A Review of the Role of Amelogenin Protein in Enamel Formation and Novel Experimental Techniques to Study its Function

Author(s): Saqib Ali*, Imran Farooq.

Journal Name: Protein & Peptide Letters

Volume 26 , Issue 12 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Amelognein protein plays a vital role in the formation and mineralization of enamel matrix. Amelogenin structure is complex in nature and researchers have studied it with different experimental techniques. Considering its important role, there is a need to understand this important protein, which has been discussed in detail in this review. In addition, various experimental techniques to study amelogenin protein used previously have been tackled along with their advantages and disadvantages. A selection of 67 relevant articles/book chapters was included in this study. The review concluded that amelogenins act as nanospheres or spacers for the growth of enamel crystals. Various experimental techniques can be used to study amelogenins, however, their advantages and drawbacks should be kept in mind before performing analysis.

Keywords: Amelogenin, amelogenesis, enamel formation, techniques, nanospheres, mineralization.

[1]
AlShehab, A.H.; AlHazoom, A.A.; Alowa, M.H.; AlAli, H.A.; Abdulmohsen, A.A.; Farooq, I. Effect of bristle stiffness of manual toothbrushes on normal and demineralized human enamel-An in vitro profilometric study. Int. J. Dent. Hyg., 2018, 16(2), e128-e132.
[http://dx.doi.org/10.1111/idh.12332] [PMID: 29457353]
[2]
He, P.; Zhang, Y.; Kim, S.O.; Radlanski, R.J.; Butcher, K.; Schneider, R.A.; DenBesten, P.K. Ameloblast differentiation in the human developing tooth: effects of extracellular matrices. Matrix Biol., 2010, 29(5), 411-419.
[http://dx.doi.org/10.1016/j.matbio.2010.03.001] [PMID: 20211728]
[3]
Caruso, S.; Bernardi, S.; Pasini, M.; Giuca, M.R.; Docimo, R.; Continenza, M.A.; Gatto, R. The process of mineralisation in the development of human tooth. Eur. J. Paediatr. Dent., 2016, 17(4), 322-326.
[PMID: 28045323]
[4]
Smith, C.E. Cellular and chemical events during enamel maturation. Crit. Rev. Oral Biol. Med., 1998, 9(2), 128-161.
[http://dx.doi.org/10.1177/10454411980090020101] [PMID: 9603233]
[5]
Smith, C.E.; Nanci, A. Protein dynamics of amelogenesis. Anat. Rec., 1996, 245(2), 186-207.
[http://dx.doi.org/10.1002/(SICI)1097-0185(199606)245:2<186:AID-AR7>3.0.CO;2-V] [PMID: 8769663]
[6]
Robinson, C.; Brookes, S.J.; Shore, R.C.; Kirkham, J. The developing enamel matrix: nature and function. Eur. J. Oral Sci., 1998, 106(Suppl. 1), 282-291.
[http://dx.doi.org/10.1111/j.1600-0722.1998.tb02188.x] [PMID: 9541238]
[7]
Simmons, D.; Gu, T.T.; Krebsbach, P.H.; Yamada, Y.; MacDougall, M. Identification and characterization of a cDNA for mouse ameloblastin. Connect. Tissue Res., 1998, 39(1-3), 3-12.
[http://dx.doi.org/10.3109/03008209809023907] [PMID: 11062984]
[8]
Gibson, C.W. The amelogenin proteins and enamel development in humans and mice. J. Oral Biosci., 2011, 53(3), 248-256.
[http://dx.doi.org/10.1016/S1349-0079(11)80008-3] [PMID: 22215951]
[9]
Liu, H.; Yan, X.; Pandya, M.; Luan, X.; Diekwisch, T.G. Daughters of the enamel organ: development, fate, and function of the stratum intermedium, stellate reticulum, and outer enamel epithelium. Stem Cells Dev., 2016, 25(20), 1580-1590.
[http://dx.doi.org/10.1089/scd.2016.0267] [PMID: 27611344]
[10]
Bartlett, J.D. Dental enamel development: proteinases and their enamel matrix substrates. ISRN Dent., 2013, 2013684607
[http://dx.doi.org/10.1155/2013/684607] [PMID: 24159389]
[11]
Nanci, A. Ten Cate’s Oral Histology, Development, Structure, and Function, 9th Edition,; Elsevier: Amsterdam, Netherlands, 2017.
[12]
Pindborg, J.J.; Weinmann, J.P. Morphologic and functional correlations in the enamel organ of the rat incisor during amelogenesis. Acta Anat. (Basel), 1959, 36(4), 367-381.
[http://dx.doi.org/10.1159/000141450] [PMID: 13660646]
[13]
Rönnholm, E. An electron microscopic study of the amelogenesis in human teeth. I. The fine structure of the ameloblasts. J. Ultrastruct. Res., 1962, 6(2), 229-248.
[http://dx.doi.org/10.1016/S0022-5320(62)90055-2] [PMID: 14493687]
[14]
Daculsi, G.; Menanteau, J.; Kerebel, L.M.; Mitre, D. Length and shape of enamel crystals. Calcif. Tissue Int., 1984, 36(5), 550-555.
[http://dx.doi.org/10.1007/BF02405364] [PMID: 6441627]
[15]
Hu, J.C-C.; Chun, Y-H.P.; Al Hazzazzi, T.; Simmer, J.P. Enamel formation and amelogenesis imperfecta. Cells Tissues Organs (Print), 2007, 186(1), 78-85.
[http://dx.doi.org/10.1159/000102683] [PMID: 17627121]
[16]
Termine, J.D.; Belcourt, A.B.; Christner, P.J.; Conn, K.M.; Nylen, M.U. Properties of dissociatively extracted fetal tooth matrix proteins. I. Principal molecular species in developing bovine enamel. J. Biol. Chem., 1980, 255(20), 9760-9768.
[PMID: 7430099]
[17]
Wright, J.T. The molecular etiologies and associated phenotypes of amelogenesis imperfecta. Am. J. Med. Genet. A., 2006, 140(23), 2547-2555.
[http://dx.doi.org/10.1002/ajmg.a.31358] [PMID: 16838342]
[18]
Tao, J.; Buchko, G.W.; Shaw, W.J.; De Yoreo, J.J.; Tarasevich, B.J. De ; Yoreo, J.J.; Tarasevich, B.J. Sequence-defined energetic shifts control the disassembly kinetics and microstructure of amelogenin adsorbed onto hydroxyapatite (100). Langmuir, 2015, 31(38), 10451-10460.
[http://dx.doi.org/10.1021/acs.langmuir.5b02549] [PMID: 26381243]
[19]
Fincham, A.G.; Belcourt, A.B. Amelogenin Biochemistry: Current Concepts. In: The Chemistry and Biology of Mineralized Tissues; Butler, W.T., Ed.; Ebsco Media: Birmingham, 1985.
[20]
Ruan, Q.; Moradian-Oldak, J. Amelogenin and enamel biomimetics. J. Mater. Chem. B Mater. Biol. Med., 2015, 3, 3112-3129.
[http://dx.doi.org/10.1039/C5TB00163C] [PMID: 26251723]
[21]
Tompa, P. Intrinsically unstructured proteins. Trends Biochem. Sci., 2002, 27(10), 527-533.
[http://dx.doi.org/10.1016/S0968-0004(02)02169-2] [PMID: 12368089]
[22]
Hart, P.S.; Aldred, M.J.; Crawford, P.J.; Wright, N.J.; Hart, T.C.; Wright, J.T. Amelogenesis imperfecta phenotype-genotype correlations with two amelogenin gene mutations. Arch. Oral Biol., 2002, 47(4), 261-265.
[http://dx.doi.org/10.1016/S0003-9969(02)00003-1] [PMID: 11922869]
[23]
Chan, H.C.; Estrella, N.M.; Milkovich, R.N.; Kim, J.W.; Simmer, J.P.; Hu, J.C. Target gene analyses of 39 amelogenesis imperfecta kindreds. Eur. J. Oral Sci., 2011, 119(Suppl. 1), 311-323.
[http://dx.doi.org/10.1111/j.1600-0722.2011.00857.x]
[24]
Deeley, K.; Letra, A.; Rose, E.K.; Brandon, C.A.; Resick, J.M.; Marazita, M.L.; Vieira, A.R. Possible association of amelogenin to high caries experience in a Guatemalan-Mayan population. Caries Res., 2008, 42(1), 8-13.
[http://dx.doi.org/10.1159/000111744] [PMID: 18042988]
[25]
Wang, L.; Guan, X.; Yin, H.; Moradian-Oldak, J.; Nancollas, G.H. Mimicking the self-organized microstructure of tooth enamel. J. Phys. Chem. C Nanomater. Interfaces, 2008, 112(15), 5892-5899.
[http://dx.doi.org/10.1021/jp077105+] [PMID: 19169386]
[26]
Iijima, M.; Moradian-Oldak, J. Interactions of amelogenins with octacalcium phosphate crystal faces are dose dependent. Calcif. Tissue Int., 2004, 74(6), 522-531.
[http://dx.doi.org/10.1007/s00223-002-0011-3] [PMID: 15354860]
[27]
Beniash, E.; Metzler, R.A.; Lam, R.S.; Gilbert, P.U. Transient amorphous calcium phosphate in forming enamel. J. Struct. Biol., 2009, 166(2), 133-143.
[http://dx.doi.org/10.1016/j.jsb.2009.02.001] [PMID: 19217943]
[28]
Lu, Y.; Papagerakis, P.; Yamakoshi, Y.; Hu, J.C.; Bartlett, J.D.; Simmer, J.P. Functions of KLK4 and MMP-20 in dental enamel formation. Biol. Chem., 2008, 389(6), 695-700.
[http://dx.doi.org/10.1515/BC.2008.080] [PMID: 18627287]
[29]
Bansal, A.K.; Shetty, D.C.; Bindal, R.; Pathak, A. Amelogenin: A novel protein with diverse applications in genetic and molecular profiling. J. Oral Maxillofac. Pathol., 2012, 16(3), 395-399.
[http://dx.doi.org/10.4103/0973-029X.102495] [PMID: 23248473]
[30]
Wright, J.T.; Li, Y.; Suggs, C.; Kuehl, M.A.; Kulkarni, A.B.; Gibson, C.W. The role of amelogenin during enamel-crystallite growth and organization in vivo. Eur. J. Oral Sci., 2011, 119(Suppl. 1), 65-69.
[http://dx.doi.org/10.1111/j.1600-0722.2011.00883.x] [PMID: 22243229]
[31]
Robinson, C.; Fuchs, P.; Weatherell, J.A. The appearance of developing rat incisor enamel using a freeze fracturing technique. J. Cryst. Growth, 1981, 53, 160-165.
[http://dx.doi.org/10.1016/0022-0248(81)90062-2]
[32]
Veis, A.; Tompkins, K.; Alvares, K.; Wei, K.; Wang, L.; Wang, X.S.; Brownell, A.G.; Jengh, S.M.; Healy, K.E. Specific amelogenin gene splice products have signaling effects on cells in culture and in implants in vivo. J. Biol. Chem., 2000, 275(52), 41263-41272.
[http://dx.doi.org/10.1074/jbc.M002308200] [PMID: 10998415]
[33]
Papagerakis, P.; MacDougall, M.; Hotton, D.; Bailleul-Forestier, I.; Oboeuf, M.; Berdal, A. Expression of amelogenin in odontoblasts. Bone, 2003, 32(3), 228-240.
[http://dx.doi.org/10.1016/S8756-3282(02)00978-X] [PMID: 12667550]
[34]
Warotayanont, R.; Zhu, D.; Snead, M.L.; Zhou, Y. Leucine-rich amelogenin peptide induces osteogenesis in mouse embryonic stem cells. Biochem. Biophys. Res. Commun., 2008, 367(1), 1-6.
[http://dx.doi.org/10.1016/j.bbrc.2007.12.048] [PMID: 18086559]
[35]
Hoang, A.M.; Klebe, R.J.; Steffensen, B.; Ryu, O.H.; Simmer, J.P.; Cochran, D.L. Amelogenin is a cell adhesion protein. J. Dent. Res., 2002, 81(7), 497-500.
[http://dx.doi.org/10.1177/154405910208100713] [PMID: 12161464]
[36]
Dufrêne, Y.F. Atomic force microscopy, a powerful tool in microbiology. J. Bacteriol., 2002, 184(19), 5205-5213.
[http://dx.doi.org/10.1128/JB.184.19.5205-5213.2002] [PMID: 12218005]
[37]
Blanchard, C.R. Atomic force microscopy. Chem. Educ., 1996, 1, 1-8.
[http://dx.doi.org/10.1007/s00897960059a]
[38]
Diekwisch, T.G. Subunit compartments of secretory stage enamel matrix. Connect. Tissue Res., 1998, 38(1-4), 101-111.
[http://dx.doi.org/10.3109/03008209809017026] [PMID: 11063019]
[39]
Fincham, A.G.; Moradian-Oldak, J.; Simmer, J.P.; Sarte, P.; Lau, E.C.; Diekwisch, T.; Slavkin, H.C. Self-assembly of a recombinant amelogenin protein generates supramolecular structures. J. Struct. Biol., 1994, 112(2), 103-109.
[http://dx.doi.org/10.1006/jsbi.1994.1011] [PMID: 8060728]
[40]
Wen, H.B.; Fincham, A.G.; Moradian-Oldak, J. Progressive accretion of amelogenin molecules during nanospheres assembly revealed by atomic force microscopy. Matrix Biol., 2001, 20(5-6), 387-395.
[http://dx.doi.org/10.1016/S0945-053X(01)00144-5] [PMID: 11566273]
[41]
Habelitz, S.; Kullar, A.; Marshall, S.J.; DenBesten, P.K.; Balooch, M.; Marshall, G.W.; Li, W. Amelogenin-guided crystal growth on fluoroapatite glass-ceramics. J. Dent. Res., 2004, 83(9), 698-702.
[http://dx.doi.org/10.1177/154405910408300908] [PMID: 15329375]
[42]
Moradian-Oldak, J.; Du, C.; Falini, G. On the formation of amelogenin microribbons. Eur. J. Oral Sci., 2006, 114(Suppl. 1), 289-296.
[http://dx.doi.org/10.1111/j.1600-0722.2006.00285.x] [PMID: 16674701]
[43]
Robson, A.L.; Dastoor, P.C.; Flynn, J.; Palmer, W.; Martin, A.; Smith, D.W.; Woldu, A.; Hua, S. Advantages and limitations of current imaging techniques for characterizing liposome morphology. Front. Pharmacol., 2018, 9, 80.
[http://dx.doi.org/10.3389/fphar.2018.00080] [PMID: 29467660]
[44]
Bozzola, J.J.; Russell, L.D. Electron microscopy: principles and techniques for biologists; Jones & Bartlett Learning: Burlington, USA, 1999.
[45]
Fincham, A.G.; Moradian-Oldak, J.; Diekwisch, T.G.; Lyaruu, D.M.; Wright, J.T.; Bringas, P., Jr; Slavkin, H.C. Evidence for amelogenin “nanospheres” as functional components of secretory-stage enamel matrix. J. Struct. Biol., 1995, 115(1), 50-59.
[http://dx.doi.org/10.1006/jsbi.1995.1029] [PMID: 7577231]
[46]
Carneiro, K.M.; Zhai, H.; Zhu, L.; Horst, J.A.; Sitlin, M.; Nguyen, M.; Wagner, M.; Simpliciano, C.; Milder, M.; Chen, C.L.; Ashby, P.; Bonde, J.; Li, W.; Habelitz, S. Amyloid-like ribbons of amelogenins in enamel mineralization. Sci. Rep., 2016, 6, 23105.
[http://dx.doi.org/10.1038/srep23105] [PMID: 27009419]
[47]
Fang, P.A.; Margolis, H.C.; Conway, J.F.; Simmer, J.P.; Dickinson, G.H.; Beniash, E. Cryogenic transmission electron microscopy study of amelogenin self-assembly at different pH. Cells Tissues Organs (Print), 2011, 194(2-4), 166-170.
[http://dx.doi.org/10.1159/000324250] [PMID: 21597263]
[48]
Flegler, S.L.; Heckman, J.W., Jr Klomparens, K.L. Scanning and transmission electron microscopy: an introduction; Oxford University Press: UK, 1993.
[49]
Paradella, C.T.; Bottino, M.A. Scanning electron microscopy in modern dentistry research. Braz. Dent. Sci., 2012, 15, 43-48.
[http://dx.doi.org/10.14295/bds.2012.v15i2.798]
[50]
Kowoll, T.; Müller, E.; Fritsch-Decker, S.; Hettler, S.; Störmer, H.; Weiss, C.; Gerthsen, D. Contrast of backscattered electron SEM images of nanoparticles on substrates with complex structure. Scanning, 2017, 20174907457
[http://dx.doi.org/10.1155/2017/4907457]
[51]
Du, C.; Falini, G.; Fermani, S.; Abbott, C.; Moradian-Oldak, J. Supramolecular assembly of amelogenin nanospheres into birefringent microribbons. Science, 2005, 307(5714), 1450-1454.
[http://dx.doi.org/10.1126/science.1105675] [PMID: 15746422]
[52]
Halthur, T.J.; Björklund, A.; Elofsson, U.M. Self-assembly/aggregation behavior and adsorption of enamel matrix derivate protein to silica surfaces. Langmuir, 2006, 22(5), 2227-2234.
[http://dx.doi.org/10.1021/la0525123] [PMID: 16489811]
[53]
Iijima, M.; Fan, D.; Bromley, K.M.; Sun, Z.; Moradian-Oldak, J. Tooth enamel proteins enamelin and amelogenin cooperate to regulate the growth morphology of octacalcium phosphate crystals. Cryst. Growth Des., 2010, 10(11), 4815-4822.
[http://dx.doi.org/10.1021/cg100696r] [PMID: 21483648]
[54]
Du, C.; Fan, D.; Sun, Z.; Fan, Y.; Lakshminarayanan, R.; Moradian-Oldak, J. Immunogold labeling of amelogenin in developing porcine enamel revealed by field emission scanning electron microscopy. Cells Tissues Organs (Print), 2009, 189(1-4), 207-211.
[http://dx.doi.org/10.1159/000151385] [PMID: 18701812]
[55]
Villinger, C.; Schauflinger, M.; Gregorius, H.; Kranz, C.; Höhn, K.; Nafeey, S.; Walther, P. Three-dimensional imaging of adherent cells using FIB/SEM and STEM. Methods Mol. Biol., 2014, 1117, 617-638.
[http://dx.doi.org/10.1007/978-1-62703-776-1_27] [PMID: 24357382]
[56]
Syed, J. Scanning electron microscopy in oral research. J. Pak. Dent. Assoc., 2017, 26, 189-195.
[http://dx.doi.org/10.25301/JPDA.264.189]
[57]
Brown, W. Dynamic light scattering: the method and some applications; Clarendon Press: Oxford, United Kingdom, 1993.
[58]
Aichmayer, B.; Margolis, H.C.; Sigel, R.; Yamakoshi, Y.; Simmer, J.P.; Fratzl, P. The onset of amelogenin nanosphere aggregation studied by small-angle X-ray scattering and dynamic light scattering. J. Struct. Biol., 2005, 151(3), 239-249.
[http://dx.doi.org/10.1016/j.jsb.2005.06.007] [PMID: 16125972]
[59]
Moradian-Oldak, J.; Simmer, J.P.; Lau, E.C.; Diekwisch, T.; Slavkin, H.C.; Fincham, A.G. A review of the aggregation properties of a recombinant amelogenin. Connect. Tissue Res., 1995, 32(1-4), 125-130.
[http://dx.doi.org/10.3109/03008209509013714] [PMID: 7554908]
[60]
Jose, N.; Deshmukh, G.P.; Ravindra, M.R. Dynamic light scattering: advantages and applications. Acta. Sci. Nutr. Health., 2019, 3, 50-52.
[61]
Garcia-Caurel, E.; De Martino, A.; Gaston, J.P.; Yan, L. Application of spectroscopic ellipsometry and Mueller ellipsometry to optical characterization. Appl. Spectrosc., 2013, 67(1), 1-21.
[http://dx.doi.org/10.1366/12-06883] [PMID: 23317664]
[62]
Elwing, H. Protein absorption and ellipsometry in biomaterial research. Biomaterials, 1998, 19(4-5), 397-406.
[http://dx.doi.org/10.1016/S0142-9612(97)00112-9] [PMID: 9677153]
[63]
Pascu, R.; Dinescu, M. Spectroscopic ellipsometry. Rom. Rep. Phys., 2012, 64, 135-142.
[64]
Tonda-Turo, C.; Carmagnola, I.; Ciardelli, G. Quartz crystal microbalance with dissipation monitoring: a powerful method to predict the in vivo behavior of bioengineered surfaces. Front. Bioeng. Biotechnol., 2018, 6, 158.
[http://dx.doi.org/10.3389/fbioe.2018.00158] [PMID: 30425985]
[65]
Tarasevich, B.J.; Howard, C.J.; Larson, J.L.; Snead, M.L.; Simmer, J.P.; Paine, M.; Shaw, W.J. The nucleation and growth of calcium phosphate by amelogenin. J. Cryst. Growth, 2007, 304(2), 407-415.
[http://dx.doi.org/10.1016/j.jcrysgro.2007.02.035] [PMID: 19079557]
[66]
Connelly, C.; Cicuto, T.; Leavitt, J.; Petty, A.; Litman, A.; Margolis, H.C.; Gerdon, A.E. Dynamic interactions of amelogenin with hydroxyapatite surfaces are dependent on protein phosphorylation and solution pH. Colloids Surf. B Biointerfaces, 2016, 148, 377-384.
[http://dx.doi.org/10.1016/j.colsurfb.2016.09.010] [PMID: 27632699]
[67]
Ngo, V.K.T.; Nguyen, D.G.; Nguyen, H.P.; Nguyen, T.K.; Huynh, T.P.; Lam, Q.V.; Huynh, T.D.; Truong, T.N. Quartz crystal microbalance (QCM) as biosensor for the detecting of Escherichia coli O157: H7. Adv. Nat. Sci: Nanosci. Nanotechnol., 2014, 5045004


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 26
ISSUE: 12
Year: 2019
Page: [880 - 886]
Pages: 7
DOI: 10.2174/0929866526666190731120018
Price: $65

Article Metrics

PDF: 15
HTML: 1