoglobulins reduce adhesion of Pseudomonas aeruginosa in a parallel plate flow chamber. J. Biomed. Mater. Res., 2000, 51(2), 224-232.
[http://dx.doi.org/10.1002/(SICI)1097-4636(200008)51:2<224:AID-JBM11>3.0.CO;2-G] [PMID: 10825222]
[86]
Rojas, I.A.; Slunt, J.B.; Grainger, D.W. Polyurethane coatings release bioactive antibodies to reduce bacterial adhesion. J. Control. Release, 2000, 63(1-2), 175-189.
[http://dx.doi.org/10.1016/S0168-3659(99)00195-9] [PMID: 10640591]
[87]
Barraud, N.; Kelso, M.J.; Rice, S.A.; Kjelleberg, S. Nitric oxide: A key mediator of biofilm dispersal with applications in infectious diseases. Curr. Pharm. Des., 2015, 21(1), 31-42.
[http://dx.doi.org/10.2174/1381612820666140905112822] [PMID: 25189865]
[88]
Wo, Y.; Xu, L.C.; Li, Z.; Matzger, A.J.; Meyerhoff, M.E.; Siedlecki, C.A. Antimicrobial nitric oxide releasing surfaces based on S-nitroso-N-acetylpenicillamine impregnated polymers combined with submicron-textured surface topography. Biomater. Sci., 2017, 5(7), 1265-1278.
[http://dx.doi.org/10.1039/C7BM00108H] [PMID: 28560367]
[89]
Kaplan, J.B.; Mlynek, K.D.; Hettiarachchi, H.; Alamneh, Y.A.; Biggemann, L.; Zurawski, D.V.; Black, C.C.; Bane, C.E.; Kim, R.K.; Granick, M.S. Extracellular Polymeric Substance (EPS)-degrading enzymes reduce staphylococcal surface attachment and biocide resistance on pig skin in vivo. PLoS One, 2018, 13(10)e0205526
[http://dx.doi.org/10.1371/journal.pone.0205526] [PMID: 30304066]
[90]
Anderson, B.N.; Ding, A.M.; Nilsson, L.M.; Kusuma, K.; Tchesnokova, V.; Vogel, V.; Sokurenko, E.V.; Thomas, W.E. Weak rolling adhesion enhances bacterial surface colonization. J. Bacteriol., 2007, 189(5), 1794-1802.
[http://dx.doi.org/10.1128/JB.00899-06] [PMID: 17189376]
[91]
Patel, S.; Mathivanan, N.; Goyal, A. Bacterial adhesins, the pathogenic weapons to trick host defense arsenal. Biomed. Pharmacother., 2017, 93, 763-771.
[http://dx.doi.org/10.1016/j.biopha.2017.06.102] [PMID: 28709130]
[92]
Prince, A. Adhesins and receptors of Pseudomonas aeruginosa associated with infection of the respiratory tract. Microb. Pathog., 1992, 13(4), 251-260.
[http://dx.doi.org/10.1016/0882-4010(92)90035-M] [PMID: 1363702]
[93]
Kline, K.A.; Fälker, S.; Dahlberg, S.; Normark, S.; Henriques-Normark, B. Bacterial adhesins in host-microbe interactions. Cell Host Microbe, 2009, 5(6), 580-592.
[http://dx.doi.org/10.1016/j.chom.2009.05.011] [PMID: 19527885]
[94]
Banin, E.; Vasil, M.L.; Greenberg, E.P. Iron and Pseudomonas aeruginosa biofilm formation. Proc. Natl. Acad. Sci. USA, 2005, 102(31), 11076-11081.
[http://dx.doi.org/10.1073/pnas.0504266102] [PMID: 16043697]
[95]
Reid, G.; Howard, J.; Gan, B.S. Can bacterial interference prevent infection? Trends Microbiol., 2001, 9(9), 424-428.
[http://dx.doi.org/10.1016/S0966-842X(01)02132-1] [PMID: 11553454]
[96]
Gil, C.; Solano, C.; Burgui, S.; Latasa, C.; García, B.; Toledo-Arana, A.; Lasa, I.; Valle, J. Biofilm matrix exoproteins induce a protective immune response against Staphylococcus aureus biofilm infection. Infect. Immun., 2014, 82(3), 1017-1029.
[http://dx.doi.org/10.1128/IAI.01419-13] [PMID: 24343648]
[97]
Huang, J.; Pinder, K.L. Effects of calcium on development of anaerobic acidogenic biofilms. Biotechnol. Bioeng., 1995, 45(3), 212-218.
[http://dx.doi.org/10.1002/bit.260450305] [PMID: 18623140]
[98]
Turakhia, M.H.; Characklis, W.G. Activity of Pseudomonas aeruginosa in biofilms: Effect of calcium. Biotechnol. Bioeng., 1989, 33(4), 406-414.
[http://dx.doi.org/10.1002/bit.260330405] [PMID: 18587931]
[99]
Arvidson, S.; Tegmark, K. Regulation of virulence determinants in Staphylococcus aureus. Int. J. Med. Microbiol., 2001, 291(2), 159-170.
[http://dx.doi.org/10.1078/1438-4221-00112] [PMID: 11437338]
[100]
Barraud, N.; Schleheck, D.; Klebensberger, J.; Webb, J.S.; Hassett, D.J.; Rice, S.A.; Kjelleberg, S. Nitric oxide signaling in Pseudomonas aeruginosa biofilms mediates phosphodiesterase activity, decreased cyclic di-GMP levels, and enhanced dispersal. J. Bacteriol., 2009, 191(23), 7333-7342.
[http://dx.doi.org/10.1128/JB.00975-09] [PMID: 19801410]
[101]
Barraud, N.; Hassett, D.J.; Hwang, S.H.; Rice, S.A.; Kjelleberg, S.; Webb, J.S. Involvement of nitric oxide in biofilm dispersal of Pseudomonas aeruginosa. J. Bacteriol., 2006, 188(21), 7344-7353.
[http://dx.doi.org/10.1128/JB.00779-06] [PMID: 17050922]
[102]
Kim, M.K.; Zhao, A.; Wang, A.; Brown, Z.Z.; Muir, T.W.; Stone, H.A.; Bassler, B.L. Surface-attached molecules control Staphylococcus aureus quorum sensing and biofilm development. Nat. Microbiol., 2017, 2, 17080.
[http://dx.doi.org/10.1038/nmicrobiol.2017.80] [PMID: 28530651]
[103]
Chua, S.L.; Liu, Y.; Yam, J.K.H.; Chen, Y.; Vejborg, R.M.; Tan, B.G.C.; Kjelleberg, S.; Tolker-Nielsen, T.; Givskov, M.; Yang, L. Dispersed cells represent a distinct stage in the transition from bacterial biofilm to planktonic lifestyles. Nat. Commun., 2014, 5, 4462.
[http://dx.doi.org/10.1038/ncomms5462] [PMID: 25042103]
[104]
Kulasakara, H.; Lee, V.; Brencic, A.; Liberati, N.; Urbach, J.; Miyata, S.; Lee, D.G.; Neely, A.N.; Hyodo, M.; Hayakawa, Y.; Ausubel, F.M.; Lory, S. Analysis of Pseudomonas aeruginosa diguanylate cyclases and phosphodiesterases reveals a role for bis-(3′-5′)-cyclic-GMP in virulence. Proc. Natl. Acad. Sci. USA, 2006, 103(8), 2839-2844.
[http://dx.doi.org/10.1073/pnas.0511090103] [PMID: 16477007]
[105]
Römling, U.; Gomelsky, M.; Galperin, M.Y. C-di-GMP: The dawning of a novel bacterial signalling system. Mol. Microbiol., 2005, 57(3), 629-639.
[http://dx.doi.org/10.1111/j.1365-2958.2005.04697.x] [PMID: 16045609]
[106]
Yang, Y.; Li, Y.; Gao, T.; Zhang, Y.; Wang, Q. C-di-GMP turnover influences motility and biofilm formation in Bacillus amyloliquefaciens PG12. Res. Microbiol., 2018, 169(4-5), 205-213.
[http://dx.doi.org/10.1016/j.resmic.2018.04.009] [PMID: 29859892]
[107]
Lin Chua, S.; Liu, Y.; Li, Y.; Jun, Ting H.; Kohli, G.S.; Cai, Z.; Suwanchaikasem, P.; Kau Kit Goh, K.; Pin Ng, S.; Tolker-Nielsen, T.; Yang, L.; Givskov, M. H.; Kohli, G.S.; Cai, Z.; Suwanchaikasem, P.; Kau Kit Goh, K.; Pin Ng, S.; Tolker-Nielsen, T.; Yang, L.; Givskov, M. Reduced intracellular c-di-GMP content increases expression of quorum sensing-regulated genes in Pseudomonas aeruginosa. Front. Cell. Infect. Microbiol., 2017, 7, 451.
[http://dx.doi.org/10.3389/fcimb.2017.00451] [PMID: 29090193]
[108]
Ng, W.L.; Bassler, B.L. Bacterial quorum-sensing network architectures. Annu. Rev. Genet., 2009, 43, 197-222.
[http://dx.doi.org/10.1146/annurev-genet-102108-134304] [PMID: 19686078]
[109]
Reading, N.C.; Sperandio, V. Quorum sensing: The many languages of bacteria. FEMS Microbiol. Lett., 2006, 254(1), 1-11.
[http://dx.doi.org/10.1111/j.1574-6968.2005.00001.x] [PMID: 16451172]
[110]
Whitehead, N.A.; Barnard, A.M.; Slater, H.; Simpson, N.J.; Salmond, G.P. Quorum-sensing in Gram-negative bacteria. FEMS Microbiol. Rev., 2001, 25(4), 365-404.
[http://dx.doi.org/10.1111/j.1574-6976.2001.tb00583.x] [PMID: 11524130]
[111]
Yu, S.; Su, T.; Wu, H.; Liu, S.; Wang, D.; Zhao, T.; Jin, Z.; Du, W.; Zhu, M.J.; Chua, S.L.; Yang, L.; Zhu, D.; Gu, L.; Ma, L.Z. PslG, a self-produced glycosyl hydrolase, triggers biofilm disassembly by disrupting exopolysaccharide matrix. Cell Res., 2015, 25(12), 1352-1367.
[http://dx.doi.org/10.1038/cr.2015.129] [PMID: 26611635]
[112]
Borriello, G.; Richards, L.; Ehrlich, G.D.; Stewart, P.S. Arginine or nitrate enhances antibiotic susceptibility of Pseudomonas aeruginosa in biofilms. Antimicrob. Agents Chemother., 2006, 50(1), 382-384.
[http://dx.doi.org/10.1128/AAC.50.1.382-384.2006] [PMID: 16377718]
[113]
Ahmadi, M.S.; Lee, H.H.; Sanchez, D.A.; Friedman, A.J.; Tar, M.T.; Davies, K.P.; Nosanchuk, J.D.; Martinez, L.R. Sustained nitric oxide-releasing nanoparticles induce cell death in Candida albicans yeast and hyphal cells, preventing biofilm formation in vitro and in a rodent central venous catheter model. Antimicrob. Agents Chemother., 2016, 60(4), 2185-2194.
[http://dx.doi.org/10.1128/AAC.02659-15] [PMID: 26810653]
[114]
Jardeleza, C.; Thierry, B.; Rao, S.; Rajiv, S.; Drilling, A.; Miljkovic, D.; Paramasivan, S.; James, C.; Dong, D.; Thomas, N.; Vreugde, S.; Prestidge, C.A.; Wormald, P.J. An in vivo safety and efficacy demonstration of a topical liposomal nitric oxide donor treatment for Staphylococcus aureus biofilm-associated rhinosinusitis. Transl. Res., 2015, 166(6), 683-692.
[http://dx.doi.org/10.1016/j.trsl.2015.06.009] [PMID: 26166254]
[115]
Musk, D.J.; Banko, D.A.; Hergenrother, P.J. Iron salts perturb biofilm formation and disrupt existing biofilms of Pseudomonas aeruginosa. Chem. Biol., 2005, 12(7), 789-796.
[http://dx.doi.org/10.1016/j.chembiol.2005.05.007] [PMID: 16039526]
[116]
Gao, L.; Liu, Y.; Kim, D.; Li, Y.; Hwang, G.; Naha, P.C.; Cormode, D.P.; Koo, H. Nanocatalysts promote Streptococcus mutans biofilm matrix degradation and enhance bacterial killing to suppress dental caries in vivo. Biomaterials, 2016, 101, 272-284.
[http://dx.doi.org/10.1016/j.biomaterials.2016.05.051] [PMID: 27294544]
[117]
Benoit, D.S.; Koo, H. Targeted, triggered drug delivery to tumor and biofilm microenvironments. Nanomedicine (Lond.), 2016, 11(8), 873-879.
[http://dx.doi.org/10.2217/nnm-2016-0014] [PMID: 26987892]
[118]
Oglesby-Sherrouse, A.G.; Djapgne, L.; Nguyen, A.T.; Vasil, A.I.; Vasil, M.L. The complex interplay of iron, biofilm formation, and mucoidy affecting antimicrobial resistance of Pseudomonas aeruginosa. Pathog. Dis., 2014, 70(3), 307-320.
[http://dx.doi.org/10.1111/2049-632X.12132] [PMID: 24436170]
[119]
Carpenter, B.M.; Whitmire, J.M.; Merrell, D.S. This is not your mother’s repressor: The complex role of fur in pathogenesis. Infect. Immun., 2009, 77(7), 2590-2601.
[http://dx.doi.org/10.1128/IAI.00116-09] [PMID: 19364842]
[120]
Wu, Y.; Outten, F.W. IscR controls iron-dependent biofilm formation in Escherichia coli by regulating type I fimbria expression. J. Bacteriol., 2009, 191(4), 1248-1257.
[http://dx.doi.org/10.1128/JB.01086-08] [PMID: 19074392]
[121]
Kaneko, Y.; Thoendel, M.; Olakanmi, O.; Britigan, B.E.; Singh, P.K. The transition metal gallium disrupts Pseudomonas aeruginosa iron metabolism and has antimicrobial and antibiofilm activity. J. Clin. Invest., 2007, 117(4), 877-888.
[http://dx.doi.org/10.1172/JCI30783] [PMID: 17364024]
[122]
Porcheron, G.; Dozois, C.M. Interplay between iron homeostasis and virulence: Fur and RyhB as major regulators of bacterial pathogenicity. Vet. Microbiol., 2015, 179(1-2), 2-14.
[http://dx.doi.org/10.1016/j.vetmic.2015.03.024] [PMID: 25888312]
[123]
Oglesby-Sherrouse, A.G.; Murphy, E.R. Iron-responsive bacterial small RNAs: Variations on a theme. Metallomics, 2013, 5(4), 276-286.
[http://dx.doi.org/10.1039/c3mt20224k] [PMID: 23340911]
[124]
Koo, H.; Allan, R.N.; Howlin, R.P.; Stoodley, P.; Hall-Stoodley, L. Targeting microbial biofilms: Current and prospective therapeutic strategies. Nat. Rev. Microbiol., 2017, 15(12), 740-755.
[http://dx.doi.org/10.1038/nrmicro.2017.99] [PMID: 28944770]
[125]
Karatan, E.; Watnick, P. Signals, regulatory networks, and materials that build and break bacterial biofilms. Microbiol. Mol. Biol. Rev., 2009, 73(2), 310-347.
[http://dx.doi.org/10.1128/MMBR.00041-08] [PMID: 19487730]
[126]
Mann, E.E.; Wozniak, D.J. Pseudomonas biofilm matrix composition and niche biology. FEMS Microbiol. Rev., 2012, 36(4), 893-916.
[http://dx.doi.org/10.1111/j.1574-6976.2011.00322.x] [PMID: 22212072]
[127]
Teschler, J.K.; Zamorano-Sánchez, D.; Utada, A.S.; Warner, C.J.A.; Wong, G.C.L.; Linington, R.G.; Yildiz, F.H. Living in the matrix: Assembly and control of Vibrio cholerae biofilms. Nat. Rev. Microbiol., 2015, 13(5), 255-268.
[http://dx.doi.org/10.1038/nrmicro3433] [PMID: 25895940]
[128]
Peng, X.; Zhang, Y.; Bai, G.; Zhou, X.; Wu, H. Cyclic di-AMP mediates biofilm formation. Mol. Microbiol., 2016, 99(5), 945-959.
[http://dx.doi.org/10.1111/mmi.13277] [PMID: 26564551]
[129]
Senadheera, M.D.; Guggenheim, B.; Spatafora, G.A.; Huang, Y.C.C.; Choi, J.; Hung, D.C.I.; Treglown, J.S.; Goodman, S.D.; Ellen, R.P.; Cvitkovitch, D.G. A VicRK signal transduction system in Streptococcus mutans affects gtfBCD, gbpB, and ftf expression, biofilm formation, and genetic competence development. J. Bacteriol., 2005, 187(12), 4064-4076.
[http://dx.doi.org/10.1128/JB.187.12.4064-4076.2005] [PMID: 15937169]
[130]
Yamashita, Y.; Bowen, W.H.; Burne, R.A.; Kuramitsu, H.K. Role of the Streptococcus mutans gtf genes in caries induction in the specific-pathogen-free rat model. Infect. Immun., 1993, 61(9), 3811-3817.
[PMID: 8359902]
[131]
Stock, A.M.; Robinson, V.L.; Goudreau, P.N. Two-component signal transduction. Annu. Rev. Biochem., 2000, 69, 183-215.
[http://dx.doi.org/10.1146/annurev.biochem.69.1.183] [PMID: 10966457]
[132]
Baker, P.; Hill, P.J.; Snarr, B.D.; Alnabelseya, N.; Pestrak, M.J.; Lee, M.J.; Jennings, L.K.; Tam, J.; Melnyk, R.A.; Parsek, M.R.; Sheppard, D.C.; Wozniak, D.J.; Howell, P.L. Exopolysaccharide biosynthetic glycoside hydrolases can be utilized to disrupt and prevent Pseudomonas aeruginosa biofilms. Sci. Adv., 2016, 2(5)e1501632
[http://dx.doi.org/10.1126/sciadv.1501632] [PMID: 27386527]
[133]
Okshevsky, M.; Regina, V.R.; Meyer, R.L. Extracellular DNA as a target for biofilm control. Curr. Opin. Biotechnol., 2015, 33, 73-80.
[http://dx.doi.org/10.1016/j.copbio.2014.12.002] [PMID: 25528382]
[134]
Baelo, A.; Levato, R.; Julián, E.; Crespo, A.; Astola, J.; Gavaldà, J.; Engel, E.; Mateos-Timoneda, M.A.; Torrents, E. Disassembling bacterial extracellular matrix with DNase-coated nanoparticles to enhance antibiotic delivery in biofilm infections. J. Control. Release, 2015, 209, 150-158.
[http://dx.doi.org/10.1016/j.jconrel.2015.04.028] [PMID: 25913364]
[135]
Powell, L.C.; Pritchard, M.F.; Ferguson, E.L.; Powell, K.A.; Patel, S.U.; Rye, P.D.; Sakellakou, S-M.; Buurma, N.J.; Brilliant, C.D.; Copping, J.M.; Menzies, G.E.; Lewis, P.D.; Hill, K.E.; Thomas, D.W. Targeted disruption of the extracellular polymeric network of Pseudomonas aeruginosa biofilms by alginate oligosaccharides. NPJ Biofilms Microbiomes, 2018, 4, 13.
[http://dx.doi.org/10.1038/s41522-018-0056-3] [PMID: 29977590]
[136]
Driscoll, J.A.; Brody, S.L.; Kollef, M.H. The epidemiology, pathogenesis and treatment of Pseudomonas aeruginosa infections. Drugs, 2007, 67(3), 351-368.
[http://dx.doi.org/10.2165/00003495-200767030-00003] [PMID: 17335295]
[137]
Forier, K.; Raemdonck, K.; De Smedt, S.C.; Demeester, J.; Coenye, T.; Braeckmans, K. Lipid and polymer nanoparticles for drug delivery to bacterial biofilms. J. Control. Release, 2014, 190, 607-623.
[http://dx.doi.org/10.1016/j.jconrel.2014.03.055] [PMID: 24794896]
[138]
Pletzer, D.; Coleman, S.R.; Hancock, R.E. Anti-biofilm peptides as a new weapon in antimicrobial warfare. Curr. Opin. Microbiol., 2016, 33, 35-40.
[http://dx.doi.org/10.1016/j.mib.2016.05.016] [PMID: 27318321]
[139]
Liu, Y.; Busscher, H.J.; Zhao, B.; Li, Y.; Zhang, Z.; van der Mei, H.C.; Ren, Y.; Shi, L. Surface-adaptive, antimicrobially loaded, micellar nanocarriers with enhanced penetration and killing efficiency in Staphylococcal biofilms. ACS Nano, 2016, 10(4), 4779-4789.
[http://dx.doi.org/10.1021/acsnano.6b01370] [PMID: 26998731]
[140]
Kaplan, J.B.; Izano, E.A.; Gopal, P.; Karwacki, M.T.; Kim, S.; Bose, J.L.; Bayles, K.W.; Horswill, A.R. Low levels of β-lactam antibiotics induce extracellular DNA release and biofilm formation in Staphylococcus aureus. MBio, 2012, 3(4), e00198-e12.
[http://dx.doi.org/10.1128/mBio.00198-12] [PMID: 22851659]
[141]
Pelgrift, R.Y.; Friedman, A.J. Nanotechnology as a therapeutic tool to combat microbial resistance. Adv. Drug Deliv. Rev., 2013, 65(13-14), 1803-1815.
[http://dx.doi.org/10.1016/j.addr.2013.07.011] [PMID: 23892192]
[142]
McGuinness, W.A.; Malachowa, N.; DeLeo, F.R. Vancomycin resistance in Staphylococcus aureus. Yale J. Biol. Med., 2017, 90(2), 269-281.
[PMID: 28656013]
[143]
Chakraborty, S.P.; Sahu, S.K.; Mahapatra, S.K.; Santra, S.; Bal, M.; Roy, S.; Pramanik, P. Nanoconjugated vancomycin: New opportunities for the development of anti-VRSA agents. Nanotechnology, 2010, 21(10)105103
[http://dx.doi.org/10.1088/0957-4484/21/10/105103] [PMID: 20154376]
[144]
Veerapandian, M.; Lim, S.K.; Nam, H.M.; Kuppannan, G.; Yun, K.S. Glucosamine-functionalized silver glyconanoparticles: Characterization and antibacterial activity. Anal. Bioanal. Chem., 2010, 398(2), 867-876.
[http://dx.doi.org/10.1007/s00216-010-3964-5] [PMID: 20623220]
[145]
Wei, D.; Sun, W.; Qian, W.; Ye, Y.; Ma, X. The synthesis of chitosan-based silver nanoparticles and their antibacterial activity. Carbohydr. Res., 2009, 344(17), 2375-2382.
[http://dx.doi.org/10.1016/j.carres.2009.09.001] [PMID: 19800053]
[146]
Xu, D.; Wang, Q.; Yang, T.; Cao, J.; Lin, Q.; Yuan, Z.; Li, L. Polyethyleneimine capped silver nanoclusters as efficient antibacterial agents. Int. J. Environ. Res. Public Health, 2016, 13(3)E334
[http://dx.doi.org/10.3390/ijerph13030334] [PMID: 26999183]
[147]
Chamundeeswari, M.; Sobhana, S.S.L.; Jacob, J.P.; Kumar, M.G.; Devi, M.P.; Sastry, T.P.; Mandal, A.B. Preparation, characterization and evaluation of a biopolymeric gold nanocomposite with antimicrobial activity. Biotechnol. Appl. Biochem., 2010, 55(1), 29-35.
[http://dx.doi.org/10.1042/BA20090198] [PMID: 19929854]
[148]
Pal, S.; Tak, Y.K.; Song, J.M. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Appl. Environ. Microbiol., 2007, 73(6), 1712-1720.
[http://dx.doi.org/10.1128/AEM.02218-06] [PMID: 17261510]
[149]
de Oliveira, J.F.A.; Saito, Â.; Bido, A.T.; Kobarg, J.; Stassen, H.K.; Cardoso, M.B. Defeating bacterial resistance and preventing mammalian cells toxicity through rational design of antibiotic-functionalized nanoparticles. Sci. Rep., 2017, 7(1), 1326.
[http://dx.doi.org/10.1038/s41598-017-01209-1] [PMID: 28465530]
[150]
Brown, A.N.; Smith, K.; Samuels, T.A.; Lu, J.; Obare, S.O.; Scott, M.E. Nanoparticles functionalized with ampicillin destroy multiple-antibiotic-resistant isolates of Pseudomonas aeruginosa and Enterobacter aerogenes and methicillin-resistant Staphylococcus aureus. Appl. Environ. Microbiol., 2012, 78(8), 2768-2774.
[http://dx.doi.org/10.1128/AEM.06513-11] [PMID: 22286985]
[151]
Lai, H.Z.; Chen, W.Y.; Wu, C.Y.; Chen, Y.C. Potent antibacterial nanoparticles for pathogenic bacteria. ACS Appl. Mater. Interfaces, 2015, 7(3), 2046-2054.
[http://dx.doi.org/10.1021/am507919m] [PMID: 25584802]
[152]
Qi, L.; Xu, Z.; Jiang, X.; Hu, C.; Zou, X. Preparation and antibacterial activity of chitosan nanoparticles. Carbohydr. Res., 2004, 339(16), 2693-2700.
[http://dx.doi.org/10.1016/j.carres.2004.09.007] [PMID: 15519328]
[153]
Fayaz, A.M.; Balaji, K.; Girilal, M.; Yadav, R.; Kalaichelvan, P.T.; Venketesan, R. Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: A study against gram-positive and gram-negative bacteria. Nanomedicine (Lond.), 2010, 6(1), 103-109.
[http://dx.doi.org/10.1016/j.nano.2009.04.006] [PMID: 19447203]
[154]
Tamboli, D.P.; Lee, D.S. Mechanistic antimicrobial approach of extracellularly synthesized silver nanoparticles against gram positive and gram negative bacteria. J. Hazard. Mater., 2013, 260, 878-884.
[http://dx.doi.org/10.1016/j.jhazmat.2013.06.003] [PMID: 23867968]
[155]
Fakhri, A.; Tahami, S.; Naji, M. Synthesis and characterization of core-shell bimetallic nanoparticles for synergistic antimicrobial effect studies in combination with doxycycline on burn specific pathogens. J. Photochem. Photobiol. B, 2017, 169, 21-26.
[http://dx.doi.org/10.1016/j.jphotobiol.2017.02.014] [PMID: 28254569]
[156]
Banerjee, M.; Sharma, S.; Chattopadhyay, A.; Ghosh, S.S. Enhanced antibacterial activity of bimetallic gold-silver core-shell nanoparticles at low silver concentration. Nanoscale, 2011, 3(12), 5120-5125.
[http://dx.doi.org/10.1039/c1nr10703h] [PMID: 22057130]
[157]
Bryaskova, R.; Pencheva, D.; Nikolov, S.; Kantardjiev, T. Synthesis and comparative study on the antimicrobial activity of hybrid materials based on Silver Nanoparticles (AgNps) stabilized by Polyvinylpyrrolidone (PVP). J. Chem. Biol., 2011, 4(4), 185-191.
[http://dx.doi.org/10.1007/s12154-011-0063-9] [PMID: 22837793]
[158]
Khurana, C.; Vala, A.K.; Andhariya, N.; Pandey, O.P.; Chudasama, B. Antibacterial activities of silver nanoparticles and antibiotic-adsorbed silver nanoparticles against biorecycling microbes. Environ. Sci. Process. Impacts, 2014, 16(9), 2191-2198.
[http://dx.doi.org/10.1039/C4EM00248B] [PMID: 25000128]
[159]
Kora, A.J.; Rastogi, L. Enhancement of antibacterial activity of capped silver nanoparticles in combination with antibiotics, on model gram-negative and gram-positive bacteria. Bioinorg. Chem. Appl., 2013, 2013871097
[http://dx.doi.org/10.1155/2013/871097] [PMID: 23970844]
[160]
Singh, R.; Shedbalkar, U.U.; Wadhwani, S.A.; Chopade, B.A. Bacteriagenic silver nanoparticles: Synthesis, mechanism, and applications. Appl. Microbiol. Biotechnol., 2015, 99(11), 4579-4593.
[http://dx.doi.org/10.1007/s00253-015-6622-1] [PMID: 25952110]
[161]
Morsy, F.M. Toward revealing the controversy of bacterial biosynthesis versus bactericidal properties of silver nanoparticles (AgNPs): Bacteria and other microorganisms do not per se viably synthesize AgNPs. Arch. Microbiol., 2015, 197(5), 645-655.
[http://dx.doi.org/10.1007/s00203-015-1098-z] [PMID: 25724923]
[162]
Djafari, J.; Marinho, C.; Santos, T.; Igrejas, G.; Torres, C.; Capelo, J.L.; Poeta, P.; Lodeiro, C.; Fernández-Lodeiro, J. New synthesis of gold- and silver-based nano-tetracycline composites. ChemistryOpen, 2016, 5(3), 206-212.
[http://dx.doi.org/10.1002/open.201600016] [PMID: 27957408]
[163]
Assali, M.; Zaid, A.N.; Abdallah, F.; Almasri, M.; Khayyat, R. Single-walled carbon nanotubes-ciprofloxacin nanoantibiotic: Strategy to improve ciprofloxacin antibacterial activity. Int. J. Nanomedicine, 2017, 12, 6647-6659.
[http://dx.doi.org/10.2147/IJN.S140625] [PMID: 28924348]
[164]
Gao, H.; Pang, Z.; Jiang, X. Targeted delivery of nano-therapeutics for major disorders of the central nervous system. Pharm. Res., 2013, 30(10), 2485-2498.
[http://dx.doi.org/10.1007/s11095-013-1122-4] [PMID: 23797465]
[165]
Upadhyay, R.K. Drug delivery systems, CNS protection, and the blood brain barrier. BioMed Res. Int., 2014, 2014869269
[http://dx.doi.org/10.1155/2014/869269] [PMID: 25136634]
[166]
Li, X.; Tsibouklis, J.; Weng, T.; Zhang, B.; Yin, G.; Feng, G.; Cui, Y.; Savina, I.N.; Mikhalovska, L.I.; Sandeman, S.R.; Howel, C.A.; Mikhalovsky, S.V. Nano carriers for drug transport across the blood-brain barrier. J. Drug Target., 2017, 25(1), 17-28.
[http://dx.doi.org/10.1080/1061186X.2016.1184272] [PMID: 27126681]
[167]
Patel, M.M.; Patel, B.M. Crossing the blood-brain barrier: Recent advances in drug delivery to the brain. CNS Drugs, 2017, 31(2), 109-133.
[http://dx.doi.org/10.1007/s40263-016-0405-9] [PMID: 28101766]
[168]
Shao, K.; Wu, J.; Chen, Z.; Huang, S.; Li, J.; Ye, L.; Lou, J.; Zhu, L.; Jiang, C. A brain-vectored angiopep-2 based polymeric micelles for the treatment of intracranial fungal infection. Biomaterials, 2012, 33(28), 6898-6907.
[http://dx.doi.org/10.1016/j.biomaterials.2012.06.050] [PMID: 22789719]
[169]
Wei, X.; Gao, J.; Zhan, C.; Xie, C.; Chai, Z.; Ran, D.; Ying, M.; Zheng, P.; Lu, W. Liposome-based glioma targeted drug delivery enabled by stable peptide ligands. J. Control. Release, 2015, 218, 13-21.
[http://dx.doi.org/10.1016/j.jconrel.2015.09.059] [PMID: 26428462]
[170]
Fang, R.H.; Kroll, A.V.; Gao, W.; Zhang, L. Cell membrane coating nanotechnology. Adv. Mater., 2018, 30(23)e1706759
[http://dx.doi.org/10.1002/adma.201706759] [PMID: 29582476]
[171]
Chai, Z.; Hu, X.; Wei, X.; Zhan, C.; Lu, L.; Jiang, K.; Su, B.; Ruan, H.; Ran, D.; Fang, R.H.; Zhang, L.; Lu, W. A facile approach to functionalizing cell membrane-coated nanoparticles with neurotoxin-derived peptide for brain-targeted drug delivery. J. Control. Release, 2017, 264, 102-111.
[http://dx.doi.org/10.1016/j.jconrel.2017.08.027] [PMID: 28842313]
[172]
Kędziora, A.; Speruda, M.; Krzyżewska, E.; Rybka, J.; Łukowiak, A.; Bugla-Płoskońska, G. similarities and differences between silver ions and silver in nanoforms as antibacterial agents. Int. J. Mol. Sci., 2018, 19(2)E444
[http://dx.doi.org/10.3390/ijms19020444] [PMID: 29393866]
[173]
de la Rica, R.; Aili, D.; Stevens, M.M. Enzyme-responsive nanoparticles for drug release and diagnostics. Adv. Drug Deliv. Rev., 2012, 64(11), 967-978.
[http://dx.doi.org/10.1016/j.addr.2012.01.002] [PMID: 22266127]
[174]
Cobo, I.; Li, M.; Sumerlin, B.S.; Perrier, S. Smart hybrid materials by conjugation of responsive polymers to biomacromolecules. Nat. Mater., 2015, 14(2), 143-159.
[http://dx.doi.org/10.1038/nmat4106] [PMID: 25401924]
[175]
Fleige, E.; Quadir, M.A.; Haag, R. Stimuli-responsive polymeric nanocarriers for the controlled transport of active compounds: Concepts and applications. Adv. Drug Deliv. Rev., 2012, 64(9), 866-884.
[http://dx.doi.org/10.1016/j.addr.2012.01.020] [PMID: 22349241]
[176]
Schmaljohann, D. Thermo- and pH-responsive polymers in drug delivery. Adv. Drug Deliv. Rev., 2006, 58(15), 1655-1670.
[http://dx.doi.org/10.1016/j.addr.2006.09.020] [PMID: 17125884]
[177]
Mercier, R.C.; Stumpo, C.; Rybak, M.J. Effect of growth phase and pH on the in vitro activity of a new glycopeptide, oritavancin (LY333328), against Staphylococcus aureus and Enterococcus faecium. J. Antimicrob. Chemother., 2002, 50(1), 19-24.
[http://dx.doi.org/10.1093/jac/dkf058] [PMID: 12096002]
[178]
Wright, E.C.; Connolly, P.; Vella, M.; Moug, S. Peritoneal fluid biomarkers in the detection of colorectal anastomotic leaks: A systematic review. Int. J. Colorectal Dis., 2017, 32(7), 935-945.
[http://dx.doi.org/10.1007/s00384-017-2799-3] [PMID: 28401350]
[179]
Radovic-Moreno, A.F.; Lu, T.K.; Puscasu, V.A.; Yoon, C.J.; Langer, R.; Farokhzad, O.C. Surface charge-switching polymeric nanoparticles for bacterial cell wall-targeted delivery of antibiotics. ACS Nano, 2012, 6(5), 4279-4287.
[http://dx.doi.org/10.1021/nn3008383] [PMID: 22471841]
[180]
Ge, Z.; Liu, S. Functional block copolymer assemblies responsive to tumor and intracellular microenvironments for site-specific drug delivery and enhanced imaging performance. Chem. Soc. Rev., 2013, 42(17), 7289-7325.
[http://dx.doi.org/10.1039/c3cs60048c] [PMID: 23549663]
[181]
Bawa, P.; Pillay, V.; Choonara, Y.E.; du Toit, L.C. Stimuli-responsive polymers and their applications in drug delivery. Biomed. Mater., 2009, 4(2)022001
[http://dx.doi.org/10.1088/1748-6041/4/2/022001] [PMID: 19261988]
[182]
Çalışkan, N.; Bayram, C.; Erdal, E.; Karahaliloğlu, Z.; Denkbaş, E.B. Titania nanotubes with adjustable dimensions for drug reservoir sites and enhanced cell adhesion. Mater. Sci. Eng. C, 2014, 35, 100-105.
[http://dx.doi.org/10.1016/j.msec.2013.10.033] [PMID: 24411357]
[183]
Willets, K.A.; Van Duyne, R.P. Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem., 2007, 58, 267-297.
[http://dx.doi.org/10.1146/annurev.physchem.58.032806.104607] [PMID: 17067281]
[184]
Pan, X.; Wang, Y.; Chen, Z.; Pan, D.; Cheng, Y.; Liu, Z.; Lin, Z.; Guan, X. Investigation of antibacterial activity and related mechanism of a series of nano-Mg(OH)2. ACS Appl. Mater. Interfaces, 2013, 5(3), 1137-1142.
[http://dx.doi.org/10.1021/am302910q] [PMID: 23301496]
[185]
Gurunathan, S.; Han, J.W.; Kwon, D.N.; Kim, J.H. Enhanced antibacterial and anti-biofilm activities of silver nanoparticles against Gram-negative and Gram-positive bacteria. Nanoscale Res. Lett., 2014, 9(1), 373.
[http://dx.doi.org/10.1186/1556-276X-9-373] [PMID: 25136281]
[186]
Cha, S.H.; Hong, J.; McGuffie, M.; Yeom, B.; VanEpps, J.S.; Kotov, N.A. Shape-dependent biomimetic inhibition of enzyme by nanoparticles and their antibacterial activity. ACS Nano, 2015, 9(9), 9097-9105.
[http://dx.doi.org/10.1021/acsnano.5b03247] [PMID: 26325486]
[187]
Hong, X.; Wen, J.; Xiong, X.; Hu, Y. Shape effect on the antibacterial activity of silver nanoparticles synthesized via a microwave-assisted method. Environ. Sci. Pollut. Res. Int., 2016, 23(5), 4489-4497.
[http://dx.doi.org/10.1007/s11356-015-5668-z] [PMID: 26511259]
[188]
Ben-Sasson, M.; Zodrow, K.R.; Genggeng, Q.; Kang, Y.; Giannelis, E.P.; Elimelech, M. Surface functionalization of thin-film composite membranes with copper nanoparticles for antimicrobial surface properties. Environ. Sci. Technol., 2014, 48(1), 384-393.
[http://dx.doi.org/10.1021/es404232s] [PMID: 24308843]
[189]
Fang, B.; Jiang, Y.; Nüsslein, K.; Rotello, V.M.; Santore, M.M. Antimicrobial surfaces containing cationic nanoparticles: How immobilized, clustered, and protruding cationic charge presentation affects killing activity and kinetics. Colloids Surf. B Biointerfaces, 2015, 125, 255-263.
[http://dx.doi.org/10.1016/j.colsurfb.2014.10.043] [PMID: 25480668]
[190]
Kim, C.S.; Nguyen, H.D.; Ignacio, R.M.; Kim, J.H.; Cho, H.C.; Maeng, E.H.; Kim, Y.R.; Kim, M.K.; Park, B.K.; Kim, S.K. Immunotoxicity of zinc oxide nanoparticles with different size and electrostatic charge. Int. J. Nanomedicine, 2014, 9(Suppl. 2), 195-205.
[PMID: 25565837]
[191]
Yue, Z.G.; Wei, W.; Lv, P.P.; Yue, H.; Wang, L.Y.; Su, Z.G.; Ma, G.H. Surface charge affects cellular uptake and intracellular trafficking of chitosan-based nanoparticles. Biomacromolecules, 2011, 12(7), 2440-2446.
[http://dx.doi.org/10.1021/bm101482r] [PMID: 21657799]
[192]
Guo, B.L.; Han, P.; Guo, L.C.; Cao, Y.Q.; Li, A.D.; Kong, J.Z.; Zhai, H.F.; Wu, D. The antibacterial activity of Ta-doped ZnO nanoparticles. Nanoscale Res. Lett., 2015, 10(1), 1047.
[http://dx.doi.org/10.1186/s11671-015-1047-4] [PMID: 26293495]
[193]
Podporska-Carroll, J.; Myles, A.; Quilty, B.; McCormack, D. E.; Fagan, R.; Hinder, S.J.; Dionysiou, D.D.; Pillai, S.C. Antibacterial properties of F-doped ZnO visible light photocatalyst. J. Hazard. Mater., 2017, 324(Pt A), 39-47.,
[194]
Mehmood, S.; Rehman, M.A.; Ismail, H.; Mirza, B.; Bhatti, A.S. Significance of postgrowth processing of ZnO nanostructures on antibacterial activity against gram-positive and gram-negative bacteria. Int. J. Nanomedicine, 2015, 10, 4521-4533.
[PMID: 26213466]
[195]
Saliani, M.; Jalal, R.; Kafshdare Goharshadi, E. Effects of pH and temperature on antibacterial activity of zinc oxide nanofluid against Escherichia coli O157: H7 and Staphylococcus aureus. Jundishapur J. Microbiol., 2015, 8(2)e17115
[http://dx.doi.org/10.5812/jjm.17115] [PMID: 25825643]
[196]
García-Lara, B.; Saucedo-Mora, M.Á.; Roldán-Sánchez, J.A.; Pérez-Eretza, B.; Ramasamy, M.; Lee, J.; Coria-Jimenez, R.; Tapia, M.; Varela-Guerrero, V.; García-Contreras, R. Inhibition of quorum-sensing-dependent virulence factors and biofilm formation of clinical and environmental Pseudomonas aeruginosa strains by ZnO nanoparticles. Lett. Appl. Microbiol., 2015, 61(3), 299-305.
[http://dx.doi.org/10.1111/lam.12456] [PMID: 26084709]
[197]
Lee, J.H.; Kim, Y.G.; Cho, M.H.; Lee, J. ZnO nanoparticles inhibit Pseudomonas aeruginosa biofilm formation and virulence factor production. Microbiol. Res., 2014, 169(12), 888-896.
[http://dx.doi.org/10.1016/j.micres.2014.05.005] [PMID: 24958247]
[198]
Wolfram, J.; Zhu, M.; Yang, Y.; Shen, J.; Gentile, E.; Paolino, D.; Fresta, M.; Nie, G.; Chen, C.; Shen, H.; Ferrari, M.; Zhao, Y. Safety of nanoparticles in medicine. Curr. Drug Targets, 2015, 16(14), 1671-1681.
[http://dx.doi.org/10.2174/1389450115666140804124808] [PMID: 26601723]
[199]
Kassem, A.; Ayoub, G.M.; Malaeb, L. Antibacterial activity of chitosan nano-composites and carbon nanotubes: A review. Sci. Total Environ., 2019, 668, 566-576.
[http://dx.doi.org/10.1016/j.scitotenv.2019.02.446] [PMID: 30856567]
[200]
Park, S.B.; Steadman, C.S.; Chaudhari, A.A.; Pillai, S.R.; Singh, S.R.; Ryan, P.L.; Willard, S.T.; Feugang, J.M. Proteomic analysis of antimicrobial effects of pegylated silver coated carbon nanotubes in Salmonella enterica serovar Typhimurium. J. Nanobiotechnology, 2018, 16(1), 31.
[http://dx.doi.org/10.1186/s12951-018-0355-0] [PMID: 29587743]
[201]
Alessandrini, F.; Vennemann, A.; Gschwendtner, S.; Neumann, A.U.; Rothballer, M.; Seher, T.; Wimmer, M.; Kublik, S.; Traidl-Hoffmann, C.; Schloter, M.; Wiemann, M.; Schmidt-Weber, C.B. Pro-inflammatory versus immunomodulatory effects of silver nanoparticles in the Lung: The critical role of dose, size and surface modification. Nanomaterials (Basel), 2017, 7(10)E300
[http://dx.doi.org/10.3390/nano7100300] [PMID: 28961222]
[202]
Saptarshi, S.R.; Duschl, A.; Lopata, A.L. Interaction of nanoparticles with proteins: Relation to bio-reactivity of the nanoparticle. J. Nanobiotechnology, 2013, 11, 26.
[http://dx.doi.org/10.1186/1477-3155-11-26] [PMID: 23870291]
[203]
Bergin, I.L.; Wilding, L.A.; Morishita, M.; Walacavage, K.; Ault, A.P.; Axson, J.L.; Stark, D.I.; Hashway, S.A.; Capracotta, S.S.; Leroueil, P.R.; Maynard, A.D.; Philbert, M.A. Effects of particle size and coating on toxicologic parameters, fecal elimination kinetics and tissue distribution of acutely ingested silver nanoparticles in a mouse model. Nanotoxicology, 2016, 10(3), 352-360.
[http://dx.doi.org/10.3109/17435390.2015.1072588] [PMID: 26305411]
[204]
Lee, Y.; Kim, P.; Yoon, J.; Lee, B.; Choi, K.; Kil, K.H.; Park, K. Serum kinetics, distribution and excretion of silver in rabbits following 28 days after a single intravenous injection of silver nanoparticles. Nanotoxicology, 2013, 7(6), 1120-1130.
[http://dx.doi.org/10.3109/17435390.2012.710660] [PMID: 22770226]
[205]
Park, K.; Park, E.J.; Chun, I.K.; Choi, K.; Lee, S.H.; Yoon, J.; Lee, B.C. Bioavailability and toxicokinetics of citrate-coated silver nanoparticles in rats. Arch. Pharm. Res., 2011, 34(1), 153-158.
[http://dx.doi.org/10.1007/s12272-011-0118-z] [PMID: 21468927]
[206]
Kumar, R.; Roy, I.; Ohulchanskky, T.Y.; Vathy, L.A.; Bergey, E.J.; Sajjad, M.; Prasad, P.N. In vivo biodistribution and clearance studies using multimodal organically modified silica nanoparticles. ACS Nano, 2010, 4(2), 699-708.
[http://dx.doi.org/10.1021/nn901146y] [PMID: 20088598]
[207]
Souris, J.S.; Lee, C.H.; Cheng, S.H.; Chen, C.T.; Yang, C.S.; Ho, J.A.; Mou, C.Y.; Lo, L.W. Surface charge-mediated rapid hepatobiliary excretion of mesoporous silica nanoparticles. Biomaterials, 2010, 31(21), 5564-5574.
[http://dx.doi.org/10.1016/j.biomaterials.2010.03.048] [PMID: 20417962]
[208]
Dziendzikowska, K.; Gromadzka-Ostrowska, J.; Lankoff, A.; Oczkowski, M.; Krawczyńska, A.; Chwastowska, J.; Sadowska-Bratek, M.; Chajduk, E.; Wojewódzka, M.; Dušinská, M.; Kruszewski, M. Time-dependent biodistribution and excretion of silver nanoparticles in male Wistar rats. J. Appl. Toxicol., 2012, 32(11), 920-928.
[http://dx.doi.org/10.1002/jat.2758] [PMID: 22696427]
[209]
Gaiser, B.K.; Hirn, S.; Kermanizadeh, A.; Kanase, N.; Fytianos, K.; Wenk, A.; Haberl, N.; Brunelli, A.; Kreyling, W.G.; Stone, V. Effects of silver nanoparticles on the liver and hepatocytes in vitro. Toxicol. Sci., 2013, 131(2), 537-547.
[http://dx.doi.org/10.1093/toxsci/kfs306] [PMID: 23086748]
[210]
Lee, T.Y.; Liu, M.S.; Huang, L.J.; Lue, S.I.; Lin, L.C.; Kwan, A.L.; Yang, R.C. Bioenergetic failure correlates with autophagy and apoptosis in rat liver following silver nanoparticle intraperitoneal administration. Part. Fibre Toxicol., 2013, 10, 40.
[http://dx.doi.org/10.1186/1743-8977-10-40] [PMID: 23958063]
[211]
Sadauskas, E.; Wallin, H.; Stoltenberg, M.; Vogel, U.; Doering, P.; Larsen, A.; Danscher, G. Kupffer cells are central in the removal of nanoparticles from the organism. Part. Fibre Toxicol., 2007, 4, 10.
[http://dx.doi.org/10.1186/1743-8977-4-10] [PMID: 17949501]
[212]
Bachler, G.; von Goetz, N.; Hungerbühler, K. A physiologically based pharmacokinetic model for ionic silver and silver nanoparticles. Int. J. Nanomedicine, 2013, 8, 3365-3382.
[PMID: 24039420]
[213]
Hamill, R.J.; Amphotericin, B. Amphotericin B formulations: A comparative review of efficacy and toxicity. Drugs, 2013, 73(9), 919-934.
[http://dx.doi.org/10.1007/s40265-013-0069-4] [PMID: 23729001]
[214]
Sokołowska, P.; Białkowska, K.; Siatkowska, M.; Rosowski, M.; Kucińska, M.; Komorowski, P.; Makowski, K.; Walkowiak, B. Human brain endothelial barrier cells are distinctly less vulnerable to silver nanoparticles toxicity than human blood vessel cells: A cell-specific mechanism of the brain barrier? Nanomedicine (Lond.), 2017, 13(7), 2127-2130.
[http://dx.doi.org/10.1016/j.nano.2017.05.015] [PMID: 28602937]
[215]
Bondarenko, O.; Juganson, K.; Ivask, A.; Kasemets, K.; Mortimer, M.; Kahru, A. Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: A critical review. Arch. Toxicol., 2013, 87(7), 1181-1200.
[http://dx.doi.org/10.1007/s00204-013-1079-4] [PMID: 23728526]
[216]
Korshed, P.; Li, L.; Liu, Z.; Wang, T. The molecular mechanisms of the antibacterial effect of picosecond laser generated silver nanoparticles and their toxicity to human cells. PLoS One, 2016, 11(8)e0160078
[http://dx.doi.org/10.1371/journal.pone.0160078] [PMID: 27575485]
[217]
You, C.; Han, C.; Wang, X.; Zheng, Y.; Li, Q.; Hu, X.; Sun, H. The progress of silver nanoparticles in the antibacterial mechanism, clinical application and cytotoxicity. Mol. Biol. Rep., 2012, 39(9), 9193-9201.
[http://dx.doi.org/10.1007/s11033-012-1792-8] [PMID: 22722996]
[218]
Butler, K.S.; Peeler, D.J.; Casey, B.J.; Dair, B.J.; Elespuru, R.K. Silver nanoparticles: Correlating nanoparticle size and cellular uptake with genotoxicity. Mutagenesis, 2015, 30(4), 577-591.
[http://dx.doi.org/10.1093/mutage/gev020] [PMID: 25964273]
[219]
Gurunathan, S.; Choi, Y.J.; Kim, J.H. Antibacterial efficacy of silver nanoparticles on endometritis caused by Prevotella melaninogenica and Arcanobacterum pyogenes in dairy Cattle. Int. J. Mol. Sci., 2018, 19(4)E1210
[http://dx.doi.org/10.3390/ijms19041210] [PMID: 29659523]
[220]
Ahani, E.; Montazer, M.; Toliyat, T.; Mahmoudi Rad, M.; Harifi, T. Preparation of nano cationic liposome as carrier membrane for polyhexamethylene biguanide chloride through various methods utilizing higher antibacterial activities with low cell toxicity. J. Microencapsul., 2017, 34(2), 121-131.
[http://dx.doi.org/10.1080/02652048.2017.1296500] [PMID: 28609225]
[221]
Jiang, J.; Li, L.; Li, K.; Li, G.; You, F.; Zuo, Y.; Li, Y.; Li, J. Antibacterial nanohydroxyapatite/polyurethane composite scaffolds with silver phosphate particles for bone regeneration. J. Biomater. Sci. Polym. Ed., 2016, 27(16), 1584-1598.
[http://dx.doi.org/10.1080/09205063.2016.1221699] [PMID: 27501157]
[222]
Babu, K.S.; Anandkumar, M.; Tsai, T.Y.; Kao, T.H.; Inbaraj, B.S.; Chen, B.H. Cytotoxicity and antibacterial activity of gold-supported cerium oxide nanoparticles. Int. J. Nanomedicine, 2014, 9, 5515-5531.
[PMID: 25473288]
[223]
Halamoda Kenzaoui, B.; Chapuis Bernasconi, C.; Guney-Ayra, S.; Juillerat-Jeanneret, L. Induction of oxidative stress, lysosome activation and autophagy by nanoparticles in human brain-derived endothelial cells. Biochem. J., 2012, 441(3), 813-821.
[http://dx.doi.org/10.1042/BJ20111252] [PMID: 22026563]
[224]
Li, J.J.; Hartono, D.; Ong, C.N.; Bay, B.H.; Yung, L.Y.L. Autophagy and oxidative stress associated with gold nanoparticles. Biomaterials, 2010, 31(23), 5996-6003.
[http://dx.doi.org/10.1016/j.biomaterials.2010.04.014] [PMID: 20466420]
[225]
Jena, P.; Mohanty, S.; Mallick, R.; Jacob, B.; Sonawane, A. Toxicity and antibacterial assessment of chitosan-coated silver nanoparticles on human pathogens and macrophage cells. Int. J. Nanomedicine, 2012, 7, 1805-1818.
[PMID: 22619529]
[226]
Pallavicini, P.; Arciola, C.R.; Bertoglio, F.; Curtosi, S.; Dacarro, G.; D’Agostino, A.; Ferrari, F.; Merli, D.; Milanese, C.; Rossi, S.; Taglietti, A.; Tenci, M.; Visai, L. Silver nanoparticles synthesized and coated with pectin: An ideal compromise for anti-bacterial and anti-biofilm action combined with wound-healing properties. J. Colloid Interface Sci., 2017, 498, 271-281.
[http://dx.doi.org/10.1016/j.jcis.2017.03.062] [PMID: 28342310]
[227]
Croissant, J.G.; Fatieiev, Y.; Khashab, N.M. Degradability and clearance of silicon, organosilica, silsesquioxane, silica mixed oxide, and mesoporous silica nanoparticles. Adv. Mater., 2017, 29(9)1604634
[http://dx.doi.org/10.1002/adma.201604634] [PMID: 28084658]
[228]
Pan, Y.; Neuss, S.; Leifert, A.; Fischler, M.; Wen, F.; Simon, U.; Schmid, G.; Brandau, W.; Jahnen-Dechent, W. Size-dependent cytotoxicity of gold nanoparticles. Small, 2007, 3(11), 1941-1949.
[http://dx.doi.org/10.1002/smll.200700378] [PMID: 17963284]
[229]
Kim, T.H.; Kim, M.; Park, H.S.; Shin, U.S.; Gong, M.S.; Kim, H.W. Size-dependent cellular toxicity of silver nanoparticles. J. Biomed. Mater. Res. A, 2012, 100(4), 1033-1043.
[http://dx.doi.org/10.1002/jbm.a.34053] [PMID: 22308013]
[230]
Pratsinis, A.; Hervella, P.; Leroux, J.C.; Pratsinis, S.E.; Sotiriou, G.A. Toxicity of silver nanoparticles in macrophages. Small, 2013, 9(15), 2576-2584.
[http://dx.doi.org/10.1002/smll.201202120] [PMID: 23418027]
[231]
Sun, J.; Wang, S.; Zhao, D.; Hun, F.H.; Weng, L.; Liu, H. Cytotoxicity, permeability, and inflammation of metal oxide nanoparticles in human cardiac microvascular endothelial cells: Cytotoxicity, permeability, and inflammation of metal oxide nanoparticles. Cell Biol. Toxicol., 2011, 27(5), 333-342.
[http://dx.doi.org/10.1007/s10565-011-9191-9] [PMID: 21681618]
[232]
Zhu, M.T.; Wang, Y.; Feng, W.Y.; Wang, B.; Wang, M.; Ouyang, H.; Chai, Z.F. Oxidative stress and apoptosis induced by iron oxide nanoparticles in cultured human umbilical endothelial cells. J. Nanosci. Nanotechnol., 2010, 10(12), 8584-8590.
[http://dx.doi.org/10.1166/jnn.2010.2488] [PMID: 21121369]
[233]
Zhu, M.T.; Wang, B.; Wang, Y.; Yuan, L.; Wang, H.J.; Wang, M.; Ouyang, H.; Chai, Z.F.; Feng, W.Y.; Zhao, Y.L. Endothelial dysfunction and inflammation induced by iron oxide nanoparticle exposure: Risk factors for early atherosclerosis. Toxicol. Lett., 2011, 203(2), 162-171.
[http://dx.doi.org/10.1016/j.toxlet.2011.03.021] [PMID: 21439359]
[234]
Wolfram, J.; Yang, Y.; Shen, J.; Moten, A.; Chen, C.; Shen, H.; Ferrari, M.; Zhao, Y. The nano-plasma interface: Implications of the protein corona. Colloids Surf. B Biointerfaces, 2014, 124, 17-24.
[http://dx.doi.org/10.1016/j.colsurfb.2014.02.035] [PMID: 24656615]
[235]
Durán, N.; Silveira, C.P.; Durán, M.; Martinez, D.S.T. Silver nanoparticle protein corona and toxicity: A mini-review. J. Nanobiotechnology, 2015, 13, 55.
[http://dx.doi.org/10.1186/s12951-015-0114-4] [PMID: 26337542]
[236]
Lundqvist, M.; Stigler, J.; Elia, G.; Lynch, I.; Cedervall, T.; Dawson, K.A. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc. Natl. Acad. Sci. USA, 2008, 105(38), 14265-14270.
[http://dx.doi.org/10.1073/pnas.0805135105] [PMID: 18809927]
[237]
Monopoli, M.P.; Aberg, C.; Salvati, A.; Dawson, K.A. Biomolecular coronas provide the biological identity of nanosized materials. Nat. Nanotechnol., 2012, 7(12), 779-786.
[http://dx.doi.org/10.1038/nnano.2012.207] [PMID: 23212421]
[238]
Cedervall, T.; Lynch, I.; Lindman, S.; Berggård, T.; Thulin, E.; Nilsson, H.; Dawson, K.A.; Linse, S. Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc. Natl. Acad. Sci. USA, 2007, 104(7), 2050-2055.
[http://dx.doi.org/10.1073/pnas.0608582104] [PMID: 17267609]
[239]
Ge, C.; Du, J.; Zhao, L.; Wang, L.; Liu, Y.; Li, D.; Yang, Y.; Zhou, R.; Zhao, Y.; Chai, Z.; Chen, C. Binding of blood proteins to carbon nanotubes reduces cytotoxicity. Proc. Natl. Acad. Sci. USA, 2011, 108(41), 16968-16973.
[http://dx.doi.org/10.1073/pnas.1105270108] [PMID: 21969544]
[240]
Neagu, M.; Piperigkou, Z.; Karamanou, K.; Engin, A.B.; Docea, A.O.; Constantin, C.; Negrei, C.; Nikitovic, D.; Tsatsakis, A. Protein bio-corona: Critical issue in immune nanotoxicology. Arch. Toxicol., 2017, 91(3), 1031-1048.
[http://dx.doi.org/10.1007/s00204-016-1797-5] [PMID: 27438349]
[241]
Dobrovolskaia, M.A.; McNeil, S.E. Immunological properties of engineered nanomaterials. Nat. Nanotechnol., 2007, 2(8), 469-478.
[http://dx.doi.org/10.1038/nnano.2007.223] [PMID: 18654343]
[242]
Gref, R.; Minamitake, Y.; Peracchia, M.T.; Trubetskoy, V.; Torchilin, V.; Langer, R. Biodegradable long-circulating polymeric nanospheres. Science, 1994, 263(5153), 1600-1603.
[http://dx.doi.org/10.1126/science.8128245] [PMID: 8128245]
[243]
Omolo, C.A.; Kalhapure, R.S.; Jadhav, M.; Rambharose, S.; Mocktar, C.; Ndesendo, V.M.K.; Govender, T. Pegylated oleic acid: A promising amphiphilic polymer for nano-antibiotic delivery. Eur. J. Pharm. Biopharm., 2017, 112, 96-108.
[http://dx.doi.org/10.1016/j.ejpb.2016.11.022] [PMID: 27890573]
[244]
Pumerantz, A.S. PEGylated liposomal vancomycin: a glimmer of hope for improving treatment outcomes in MRSA pneumonia. Recent Pat. Antiinfect Drug Discov, 2012, 7(3), 205-212.
[http://dx.doi.org/10.2174/157489112803521904] [PMID: 22742394]
[245]
Xia, T.; Kovochich, M.; Liong, M.; Zink, J.I.; Nel, A.E. Cationic polystyrene nanosphere toxicity depends on cell-specific endocytic and mitochondrial injury pathways. ACS Nano, 2008, 2(1), 85-96.
[http://dx.doi.org/10.1021/nn700256c] [PMID: 19206551]
[246]
Xia, T.; Kovochich, M.; Brant, J.; Hotze, M.; Sempf, J.; Oberley, T.; Sioutas, C.; Yeh, J.I.; Wiesner, M.R.; Nel, A.E. Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett., 2006, 6(8), 1794-1807.
[http://dx.doi.org/10.1021/nl061025k] [PMID: 16895376]
[247]
Chou, L.Y.T.; Ming, K.; Chan, W.C.W. Strategies for the intracellular delivery of nanoparticles. Chem. Soc. Rev., 2011, 40(1), 233-245.
[http://dx.doi.org/10.1039/C0CS00003E] [PMID: 20886124]
[248]
Meng, H.; Xue, M.; Xia, T.; Ji, Z.; Tarn, D.Y.; Zink, J.I.; Nel, A.E. Use of size and a copolymer design feature to improve the biodistribution and the enhanced permeability and retention effect of doxorubicin-loaded mesoporous silica nanoparticles in a murine xenograft tumor model. ACS Nano, 2011, 5(5), 4131-4144.
[http://dx.doi.org/10.1021/nn200809t] [PMID: 21524062]
[249]
Neu, M.; Germershaus, O.; Behe, M.; Kissel, T. Bioreversibly crosslinked polyplexes of PEI and high molecular weight PEG show extended circulation times in vivo. J. Control. Release, 2007, 124(1-2), 69-80.
[http://dx.doi.org/10.1016/j.jconrel.2007.08.009] [PMID: 17897749]
[250]
Miao, Q.; Xu, D.; Wang, Z.; Xu, L.; Wang, T.; Wu, Y.; Lovejoy, D.B.; Kalinowski, D.S.; Richardson, D.R.; Nie, G.; Zhao, Y. Amphiphilic hyper-branched co-polymer nanoparticles for the controlled delivery of anti-tumor agents. Biomaterials, 2010, 31(28), 7364-7375.
[http://dx.doi.org/10.1016/j.biomaterials.2010.06.012] [PMID: 20599267]
[251]
Wang, H.; Zhao, Y.; Wu, Y.; Hu, Y.L.; Nan, K.; Nie, G.; Chen, H. Enhanced anti-tumor efficacy by co-delivery of doxorubicin and paclitaxel with amphiphilic methoxy PEG-PLGA copolymer nanoparticles. Biomaterials, 2011, 32(32), 8281-8290.
[http://dx.doi.org/10.1016/j.biomaterials.2011.07.032] [PMID: 21807411]
[252]
Mahmoudi, M.; Shokrgozar, M.A.; Sardari, S.; Moghadam, M.K.; Vali, H.; Laurent, S.; Stroeve, P. Irreversible changes in protein conformation due to interaction with superparamagnetic iron oxide nanoparticles. Nanoscale, 2011, 3(3), 1127-1138.
[http://dx.doi.org/10.1039/c0nr00733a] [PMID: 21210042]
[253]
Deng, Z.J.; Liang, M.; Monteiro, M.; Toth, I.; Minchin, R.F. Nanoparticle-induced unfolding of fibrinogen promotes Mac-1 receptor activation and inflammation. Nat. Nanotechnol., 2011, 6(1), 39-44.
[http://dx.doi.org/10.1038/nnano.2010.250] [PMID: 21170037]
[254]
Linse, S.; Cabaleiro-Lago, C.; Xue, W.F.; Lynch, I.; Lindman, S.; Thulin, E.; Radford, S.E.; Dawson, K.A. Nucleation of protein fibrillation by nanoparticles. Proc. Natl. Acad. Sci. USA, 2007, 104(21), 8691-8696.
[http://dx.doi.org/10.1073/pnas.0701250104] [PMID: 17485668]
[255]
Zhan, X.; Stamova, B.; Jin, L.W.; DeCarli, C.; Phinney, B.; Sharp, F.R. Gram-negative bacterial molecules associate with Alzheimer disease pathology. Neurology, 2016, 87(22), 2324-2332.
[http://dx.doi.org/10.1212/WNL.0000000000003391] [PMID: 27784770]
[256]
Chiti, F.; Dobson, C.M. Protein misfolding, amyloid formation, and human disease: A summary of progress over the last decade. Annu. Rev. Biochem., 2017, 86, 27-68.
[http://dx.doi.org/10.1146/annurev-biochem-061516-045115] [PMID: 28498720]
[257]
Chiti, F.; Dobson, C.M. Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem., 2006, 75, 333-366.
[http://dx.doi.org/10.1146/annurev.biochem.75.101304.123901] [PMID: 16756495]
[258]
Ma, X.; Wu, Y.; Jin, S.; Tian, Y.; Zhang, X.; Zhao, Y.; Yu, L.; Liang, X.J. Gold nanoparticles induce autophagosome accumulation through size-dependent nanoparticle uptake and lysosome impairment. ACS Nano, 2011, 5(11), 8629-8639.
[http://dx.doi.org/10.1021/nn202155y] [PMID: 21974862]
[259]
Iversen, T.G.; Skotland, T.; Sandvig, K. Endocytosis and intracellular transport of nanoparticles: Present knowledge and need for future studies. Nano Today, 2011, 6(2), 176-185.
[http://dx.doi.org/10.1016/j.nantod.2011.02.003]
[260]
Stern, S.T.; Adiseshaiah, P.P.; Crist, R.M. Autophagy and lysosomal dysfunction as emerging mechanisms of nanomaterial toxicity. Part. Fibre Toxicol., 2012, 9, 20.
[http://dx.doi.org/10.1186/1743-8977-9-20] [PMID: 22697169]
[261]
Thomas, T.P.; Majoros, I.; Kotlyar, A.; Mullen, D.; Holl, M.M.B.; Baker, J.R. Jr Cationic poly(amidoamine) dendrimer induces lysosomal apoptotic pathway at therapeutically relevant concentrations. Biomacromolecules, 2009, 10(12), 3207-3214.
[http://dx.doi.org/10.1021/bm900683r] [PMID: 19924846]
[262]
He, C.; Klionsky, D.J. Regulation mechanisms and signaling pathways of autophagy. Annu. Rev. Genet., 2009, 43, 67-93.
[http://dx.doi.org/10.1146/annurev-genet-102808-114910] [PMID: 19653858]
[263]
Yang, H.; Liu, C.; Yang, D.; Zhang, H.; Xi, Z. Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: The role of particle size, shape and composition. J. Appl. Toxicol., 2009, 29(1), 69-78.
[http://dx.doi.org/10.1002/jat.1385] [PMID: 18756589]
[264]
Lin, J.J.; Lin, W.C.; Dong, R.X.; Hsu, S.H. The cellular responses and antibacterial activities of silver nanoparticles stabilized by different polymers. Nanotechnology, 2012, 23(6)065102
[http://dx.doi.org/10.1088/0957-4484/23/6/065102] [PMID: 22248930]
[265]
Hall, A.; Larsen, A.K.; Parhamifar, L.; Meyle, K.D.; Wu, L.P.; Moghimi, S.M. High resolution respirometry analysis of polyethylenimine-mediated mitochondrial energy crisis and cellular stress: Mitochondrial proton leak and inhibition of the electron transport system. Biochim. Biophys. Acta, 2013, 1827(10), 1213-1225.
[http://dx.doi.org/10.1016/j.bbabio.2013.07.001] [PMID: 23850549]
[266]
Engin, A.B.; Hayes, A.W. The impact of immunotoxicity in evaluation of the nanomaterials safety. Toxicol. Res. Appl., 2018, 2, 1-9.
[http://dx.doi.org/10.1177/2397847318755579]
[267]
Pelaz, B.; Charron, G.; Pfeiffer, C.; Zhao, Y.; de la Fuente, J.M.; Liang, X.J.; Parak, W.J.; Del Pino, P. Interfacing engineered nanoparticles with biological systems: anticipating adverse nano-bio interactions. Small, 2013, 9(9-10), 1573-1584.
[http://dx.doi.org/10.1002/smll.201201229] [PMID: 23112130]
[268]
Caster, J.M.; Patel, A.N.; Zhang, T.; Wang, A. Investigational nanomedicines in 2016: A review of nanotherapeutics currently undergoing clinical trials. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2017, 9(1)e1416
[http://dx.doi.org/10.1002/wnan.1416] [PMID: 27312983]
[269]
Wu, M.X.; Wang, X.; Yang, Y.W. Polymer nanoassembly as delivery systems and anti-bacterial toolbox: From PGMAs to MSN@PGMAs. Chem. Rec., 2018, 18(1), 45-54.
[http://dx.doi.org/10.1002/tcr.201700036] [PMID: 28675576]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 20
ISSUE: 9
Year: 2019
Page: [720 - 741]
Pages: 22
DOI: 10.2174/1389200220666190806142835
Price: $65

Article Metrics

PDF: 39
HTML: 3
EPUB: 1
PRC: 1