Relationship Between the Japanese Version of the Montreal Cognitive Assessment and PET Imaging in Subjects with Mild Cognitive Impairment

Author(s): Atsuko Eguchi, Noriyuki Kimura*, Yasuhiro Aso, Kenichi Yabuuchi, Masato Ishibashi, Daiji Hori, Yuuki Sasaki, Atsuhito Nakamichi, Souhei Uesugi, Mika Jikumaru, Kaori Sumi, Tsuyoshi Shimomura, Etsuro Matsubara.

Journal Name: Current Alzheimer Research

Volume 16 , Issue 9 , 2019

  Journal Home
Translate in Chinese
Become EABM
Become Reviewer

Abstract:

Background: The Montreal Cognitive Assessment (MoCA) test has high sensitivity and specificity for detecting mild cognitive impairment or early dementia. How the MoCA score relates to findings of positron emission tomography imaging, however, remains unclear.

Objective: This prospective study examined the relationship between the Japanese version of the MoCA (MoCA-J) test and brain amyloid deposition or cerebral glucose metabolism among subjects with mild cognitive impairment.

Methods: A total of 125 subjects with mild cognitive impairment underwent the MoCA-J test, and amyloid- and 18F-fluorodeoxyglucose- positron emission tomography. Linear correlation analysis and multiple linear regression analysis were conducted to investigate the relationship between the MoCA-J score and demographic characteristics, amyloid deposition, and cerebral glucose metabolism. Moreover, Statistical Parametric Mapping 8 was used for a voxel-wise regression analysis of the MoCA-J score and cerebral glucose metabolism.

Results: The MoCA-J score significantly correlated with age, years of education, and the Mini-Mental State Examination score. After adjusting for age, sex, and education, the MoCA-J score significantly correlated negatively with amyloid retention (β= -0.174, p= 0.031) and positively with cerebral glucose metabolism (β= 0.183, p= 0.044). Statistical Parametric Mapping showed that Japanese version of MoCA score correlated with glucose metabolism in the bilateral frontal and parietal lobes, and the left precuneus.

Conclusion: The total MoCA-J score correlated with amyloid deposition and frontal and parietal glucose metabolism in subjects with mild cognitive impairment. Our findings support the usefulness of the MoCA-J test for screening subjects at high risk for Alzheimer’s disease.

Keywords: Mild cognitive impairment, prospective study, Japanese version of the Montreal Cognitive Assessment, Amyloid positron emission tomography, 18F-fluorodeoxyglucose-positron emission tomography, Brain regions.

[1]
Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG, Kokmen E. Mild cognitive impairment: clinical characterization and outcome. Arch Neurol 56(3): 303-8. (1999).
[http://dx.doi.org/10.1001/archneur.56.3.303] [PMID: 10190820]
[2]
Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12(3): 189-98. (1975).
[http://dx.doi.org/10.1016/0022-3956(75)90026-6] [PMID: 1202204]
[3]
Mitchell AJ. A meta-analysis of the accuracy of the mini-mental state examination in the detection of dementia and mild cognitive impairment. J Psychiatr Res 43(4): 411-31. (2009).
[http://dx.doi.org/10.1016/j.jpsychires.2008.04.014] [PMID: 18579155]
[4]
Landau SM, Harvey D, Madison CM, Koeppe RA, Reiman EM, Foster NL, et al. Associations between cognitive, functional, and FDG-PET measures of decline in AD and MCI. Neurobiol Aging 32(7): 1207-18. (2011).
[http://dx.doi.org/10.1016/j.neurobiolaging.2009.07.002] [PMID: 19660834]
[5]
Nasreddine ZS, Phillips NA, Bédirian V, Charbonneau S, Whitehead V, Collin I, et al. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc 53(4): 695-9. (2005).
[http://dx.doi.org/10.1111/j.1532-5415.2005.53221.x] [PMID: 15817019]
[6]
Costa AS, Reich A, Fimm B, Ketteler ST, Schulz JB, Reetz K. Evidence of the sensitivity of the MoCA alternate forms in monitoring cognitive change in early Alzheimer’s disease. Dement Geriatr Cogn Disord 37(1-2): 95-103. (2014).
[http://dx.doi.org/10.1159/000351864] [PMID: 24107412]
[7]
Suzuki H, Kawai H, Hirano H, Yoshida H, Ihara K, Kim H, et al. One-Year change in the japanese version of the montreal cognitive assessment performance and related predictors in community-dwelling older adults. J Am Geriatr Soc 63(9): 1874-9. (2015).
[http://dx.doi.org/10.1111/jgs.13595] [PMID: 26313522]
[8]
Pasi M, Salvadori E, Poggesi A, Ciolli L, Del Bene A, Marini S, et al. White matter microstructural damage in small vessel disease is associated with Montreal cognitive assessment but not with mini mental state examination performances: vascular mild cognitive impairment Tuscany study. Stroke 46(1): 262-4. (2015).
[http://dx.doi.org/10.1161/STROKEAHA.114.007553] [PMID: 25395414]
[9]
Akanuma K, Meguro K, Kato Y, Takahashi Y, Nakamura K, Yamaguchi S. Impaired attention function based on the Montréal Cognitive Assessment in vascular dementia patients with frontal hypoperfusion: the Osaki-Tajiri project. J Clin Neurosci 28: 128-32. (2016).
[http://dx.doi.org/10.1016/j.jocn.2015.08.047] [PMID: 26778514]
[10]
Bloudek LM, Spackman DE, Blankenburg M, Sullivan SD. Review and meta-analysis of biomarkers and diagnostic imaging in Alzheimer’s disease. J Alzheimers Dis 26(4): 627-45. (2011).
[http://dx.doi.org/10.3233/JAD-2011-110458] [PMID: 21694448]
[11]
Ma Y, Zhang S, Li J. Predictive accuracy of amyloid imaging for progression from mild cognitive impairment to Alzheimer disease with different lengths of follow-up: a meta-analysis.[Corrected] Medicine (Baltimore) 93(27)e150 (2014).
[http://dx.doi.org/10.1097/MD.0000000000000150] [PMID: 25501055]
[12]
Jack CR Jr, Knopman DS, Jagust WJ, Petersen RC, Weiner MW, Aisen PS, et al. Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol 12(2): 207-16. (2013).
[http://dx.doi.org/10.1016/S1474-4422(12)70291-0] [PMID: 23332364]
[13]
Del Brutto OH, Mera RM, Zambrano M, Soriano F, Lama J. Global cortical atrophy (GCA) associates with worse performance in the Montreal Cognitive Assessment (MoCA). A population-based study in community-dwelling elders living in rural Ecuador. Arch Gerontol Geriatr 60(1): 206-9. (2015).
[http://dx.doi.org/10.1016/j.archger.2014.09.010] [PMID: 25306507]
[14]
Ritter A, Hawley N, Banks SJ, Miller JB. The association between Montreal Cognitive Assessment memory scores and hippocampal volume in a neurodegenerative disease sample. J Alzheimers Dis 58(3): 695-9. (2017).
[http://dx.doi.org/10.3233/JAD-161241] [PMID: 28453481]
[15]
Topiwala A, Allan CL, Valkanova V. Zsoldos E1, Filippini N1, Sexton CE, et al. Resilience and MRI correlates of cognitive impairment in community-dwelling elders. Br J Psychiatry 207(5): 435-9. (2015).
[http://dx.doi.org/10.1192/bjp.bp.114.152363] [PMID: 26338988]
[16]
Maeshima E, Okumura Y, Tatsumi J, Tomokane S, Ikeshima A. Cognitive function in middle-aged and older adults participating in synchronized swimming-exercise. J Phys Ther Sci 29(1): 148-51. (2017).
[http://dx.doi.org/10.1589/jpts.29.148] [PMID: 28210062]
[17]
Nara M, Sugie M, Takahashi T, Koyama T, Sengoku R, Fujiwara Y, et al. Japanese version of the Montreal Cognitive Assessment cut-off score to clarify improvement of mild cognitive impairment after exercise training in community-dwelling older adults. Geriatr Gerontol Int 18(6): 833-8. (2018).
[http://dx.doi.org/10.1111/ggi.13253] [PMID: 29392877]
[18]
Abe Y, Kimura N, Takahashi R, Gotou M, Mizukami K, Uchida H, et al. Relationship between cytokine levels in the cerebrospinal fluid and 11C-Pittsburgh compound B retention in patients with mild cognitive impairment. Geriatr Gerontol Int 17(11): 1907-13. (2017).
[http://dx.doi.org/10.1111/ggi.12991] [PMID: 28261965]
[19]
Takemaru M, Kimura N, Abe Y, Goto M, Matsubara E. The evaluation of brain perfusion SPECT using an easy Z-score imaging system in the mild cognitive impairment subjects with brain amyloid-β deposition. Clin Neurol Neurosurg 160: 111-5. (2017).
[http://dx.doi.org/10.1016/j.clineuro.2017.06.018] [PMID: 28715708]
[20]
Herholz K, Salmon E, Perani D, Baron JC, Holthoff V, Frölich L, et al. Discrimination between Alzheimer dementia and controls by automated analysis of multicenter FDG PET. Neuroimage 17(1): 302-16. (2002).
[http://dx.doi.org/10.1006/nimg.2002.1208] [PMID: 12482085]
[21]
Jack CR Jr, Lowe VJ, Senjem ML, Weigand SD, Kemp BJ, Shiung MM, et al. 11C PiB and structural MRI provide complementary information in imaging of Alzheimer’s disease and amnestic mild cognitive impairment. Brain 131(Pt 3): 665-80. (2008).
[http://dx.doi.org/10.1093/brain/awm336] [PMID: 18263627]
[22]
Paul R, Lane EM, Tate DF, Heaps J, Romo DM, Akbudak E, et al. Neuroimaging signatures and cognitive correlates of the montreal cognitive assessment screen in a nonclinical elderly sample. Arch Clin Neuropsychol 26(5): 454-60. (2011).
[http://dx.doi.org/10.1093/arclin/acr017] [PMID: 21642663]
[23]
Jung Y, Whitwell JL, Duffy JR, Strand EA, Machulda MM, Senjem ML, et al. Amyloid burden correlates with cognitive decline in Alzheimer’s disease presenting with aphasia. Eur J Neurol 21(7): 1040-3. (2014).
[http://dx.doi.org/10.1111/ene.12331] [PMID: 24330306]
[24]
Jagust WJ, Landau SM, Shaw LM. Alzheimer’s Disease Neuroimaging Initiative. Relationships between biomarkers in aging and dementia. Neurology 73(15): 1193-9. (2009).
[http://dx.doi.org/10.1212/WNL.0b013e3181bc010c] [PMID: 19822868]
[25]
Johnson KA, Schultz A, Betensky RA, Becker JA, Sepulcre J, Rentz D, et al. Tau positron emission tomographic imaging in aging and early Alzheimer disease. Ann Neurol 79(1): 110-9. (2016).
[http://dx.doi.org/10.1002/ana.24546] [PMID: 26505746]
[26]
Jansen WJ, Ossenkoppele R, Tijms BM. Fagan AM6, Hansson O7, Klunk WE, et al. Amyloid biomarker study group. association of cerebral amyloid-β aggregation with cognitive functioning in persons without dementia. JAMA Psychiatry 75(1): 84-95. (2018).
[http://dx.doi.org/10.1001/jamapsychiatry.2017.3391] [PMID: 29188296]
[27]
Landau SM, Horng A, Fero A, Jagust WJ. Alzheimer’s Disease Neuroimaging Initiative. Amyloid negativity in patients with clinically diagnosed Alzheimer disease and MCI. Neurology 86(15): 1377-85. (2016).
[http://dx.doi.org/10.1212/WNL.0000000000002576] [PMID: 26968515]
[28]
Nakaoku Y, Oishi N, Hase Y, Saito S, Mitsueda T, Matsui M, et al. Montreal Cognitive Assessment score correlates with regional cerebral blood flow in post-stroke patients. Clin Neurol Neurosurg 174: 68-74. (2018).
[http://dx.doi.org/10.1016/j.clineuro.2018.09.004] [PMID: 30216810]
[29]
Shivamurthy VK, Tahari AK, Marcus C, Subramaniam RM. Brain FDG PET and the diagnosis of dementia. AJR Am J Roentgenol 204(1)W76-85 (2015).
[http://dx.doi.org/10.2214/AJR.13.12363] [PMID: 25539279]
[30]
Pakrasi S, O’Brien JT. Emission tomography in dementia. Nucl Med Commun 26(3): 189-96. (2005).
[http://dx.doi.org/10.1097/00006231-200503000-00003] [PMID: 15722899]
[31]
Nagata K, Maruya H, Yuya H, Terashi H, Mito Y, Kato H, et al. Can PET data differentiate Alzheimer’s disease from vascular dementia? Ann N Y Acad Sci 903: 252-61. (2000).
[http://dx.doi.org/10.1111/j.1749-6632.2000.tb06375.x] [PMID: 10818514]
[32]
Ma HR, Sheng LQ, Pan PL, Wang GD, Luo R, Shi HC, et al. Cerebral glucose metabolic prediction from amnestic mild cognitive impairment to Alzheimer’s dementia: a meta-analysis. Transl Neurodegener 7(7): 9. (2018).
[http://dx.doi.org/10.1186/s40035-018-0114-z] [PMID: 29713467]
[33]
Drzezga A, Lautenschlager N, Siebner H, Riemenschneider M, Willoch F, Minoshima S, et al. Cerebral metabolic changes accompanying conversion of mild cognitive impairment into Alzheimer’s disease: a PET follow-up study. Eur J Nucl Med Mol Imaging 30(8): 1104-13. (2003).
[http://dx.doi.org/10.1007/s00259-003-1194-1] [PMID: 12764551]
[34]
Foldi NS, Lobosco JJ, Schaefer LA. The effect of attentional dysfunction in Alzheimer’s disease: theoretical and practical implications. Semin Speech Lang 23(2): 139-50. (2002).
[http://dx.doi.org/10.1055/s-2002-24990] [PMID: 11951174]
[35]
Guedj E, Barbeau EJ, Didic M, Felician O, de Laforte C, Ranjeva JP, et al. Effects of medial temporal lobe degeneration on brain perfusion in amnestic MCI of AD type: deafferentation and functional compensation? Eur J Nucl Med Mol Imaging 36(7): 1101-12. (2009).
[http://dx.doi.org/10.1007/s00259-009-1060-x] [PMID: 19224210]
[36]
Ushijima Y, Okuyama C, Mori S, Nakamura T, Kubota T, Nishimura T. Relationship between cognitive function and regional cerebral blood flow in Alzheimer’s disease. Nucl Med Commun 23(8): 779-84. (2002).
[http://dx.doi.org/10.1097/00006231-200208000-00012] [PMID: 12124484]
[37]
Desgranges B, Baron JC, de la Sayette V, Petit-Taboué MC, Benali K, Landeau B, et al. The neural substrates of memory systems impairment in Alzheimer’s disease. A PET study of resting brain glucose utilization. Brain 121(Pt 4): 611-31. (1998).
[http://dx.doi.org/10.1093/brain/121.4.611] [PMID: 9577389]
[38]
Leech R, Sharp DJ. The role of the posterior cingulate cortex in cognition and disease. Brain 137(Pt 1): 12-32. (2014).
[http://dx.doi.org/10.1093/brain/awt162] [PMID: 23869106]
[39]
Besson JA, Crawford JR, Parker DM, Ebmeier KP, Best PV, Gemmell HG, et al. Multimodal imaging in Alzheimer’s disease. The relationship between MRI, SPECT, cognitive and pathological changes. Br J Psychiatry 157: 216-20. (1990).
[http://dx.doi.org/10.1192/bjp.157.2.216] [PMID: 2224371]
[40]
Nobili F, Brugnolo A, Calvini P, Copello F, De Leo C, Girtler N, et al. Resting SPECT-neuropsychology correlation in very mild Alzheimer’s disease. Clin Neurophysiol 116(2): 364-75. (2005).
[http://dx.doi.org/10.1016/j.clinph.2004.09.001] [PMID: 15661114]
[41]
O’Brien JT, Eagger S, Syed GM, Sahakian BJ, Levy R. A study of regional cerebral blood flow and cognitive performance in Alzheimer’s disease. J Neurol Neurosurg Psychiatry 55(12): 1182-7. (1992).
[http://dx.doi.org/10.1136/jnnp.55.12.1182] [PMID: 1479398]
[42]
Hyman BT, Van Hoesen GW, Damasio AR. Memory-related neural systems in Alzheimer’s disease: an anatomic study. Neurology 40(11): 1721-30. (1990).
[http://dx.doi.org/10.1212/WNL.40.11.1721] [PMID: 2234428]
[43]
Mosconi L, Tsui WH, De Santi S, Li J, Rusinek H, Convit A, et al. Reduced hippocampal metabolism in MCI and AD: automated FDG-PET image analysis. Neurology 64(11): 1860-7. (2005).
[http://dx.doi.org/10.1212/01.WNL.0000163856.13524.08] [PMID: 15955934]
[44]
Ouchi Y, Nobezawa S, Okada H, Yoshikawa E, Futatsubashi M, Kaneko M. Altered glucose metabolism in the hippocampal head in memory impairment. Neurology 51(1): 136-42. (1998).
[http://dx.doi.org/10.1212/WNL.51.1.136] [PMID: 9674792]
[45]
Ishii K, Sasaki M, Yamaji S, Sakamoto S, Kitagaki H, Mori E. Paradoxical hippocampus perfusion in mild-to-moderate Alzheimer’s disease. J Nucl Med 39(2): 293-8. (1998).
[PMID: 9476938]
[46]
Ishii K, Sasaki H, Kono AK, Miyamoto N, Fukuda T, Mori E. Comparison of gray matter and metabolic reduction in mild Alzheimer’s disease using FDG-PET and voxel-based morphometric MR studies. Eur J Nucl Med Mol Imaging 32(8): 959-63. (2005).
[http://dx.doi.org/10.1007/s00259-004-1740-5] [PMID: 15800784]
[47]
Ishii K, Sasaki M, Yamaji S, Sakamoto S, Kitagaki H, Mori E. Relatively preserved hippocampal glucose metabolism in mild Alzheimer’s disease. Dement Geriatr Cogn Disord 9(6): 317-22. (1998).
[http://dx.doi.org/10.1159/000017083] [PMID: 9769444]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 9
Year: 2019
Page: [852 - 860]
Pages: 9
DOI: 10.2174/1567205016666190805155230
Price: $58

Article Metrics

PDF: 19
HTML: 1