Progress on the Biological Activities of Helicid and its Derivatives

Author(s): Xi Xia, Ting-Ting Cao, Yong Li, Yu Chen, Hong-Jun Yang*, Zhi-Gang Zhao*, Shu-Fan Yin*.

Journal Name: Current Organic Chemistry

Volume 23 , Issue 14 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Helicid is a specific Chinese natural drug. Helicid, its congeners, and its derivatives exhibit pronounced biological activities, among which its hypnotic effects stand out. The well-documented sedation and analgesic activity and low side effects of helicid have drawn more and more attention from scientists. Moreover, its clinical success and intriguing mechanism of action have stimulated great interest in further modification of helicid for improving its hypnotic activity. The 4-formyl group has been a major target for structural derivatization aimed at either producing more potent compounds or overcoming drug disadvantages. Accordingly, numerous helicid derivatives have been prepared via molecular docking and hemisynthesis. Although neither systematic nor comprehensive, there are two excellent reviews on the distribution, sources, applications, synthesis, and pharmacological activity of helicid that have been published in Chinese. In the present review, we attempt to compile and discuss the key data available in the literature on the multiple biological activities of helicid derivatives. This compilation of 102 references may be helpful in understanding the diverse biological properties of helicid while providing insights into its mechanism of action. This may direct future research in the synthesis of new derivatives and the exploration of other biological activities.

Keywords: Helicid, central nervous system, AChE, BuChE and tyrosinase inhibitors, sedation, antitumor, central nervous regulator.

[1]
Chen, W.; Lu, S.; Eberhard, B. Helicid, α β-allopyranoside from Helicia erratica Hook. Liebigs Ann. Chem., 1981, 10, 1893-1895.
[2]
Chen, W.; Yao, W. Study on the stability of Shenshuaiguosu Tablet. Chin. Traditional. Herbal Drugs, 1998, 29(10), 669-670.
[3]
Sha, J.; Mao, H. Helicid. Chung Kuo Yao Hsueh Tsa Chih, 1987, 22(1), 27. [in Chinese]
[4]
Liu, G.; Ma, S.; Zhen, J.; Zhan, J.; Lin, R. Chemical constituents of Helicia nilagirica seeds (I). Chin. Tradit. Herbal Drugs, 2005, 36(6), 814-817.
[5]
Liu, G.Y.; Ma, S.; Zhang, Y.M.; Xu, J.M.; Lin, R.C. [Study on chemical constituents in seeds of Helicia nilagirica (II) Zhongguo Zhongyao Zazhi, 2005, 30(11), 830-832.
[PMID: 16110863]
[6]
Liu, G.; Wang, G.; Ma, S.; Lin, R. The research situation of active ingredient in Helicia medicinal plant. Chin. Tradit. Herbal Drugs, 2004, 35(5), 593-595. [in Chinese]
[7]
Zhou, X.; Zhao, T.R.; Nan, G.H.; Li, J.Y. Influences of helicid on the metabolism of four amino acids in the brain and synaptosomes in mice. Zhongguo Yao Li Xue Bao, 1987, 8(5), 393-396.
[PMID: 3450172]
[8]
Zhou, X.; Cai, X.; Zhao, T.; Nan, G.; Li, J. Studies of effects of helicid on glutanmate decarboxylase and γ-aminobutyric acid transaminase in mouse brain by using isotope paper chromatography. Nucl. Technol., 1987, 10(7), 52-53. [in Chinese]
[9]
Li, J.; Liu, P.; Na, D.; Wu, X.J. Health Toxico., 2001, 15(2), 110. [in Chinese]
[10]
Liu, P.; Li, J.; Na, D.; Geng, J.; Shang, L. Neurobehavioral effects of Helicid on Wistar rat’s offspring. Chin. Tradit. Herbal Drugs, 2002, 33(3), 238-242.
[11]
Liu, P.; Geng, J.; Li, J.; Na, D.; Shang, L. Effect of helicid on early neurobehavioral development of Wistar rat’s offspring. Zhongchengyao, 2002, 24(4), 278-280. [in Chinese]
[12]
Wang, C.; Wang, Y.; Jia, G.; Xie, J. The effect of Helicid on MWT and TWL in rat model with chronic compression injury of sciatic nerve. J. Tradit. Chin. Med., 2012, 25(7), 20-22. [in Chinese]
[13]
Xie, J.; Ma, Y.; Shi, Y.; Wang, Y.; Liang, M. The effect of Helicid on thermal hyperalgesia and expression of pcreb in spinal cord dorsal horn in a rat model of neuropathic pain. Chin. J. Pain Med., 2009, 15, 100-105. [in Chinese]
[14]
Liang, S.; Deng, S. Anti-inflammatory and analgesic effect study of helicid tablets. J. Yi Chun University, 2006, 28, 104-105.
[15]
Yi, W.; Cao, R.; Wen, H.; Yan, Q.; Zhou, B.; Wan, Y.; Ma, L.; Song, H. Synthesis and biological evaluation of helicid analogues as mushroom tyrosinase inhibitors. Bioorg. Med. Chem. Lett., 2008, 18(24), 6490-6493.
[http://dx.doi.org/10.1016/j.bmcl.2008.10.056] [PMID: 18996693]
[16]
Yan, Q.; Cao, R.; Yi, W.; Yu, L.; Chen, Z.; Ma, L.; Song, H. Synthesis and evaluation of 5-benzylidene(thio)barbiturate-β-D-glycosides as mushroom tyrosinase inhibitors. Bioorg. Med. Chem. Lett., 2009, 19(15), 4055-4058.
[http://dx.doi.org/10.1016/j.bmcl.2009.06.018] [PMID: 19564107]
[17]
Wen, H.; Lin, C.; Que, L.; Ge, H.; Ma, L.; Cao, R.; Wan, Y.; Peng, W.; Wang, Z.; Song, H. Synthesis and biological evaluation of helicid analogues as novel acetylcholinesterase inhibitors. Eur. J. Med. Chem., 2008, 43(1), 166-173.
[http://dx.doi.org/10.1016/j.ejmech.2007.03.018] [PMID: 17574306]
[18]
Chen, Z.; Jiang, X.H.; Ren, J.; Liu, T.M.; Ma, G.; Wang, L. [Investigation on pharmacokinetics of helicid in rats] Zhongguo Zhongyao Zazhi, 2008, 33(22), 2662-2666. [in Chinese].
[PMID: 19216167]
[19]
Liu, Q.; Liu, X.; Luo, G.; Tian, W.; Wang, Y. Determination of helicidum and its metabolites in dog plasma by LC/UV/MS/MS and its application to pharmacokinetic studies. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2006, 832(2), 185-190.
[http://dx.doi.org/10.1016/j.jchromb.2005.12.042] [PMID: 16473051]
[20]
Chen, Q.; Xie, Y.; Chai, H. Effect of helicid on convulsion induced by coriaria lactone in mice. West China J. Pharm., 1986, 1(2), 91-95. [in Chinese]
[21]
Zhu, Q.; Tang, Q.; Li, Y.; Yin, S-F. Synthesis and calm activity of [α-(2-oxoalky1)-α-(substituted anilimo)methyl]phenyl-β-D-allopyranosid. Youji Huaxue, 2006, 26(9), 1264-1267.
[22]
Fan, B.; Li, J.; Li, Y.; Yin, S-F. Synthesis and calm activity of 2-(4-β-D-allopyranosyloxyphenyl)-4-aryl-2,3-dihydro-1,5-benzothiazepine. Youji Huaxue, 2007, 27(9), 1150-1154.
[23]
Yang, H.; Hu, C.; Li, Y.; Yin, S-F. Synthesis of calm activity 1-alkyl-2-(4-β-D-allopyranosyloxyphenyl)-benzimidazole derivatives. Youji Huaxue, 2008, 28(5), 899-902.
[24]
Zhu, Q.; Li, Y.; Li, J.; Tang, Q.; Yin, S-F. Synthesis and sedation activity of 4-substituted methylene phenyl-4-β-D-allosupranoside. Huaxi Yaoxue Zazhi, 2008, 23(1), 12-16.
[25]
Liu, M.; Li, Y.; Yin, S-F. Synthesis and calm activity of 3-(4-β-D-allopyranosyloxyphenyl)-4-aryl-5-aryl-1,2,4-oxadiazoline. Chin. J. Org. Chen., 2008, 28, 348-352.
[26]
Ye, D.; Fu, L.; Liang, B.; Li, Y.; Yin, S-F. Synthesis and calm activity of 4-(4-β-D-allopyranosyloxyphenyl)-2-aryl-5-cyano-6-methoxypyridine derivatives. Youji Huaxue, 2009, 29(11), 1768-1773.
[27]
Hu, C.; Yang, H.; Li, Y.; Yin, S-F. Synthesis and calm activity of 3-(4-β-D-allopyranosyloxy-phenyl)-4-[(un)substituted anilinocarbonyl]-5-methoxy-carbonyl-isoxazoline derivatives. Youji Huaxue, 2009, 29(1), 89-93.
[28]
Luo, H.; Yang, W.; Li, Y.; Yin, S-F. Synthesis and calming activity of helicid derivatives containing the 3,4-dihydropyrimidine2-(1H)-one and 3,4-dihydro- pyrimidin-2(H)-thione mdiety. Chem. Nat. Compd., 2010, 46(3), 412-416.
[http://dx.doi.org/10.1007/s10600-010-9630-5]
[29]
Fu, L.; Ye, D.; Li, Y.; Yin, S-F. Synthesis and calming activity of 6H-2-amino-4-aryl-6- (4-β-D-allopyranosyloxyphenyl)-1,3-thiazine. Chem. Nat. Compd., 2010, 46(2), 169-172.
[http://dx.doi.org/10.1007/s10600-010-9559-8]
[30]
Fu, L.; Ye, D.; Chen, G.; Li, Y.; Yin, S-F. Synthesis and sedative activity of 5-(4′-β-D-allopyranosyloxyphenyl)-3-aryl-4,5-dihydropyrazole-1-carbothio-amides. Chem. Nat. Compd., 2010, 46(3), 417-420.
[http://dx.doi.org/10.1007/s10600-010-9631-4]
[31]
Yin, X.; Zheng, L.; Li, Y.; Yin, S-F. Synthesis and calming activity of 2-amino-4-(4-β-D- allopyranoside-phenyl)-6-3(4)-substitued phenylpyrimidines. Chem. Nat. Compd., 2010, 46(5), 779-782.
[http://dx.doi.org/10.1007/s10600-010-9739-6]
[32]
Lv, S.; Yang, C.; Zhao, H.; Li, Y.; Yin, S-F. Synthesis and calm activity of imidazole derivatives of helicid. Youji Huaxue, 2010, 30(1), 112-116.
[33]
Chen, H.; Chen, H.; Bai, X.; Li, Y.; Yin, S-F. Synthesis and calm activity of helicid-pyrazoline derivatives. Youji Huaxue, 2011, 31(2), 231-234.
[34]
Li, J.; Fan, B.; Luo, H.; Li, Y.; Yin, S-F. Synthesis and calm activity of 2-(4-β-D- allopyranosyloxyphenyl)-5-substitutedaryl-1,3,4-oxadiazoles. Youji Huaxue, 2011, 31(1), 110-114.
[35]
Zheng, L.; Yin, X.; Yang, C.; Li, Y.; Yin, S-F. Synthesis and sedative-hypnotic activity of helicid derivatives containing a 1,4-dihydropyridine moiety. Chem. Nat. Compd., 2011, 47(2), 170-175.
[http://dx.doi.org/10.1007/s10600-011-9873-9]
[36]
Zhang, K.; Yang, C.; Lv, S.; Li, Y.; Yin, S-F. Synthesis and calming activity of 9-(4-β-D- allopyranosyloxyphenyl)-decahydroacridine-1,8-dione derivatives. Chem. Nat. Compd., 2011, 47(4), 507-510.
[http://dx.doi.org/10.1007/s10600-011-9982-5]
[37]
Yang, C.; Lv, S.; Li, Y.; Yin, S-F. Synthesis of 2-aryl-4-(4-β-allopyranosyl-oxyphenyl)- 4,6,7,8-tetrahydroquinoline-5(1H)-one derivatives under solvent-free conditions and study of sedative activity. Chem. Nat. Compd., 2011, 46(6), 910-914.
[http://dx.doi.org/10.1007/s10600-011-9781-z]
[38]
Chen, C.; Li, X.; Hu, X.; Li, Y.; Yin, S-F. Synthesis and calm activity of quinoline and flavone derivatives of helicid. Youji Huaxue, 2011, 31(11), 1878-1883.
[39]
Yuan, M.; Jiang, L-J.; Cheng, C.; Wang, Y.; Li, Y.; Yin, S-F. Synthesis and sedative activity of 4-substitued phenyl-(2,3,4,6-tetrabenzyloxy)-β-D-allopyranosyloxy derivatives. Chem. Nat. Compd., 2015, 51(2), 252-255.
[http://dx.doi.org/10.1007/s10600-015-1255-2]
[40]
Jiang, L-J.; Lv, S-M.; Cheng, C.; Dong, L.; Li, Y.; Yin, S-F. Synthesis and antitumor activity of a novel series of helicid-pyrrolidone derivatives. Chem. Nat. Compd., 2015, 51(1), 121-126.
[http://dx.doi.org/10.1007/s10600-015-1216-9]
[41]
Jia, M.; Yang, Y.; Liu, J.; Zhou, M. Recent advances of helicid. Chin. J. Vet. Med., 2007, 2, 27-29.
[42]
Liu, S.; Ju, W.; Tan, H. Research progress of helicid. Chinese Journal of Medicinal Guide, 2008, 10(6), 911-913.
[43]
Zheng, K.; Mao, H.; Yang, Z.; Sun, C. Progress on chemical structural modification and pharmacological activities of helicid. Huaxue Shiji, 2010, 32(10), 899-902.
[44]
Jia, Y.; Shen, J.; Sun, J.; Wang, W.; Xie, H. Bioavailability and pharmacokinetics profile of helicid in beagle dogs using gradient elution high performance liquid chromatography electrospray ionization mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2015, 988, 8-12.
[http://dx.doi.org/10.1016/j.jchromb.2015.02.003] [PMID: 25743699]
[45]
Yue, Y.; Liu, J.; Liu, R.; Dong, Q.; Fan, J. Binding of helicid to human serum albumin: A hybrid spectroscopic approach and conformational study. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2014, 124, 46-51.
[http://dx.doi.org/10.1016/j.saa.2013.12.108] [PMID: 24463239]
[46]
Lan, S.; Li, J.; Xiong, S.; Wan, C.; Lv, M. Helicia tablets and sleep health conducting to treat patients with insomnia. Chin. J. New Drugs Clin. Rem., 2007, 26(8), 604-606.
[47]
Ha, J.-H.; Lee, D.-U.; Lee, J.-T.; Kim, J.-S.; Yong, C.-S.; Kim, J.-S.; Ha, J.-S.; Huh, K. Hydroxybenzaldehyde from Gastrodia elata B1. is active in the antioxidation and GABAergic neuromodulation of the rat brain. J. Ethnopharm., 2000, 73(1,2), 329-333.
[48]
Wang, Z.; Hu, L.; Luo, Z.; Li, Y.; Zhao, N.; Wang, Z.; Wang, Y.; Chen, Y. PCT Int; Appl., WO,; , 2004.
[49]
Ha, J.H.; Shin, S.M.; Lee, S.K.; Kim, J.S.; Shin, U.S.; Huh, K.; Kim, J.A.; Yong, C.S.; Lee, N.J.; Lee, D.U. In vitro effects of hydroxybenzaldehydes from Gastrodia elata and their analogues on GABAergic neurotransmission, and a structure-activity correlation. Planta Med., 2001, 67(9), 877-880.
[http://dx.doi.org/10.1055/s-2001-18844] [PMID: 11745032]
[50]
Funayama, M.; Arakawa, H.; Yamamoto, R.; Nishino, T.; Shin, T.; Murao, S. Effects of α- and β-arbutin on activity of tyrosinases from mushroom and mouse melanoma. Biosci. Biotechnol. Biochem., 1995, 59(1), 143-144.
[http://dx.doi.org/10.1271/bbb.59.143] [PMID: 7765966]
[51]
Maeda, K.; Fukuda, M.; Griffith, C.E.; Finkel, L.J.; Hamilton, T.A.; Bulengo-Ransby, S.M. Arbutin: Mechanism of its depigmenting action in human melanocyte culture. J. Pharmacol. Exp. Ther., 1996, 276(2), 765-769.
[PMID: 8632348]
[52]
Sugimoto, K.; Nishimura, T.; Nomura, K.; Sugimoto, K.; Kuriki, T. Syntheses of arbutin-α-glycosides and a comparison of their inhibitory effects with those of α-arbutin and arbutin on human tyrosinase. Chem. Pharm. Bull. (Tokyo), 2003, 51(7), 798-801.
[http://dx.doi.org/10.1248/cpb.51.798] [PMID: 12843585]
[53]
Hitzenberger, G.; Rameis, H.; Manigley, C. Pharmacological properties of piracetam: Rationale for use in stroke patients. CNS Drugs, 1998, 9, 19-27.
[http://dx.doi.org/10.2165/00023210-199809001-00003]
[54]
Shorvon, S. Pyrrolidone derivatives. Lancet, 2001, 358(9296), 1885-1892.
[http://dx.doi.org/10.1016/S0140-6736(01)06890-8] [PMID: 11741647]
[55]
Song, C.; Wu, P.; Dou, L. The neurologically application of helicid. Chin. J. N. Drugs Clin. Reined, 1984, 3(3), 9-11. [in Chinese]
[56]
Pant, U.C.; Gaur, B.S.; Chugh, M. Syntheses of 1,5-benzothiazepines. Part II. Synthesis of 4-aryl-2-carboxy-2,3-dihydro-1,5-benzothiazepines. Indian J. Chem. Sect. B, 1987, 26B(10), 947-950.
[57]
Pant, U.C.; Gaur, B.S.; Chugh, M. Syntheses of 1,5-benzothiazepines. Part IV. Synthesis of 2,4-dihydro-1,5-benzothiazepines. Indian J. Chem. Sect. B, 1988, 27B(8), 752-753.
[58]
Bariwal, J.B.; Upadhyay, K.D.; Manvar, A.T.; Trivedi, J.C.; Singh, J.S.; Jain, K.S.; Shah, A.K. 1,5-Benzothiazepine, a versatile pharmacophore: A review. Eur. J. Med. Chem., 2008, 43(11), 2279-2290.
[http://dx.doi.org/10.1016/j.ejmech.2008.05.035] [PMID: 18639369]
[59]
Tan, R-H.; Ding, L-C.; Wei, X-J. Study on the Synthesis, anti-inflammatory activities and ulcerogenic effects of benzimidazole derivatives. Zhongguo Yaowu Huaxue Zazhi, 2001, 11(5), 259-262. [in Chinese]
[60]
Reid, G.; Rand, M. Pharmacological actions of synthetic 5-hydroxytryptamine (serotonin, thrombocytin). Nature, 1952, 169(4306), 801-802.
[http://dx.doi.org/10.1038/169801a0] [PMID: 14941052]
[61]
Freyburger, W.A.; Graham, B.E.; Rapport, M.M.; Seay, P.H.; Govier, W.M.; Swoap, O.F.; Vander Brook, M.J. The pharmacology of 5-hydroxytryptamine (serotonin). J. Pharmacol. Exp. Ther., 1952, 105(1), 80-86.
[PMID: 14939156]
[62]
Olkkola, K.T.; Ahonen, J. Midazolam and other benzodiazepines. Handb. Exp. Pharmacol., 2008, 182(182), 335-360.
[http://dx.doi.org/10.1007/978-3-540-74806-9_16] [PMID: 18175099]
[63]
Heeres, J.; Backx, L.J.; Mostmans, J.H.; Van Cutsem, J. Antimycotic imidazoles. part 4. Synthesis and antifungal activity of ketoconazole, a new potent orally active broad-spectrum antifungal agent. J. Med. Chem., 1979, 22(8), 1003-1005.
[http://dx.doi.org/10.1021/jm00194a023] [PMID: 490531]
[64]
Qin, Z-L.; Wangm, F-H.; Li, X-W.; Zhang, X. Chin. J. Appl. Chem., 2006, 23(2), 215-217. [in chinese]
[65]
Almasirad, A.; Tabatabai, S.A.; Faizi, M.; Kebriaeezadeh, A.; Mehrabi, N.; Dalvandi, A.; Shafiee, A. Synthesis and anticonvulsant activity of new 2-substituted-5- [2-(2-fluorophenoxy) phenyl]-1,3,4-oxadiazoles and 1,2,4-triazoles. Bioorg. Med. Chem. Lett., 2004, 14(24), 6057-6059.
[http://dx.doi.org/10.1016/j.bmcl.2004.09.072] [PMID: 15546729]
[66]
Zarghi, A.; Tabatabai, S.A.; Faizi, M.; Ahadian, A.; Navabi, P.; Zanganeh, V.; Shafiee, A. Synthesis and anticonvulsant activity of new 2-substituted-5-(2-benzyloxyphenyl)-1,3,4-oxadiazoles. Bioorg. Med. Chem. Lett., 2005, 15(7), 1863-1865.
[http://dx.doi.org/10.1016/j.bmcl.2005.02.014] [PMID: 15780622]
[67]
Lankau, H.J.; Unverferth, K.; Grunwald, C.; Hartenhauer, H.; Heinecke, K.; Bernöster, K.; Dost, R.; Egerland, U.; Rundfeldt, C. New GABA-modulating 1,2,4-oxadiazole derivatives and their anticonvulsant activity. Eur. J. Med. Chem., 2007, 42(6), 873-879.
[http://dx.doi.org/10.1016/j.ejmech.2006.12.022] [PMID: 17303289]
[68]
Omar, A.M.M.E. AboulWafa, O.M. Synthesis and anticonvulsant properties of a novel series of 2-substituted amino-5-aryl-1,3,4,-oxadiazole derivatives. J. Heterocycl. Chem., 1984, 21, 1415-1418.
[http://dx.doi.org/10.1002/jhet.5570210538]
[69]
Brinkmann, V. FTY720 (fingolimod) in multiple sclerosis: Therapeutic effects in the immune and the central nervous system. Br. J. Pharmacol., 2009, 158(5), 1173-1182.
[http://dx.doi.org/10.1111/j.1476-5381.2009.00451.x] [PMID: 19814729]
[70]
Siddiqui, N.; Ahsan, W.; Alam, M.S.; Ali, R.; Srivastava, K. Design, synthesis and evaluation of anticonvulsant activity of pyridinyl-pyrrolidones: A pharmacophore hybrid approach. Arch. Pharm. (Weinheim), 2012, 345(3), 185-194.
[http://dx.doi.org/10.1002/ardp.201100140] [PMID: 21997797]
[71]
Sigel, E.; Buhr, A. The benzodiazepine binding site of GABAA receptors. Trends Pharmacol. Sci., 1997, 18(11), 425-429.
[http://dx.doi.org/10.1016/S0165-6147(97)01118-8] [PMID: 9426470]
[72]
Ulloora, S.; Shabaraya, R.; Aamir, S.; Adhikari, A.V. New imidazo[1,2-a]pyridines carrying active pharmacophores: Synthesis and anticonvulsant studies. Bioorg. Med. Chem. Lett., 2013, 23(5), 1502-1506.
[http://dx.doi.org/10.1016/j.bmcl.2012.12.035] [PMID: 23352511]
[73]
Kang, Y.K.; Shin, K.J.; Yoo, K.H.; Seo, K.J.; Hong, C.Y.; Lee, C-S.; Park, S.Y.; Kim, D.J.; Park, S.W. Synthesis and antibacterial activity of new carbapenems containing isoxazole moiety. Bioorg. Med. Chem. Lett., 2000, 10(2), 95-99.
[http://dx.doi.org/10.1016/S0960-894X(99)00646-0] [PMID: 10673088]
[74]
Zhong, B.; Fan, Z.J.; Li, Z.M. Synthesis and biological activity of 2-substituted benzoxazole derivatives. Chin. J. Appl. Chem., 2003, 20(7), 684-686. [in chinese]
[75]
Kang, Y.K.; Shin, K.J.; Yoo, K.H.; Seo, K.J.; Hong, C.Y.; Lee, C.S.; Park, S.Y.; Kim, D.J.; Park, S.W. Synthesis and antibacterial activity of new carbapenems containing isoxazole moiety. Bioorg. Med. Chem. Lett., 2000, 10(2), 95-99.
[http://dx.doi.org/10.1016/S0960-894X(99)00646-0] [PMID: 10673088]
[76]
Huang, H.H.; Zhang, X.; Lin, Z.Y.; Chem, Q.H. Synthesis of the chrial 5-methyloxy-butyrolactone (3,4-d) 3-substituent isoxazoline derivatives. Chem. J. Chin. Univ., 2003, 24(11), 2000-2004. [in chinese]
[77]
Rovnyak, G.C.; Kimball, S.D.; Beyer, B.; Cucinotta, G.; DiMarco, J.D.; Gougoutas, J.; Hedberg, A.; Malley, M.; McCarthy, J.P.; Zhang, R. Calcium entry blockers and activators: Conformational and structural determinants of dihydropyrimidine calcium channel modulators. J. Med. Chem., 1995, 38(1), 119-129.
[http://dx.doi.org/10.1021/jm00001a017] [PMID: 7837222]
[78]
Atwal, K.S.; Rovnyak, G.C.; Kimball, S.D.; Floyd, D.M.; Moreland, S.; Swanson, B.N.; Gougoutas, J.Z.; Schwartz, J.; Smillie, K.M.; Malley, M.F. Dihydropyrimidine calcium channel blockers. 2. 3-substituted-4-aryl-1,4-dihydro-6-methyl-5-pyrimidinecarboxylic acid esters as potent mimics of dihydropyridines. J. Med. Chem., 1990, 33(9), 2629-2635.
[http://dx.doi.org/10.1021/jm00171a044] [PMID: 2391701]
[79]
Kappe, C.O. Biologically active dihydropyrimidones of the Biginelli-type--a literature survey. Eur. J. Med. Chem., 2000, 35(12), 1043-1052.
[http://dx.doi.org/10.1016/S0223-5234(00)01189-2] [PMID: 11248403]
[80]
Overman, L.E.; Rabinowitz, M.H.; Renhowe, P.A. Enantioselective total synthesis of. Ptilomycalin A. J. Am. Chem. Soc., 1995, 117, 2657-2658.
[http://dx.doi.org/10.1021/ja00114a034]
[81]
Patil, A.D.; Kumar, N.V.; Kokke, W.C.; Bean, M.F.; Freyer, A.J.; Brosse, C.D.; Mai, S.; Truneh, A.; Faulkner, D.J.; Carte, B.; Breen, A.L.; Hertzberg, R.P.; Johnson, R.K.; Westley, J.W.; Potts, B.C.M. Novel alkaloids from the Sponge batzella sp.: Inhibitors of HIV gpl20-Human CD4 Binding. J. Org. Chem., 1996, 60, 1182-1188.
[http://dx.doi.org/10.1021/jo00110a021]
[82]
Rovnyak, G.C.; Kimball, S.D.; Beyer, B.; Cucinotta, G.; DiMarco, J.D.; Gougoutas, J.; Hedberg, A.; Malley, M.; McCarthy, J.P.; Zhang, R.; Morelande, S. Calcium entry blockers and activators: conformational and structural determinants of dihydropyrimidine calcium channel modulators. J. Med. Chem., 1995, 38(1), 119-129.
[http://dx.doi.org/10.1021/jm00001a017] [PMID: 7837222]
[83]
Gökhan, N.; Yeşilada, A.; Uçar, G.; Erol, K.; Bilgin, A.A. 1-N-substituted thiocarbamoyl-3-phenyl-5-thienyl-2-pyrazolines: Synthesis and evaluation as MAO inhibitors. Arch. Pharm. (Weinheim), 2003, 336(8), 362-371.
[http://dx.doi.org/10.1002/ardp.200300732] [PMID: 14502756]
[84]
Grant, N.; Mishriky, N.; Asaad, F.M.; Fawzy, N.G. Pyridines and pyrazolines from salicylic acid derivatives with propenone residue and their antimicrobial properties. Pharmazie, 1998, 53(8), 543-547.
[http://dx.doi.org/10.1002/chin.199847057] [PMID: 9741063]
[85]
Ozdemir, Z.; Kandilci, H.B.; Gümüşel, B.; Caliş, U.; Bilgin, A.A. Synthesis and studies on antidepressant and anticonvulsant activities of some 3-(2-furyl)-pyrazoline derivatives. Eur. J. Med. Chem., 2007, 42(3), 373-379.
[http://dx.doi.org/10.1016/j.ejmech.2006.09.006] [PMID: 17069933]
[86]
Ead, H.A.; Hassaneen, H.M.; Abdallah, M.A.; Mousa, H.A.H. Synthesis and biological activities of some pyrrolopyrazoles and 2-pyrazolines. Arch. Pharm. (Weinheim), 1991, 324(1), 35-37.
[http://dx.doi.org/10.1002/ardp.19913240110] [PMID: 2043040]
[87]
Kunze, B.; Jansen, R.; Pridzun, L.; Jurkiewicz, E.; Hunsmann, G.; Höfle, G.; Reichenbach, H. Thiangazole, a new thiazoline antibiotic from Polyangium sp. (myxobacteria): Production, antimicrobial activity and mechanism of action. J. Antibiot. (Tokyo), 1993, 46(11), 1752-1755.
[http://dx.doi.org/10.7164/antibiotics.46.1752] [PMID: 8270498]
[88]
Nauduri, D.; Reddy, G.B.S. Antibacterials and antimycotics: Part 1: Synthesis and activity of 2-pyrazoline derivatives. Chem. Pharm. Bull. (Tokyo), 1998, 46(8), 1254-1260.
[http://dx.doi.org/10.1248/cpb.46.1254] [PMID: 9734312]
[89]
Palaska, E.; Aytemir, M.; Uzbay, I.T.; Erol, D. Synthesis and antidepressant activities of some 3,5-diphenyl-2-pyrazolines. Eur. J. Med. Chem., 2001, 36(6), 539-543.
[http://dx.doi.org/10.1016/S0223-5234(01)01243-0] [PMID: 11525844]
[90]
Vennerstrom, J.L.; Makler, M.T.; Angerhofer, C.K.; Williams, J.A. Antimalarial dyes revisited: Xanthenes, azines, oxazines, and thiazines. Antimicrob. Agents Chemother., 1995, 39(12), 2671-2677.
[http://dx.doi.org/10.1128/AAC.39.12.2671] [PMID: 8593000]
[91]
Sayle, K.L.; Bentley, J.; Boyle, F.T.; Calvert, A.H.; Cheng, Y.; Curtin, N.J.; Endicott, J.A.; Golding, B.T.; Hardcastle, I.R.; Jewsbury, P.; Mesguiche, V.; Newell, D.R.; Noble, M.E.M.; Parsons, R.J.; Pratt, D.J.; Wang, L.Z.; Griffin, R.J. Structure-based design of 2-arylamino-4-cyclohexylmethyl-5-nitroso-6-aminopyrimidine inhibitors of cyclin-dependent kinases 1 and 2. Bioorg. Med. Chem. Lett., 2003, 13(18), 3079-3082.
[http://dx.doi.org/10.1016/S0960-894X(03)00651-6] [PMID: 12941338]
[92]
Ingarsal, N.; Saravanan, G.; Amutha, P.; Nagarajan, S. Synthesis, in vitro antibacterial and antifungal evaluations of 2-amino-4-(1-naphthyl)-6-arylpyrimidines. Eur. J. Med. Chem., 2007, 42(4), 517-520.
[http://dx.doi.org/10.1016/j.ejmech.2006.09.012] [PMID: 17084947]
[93]
Meijer, L.H.P.; Pandit, U.K. NAD(P)H Models 201: Chemoselective metal ion catalyzed reduction of α-keto-β,γ-unsaturated esters by 1,4-dihydropyridine. Tetrahedron, 1985, 41(2), 467-472.
[http://dx.doi.org/10.1016/S0040-4020(01)96440-3]
[94]
Di Stilo, A.; Visentin, S.; Cena, C.; Gasco, A.M.; Ermondi, G.; Gasco, A. New 1,4-dihydropyridines conjugated to furoxanyl moieties, endowed with both nitric oxide-like and calcium channel antagonist vasodilator activities. J. Med. Chem., 1998, 41(27), 5393-5401.
[http://dx.doi.org/10.1021/jm9803267] [PMID: 9876109]
[95]
Edraki, N.; Mehdipour, A.R.; Khoshneviszadeh, M.; Miri, R. Dihydropyridines: Evaluation of their current and future pharmacological applications. Drug Discov. Today, 2009, 14(21-22), 1058-1066.
[http://dx.doi.org/10.1016/j.drudis.2009.08.004] [PMID: 19729074]
[96]
Kumar, A.; Maurya, R.A.; Sharma, S.; Kumar, M.; Bhatia, G. Synthesis and biological evaluation of N-aryl-1,4-dihydropyridines as novel antidyslipidemic and antioxidant agents. Eur. J. Med. Chem., 2010, 45(2), 501-509.
[http://dx.doi.org/10.1016/j.ejmech.2009.10.036] [PMID: 19962217]
[97]
Safak, C.; Simsek, R. Fused 1,4-dihydropyridines as potential calcium modulatory compounds. Mini Rev. Med. Chem., 2006, 6(7), 747-755.
[http://dx.doi.org/10.2174/138955706777698606] [PMID: 16842124]
[98]
Lager, E.; Nilsson, J.; Østergaard Nielsen, E.; Nielsen, M.; Liljefors, T.; Sterner, O. Affinity of 3-acyl substituted 4-quinolones at the benzodiazepine site of GABA(A) receptors. Bioorg. Med. Chem., 2008, 16(14), 6936-6948.
[http://dx.doi.org/10.1016/j.bmc.2008.05.049] [PMID: 18541432]
[99]
Lager, E.; Andersson, P.; Nilsson, J.; Pettersson, I.; Nielsen, E.Ø.; Nielsen, M.; Sterner, O.; Liljefors, T. 4-quinolone derivatives: High-affinity ligands at the benzodiazepine site of brain GABA A receptors. synthesis, pharmacology, and pharmacophore modeling. J. Med. Chem., 2006, 49(8), 2526-2533.
[http://dx.doi.org/10.1021/jm058057p] [PMID: 16610795]
[100]
Dekermendjian, K.; Kahnberg, P.; Witt, M-R.; Sterner, O.; Nielsen, M.; Liljefors, T. Structure-activity relationships and molecular modeling analysis of flavonoids binding to the benzodiazepine site of the rat brain GABA(A) receptor complex. J. Med. Chem., 1999, 42(21), 4343-4350.
[http://dx.doi.org/10.1021/jm991010h] [PMID: 10543878]
[101]
Kahnberg, P.; Lager, E.; Rosenberg, C.; Schougaard, J.; Camet, L.; Sterner, O.; Østergaard Nielsen, E.; Nielsen, M.; Liljefors, T. Refinement and evaluation of a pharmacophore model for flavone derivatives binding to the benzodiazepine site of the GABA(A) receptor. J. Med. Chem., 2002, 45(19), 4188-4201.
[http://dx.doi.org/10.1021/jm020839k] [PMID: 12213060]
[102]
Lukevics, E.; Segal, I.; Zablotskaya, A.; Germane, S. Synthesis and neurotropic activity of novel quinoline derivatives. Molecules, 1997, 2, 180-185.
[http://dx.doi.org/10.3390/21200180]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 23
ISSUE: 14
Year: 2019
Page: [1527 - 1538]
Pages: 12
DOI: 10.2174/1385272823666190802092406
Price: $58

Article Metrics

PDF: 18
HTML: 1