Synthesis of 7,3'-Epoxy-8,4'-Oxyneolignane-1’-Carboxylic Acid from Natural Eusiderin A and its Activity Against Trichophyton mentagrophytes

Author(s): Muhaimin Muhaimin*, Syamsurizal Syamsurizal, Madyawati Latief, Rahmi Iskandar, Anis Yohana Chaerunisaa, Didin Mujahidin.

Journal Name: Current Organocatalysis

Volume 7 , Issue 1 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Eusiderin A is a neolignan derivate, which makes up the majority of the secondary metabolite of Eusideroxylon zwageri. It has been reported as a potent biopesticide and antifungal agent. Previous studies on the oxidation of terminal methylene of the allylic chain in Eusiderin A have been able to produce primary alcohol, pinacol, and an aldehyde which demonstrated strong activity against plant pathogenic fungi, therefore activity against dermal fungi needs to be studied.

Objective: The current study aims to improve the hydrophilicity of Eusiderin A via oxidation of the allylic chain in order to derive a potent antifungal property.

Methods: Transformation of Eusiderin A has been achieved by using the Wacker Oxidation Method in combination with the α-Hydroxylation-Ketone Method to produce 7,3’-epoxy-8,4’-oxyneolignane-1’- carboxylic acid. The structure of the 7,3’-epoxy-8,4’-oxyneolignane-1’-carboxylic acid was identified from spectroscopy data. The in vitro antifungal activity study was performed using the paper disc diffusion method against Trichophyton mentagrophytes.

Results: New molecule of natural Eusiderin A through the oxidation of the allylic chain to increase the hydrophilicity of Eusiderin A has been designed. Based on the observed UV, IR, 1H and 13C-NMR, and MS spectra, it can be stated that the 7,3’-epoxy-8,4’-oxyneolignane-1’-carboxylic acid has been formed. At a concentration of 50 ppm, this compound showed antifungal activity against Trichophyton mentagrophytes.

Conclusion: It can be concluded that the 7,3’-epoxy-8,4’-oxyneolignane-1’-carboxylic acid is a potent antifungal agent as it is able to inhibit the Trichophyton mentagrophytes colonies growth.

Keywords: Antifungal, eusiderin A, 7, 3’-epoxy-8, 4’-oxyneolignane-1’-carboxylic acid, oxidation, Trichophyton mentagrophytes.

[1]
Hobbs, J.J.; King, K. The chemistry of extractives form hardwoods. Eusiderin, a possible by-product of lignin synthesis in Eusideroxylon zwageri. J. Chem. Soc., 1960, 1, 4732-4738.
[http://dx.doi.org/10.1039/jr9600004732]
[2]
Muhaimin; Syamsurizal; Chaerunisaa, A.Y.; Sinaga M.S. Eusiderin I from Eusideroxylon zwageri as antifungal agent against plant pathogenic fungus. Int. J. Chemtech Res., 2016, 9(5), 418-424.
[3]
Miles, D.H.; Hankinson, B.L.; Randle, S.A. Insect antifeedant from the peruvian plant Alchornea triplinervia. J. Am. Chem. Soc., 1985, 276, 469-476.
[4]
Syamsurizal; Afrida. Modification of allylic moiety of eusiderin A to enhance the antifeedant potency. J. Nat. Sci. Res., 2014, 4, 7-10.
[5]
Syafii, W.; Yoshimoto, T.; Samejima, M. Neolignans from the heartwood of ulin (Eusideroxylon zwageri). Mokuzai Gakkaishi J. Japan Wood Res. Soc, 1985, 31(11), 952-955.
[6]
Muhaimin; Syamsurizal; Latief, M.; Anggraini, S.; Mujahidin, D. Synthesis of acetyl propylen ester eusiderin A and its activity againts Trichophyton mentagrophyte. Res. J. Pharm. Biol. Chem. Sci., 2017, 8(1S), 141-148.
[7]
Syafii, W.; Samejima, M.; Yoshimoto, T. The role of extractives in decay resistance of ulin wood (Eusideroxylon zwageri, T.et. B). Bull. Tokyo Univ. For., 1987, 77, 1-8.
[8]
Abdelgaleil, S.A.M.; El-Aswad, A.F. Antifeedant and growth inhibitory effects of tetranortriterpenoids isolated from three meliaceous species on the cotton leafworm, Spodoptera littoralis (Boisd). J. Appl. Sci. Res., 2005, 1(2), 234-241.
[9]
Syamsurizal; Afrida. Synthesis and structure activity relationships of eusiderin A derivatives as antifeedant. J. Chem. Materials Res., 2012, 2(7), 64-71.
[10]
Zhang, X.; Wang, Y.; Chi, W.; Shi, Y.; Chen, S.; Lin, D.; Jin, Y. Metalloprotease genes of Trichophyton mentagrophytes are important for pathogenicity. Med. Mycol., 2014, 52(1), 1-10.
[http://dx.doi.org/10.3109/13693786.2013.811552] [PMID: 23859078]
[11]
Dai, P.; Lv, Y.; Gao, Y.; Gong, X.; Zhang, Y.; Zhang, X. ZafA gene is important for Trichophyton mentagrophytes growth and pathogenicity. Int. J. Mol. Sci., 2019, 20(4), 848-862.
[http://dx.doi.org/10.3390/ijms20040848] [PMID: 30781401]
[12]
Chinnapun, D. Virulence factors involved in pathogenicity of dermatophytes. Walailak J. Sci. Technol., 2015, 12(7), 573-580.
[13]
Shi, Y.; Niu, Q.; Yu, X.; Jia, X.; Wang, J.; Lin, D.; Jin, Y. Assessment of the function of SUB6 in the pathogenic dermatophyte Trichophyton mentagrophytes. Med. Mycol., 2016, 54, 59-71.
[http://dx.doi.org/10.1093/mmy/myv071] [PMID: 26333355]
[14]
Berbee, M.L. The phylogeny of plant and animal pathogens in the Ascomycota. Physiol. Mol. Plant Pathol., 2001, 59, 165-187.
[http://dx.doi.org/10.1006/pmpp.2001.0355]
[15]
Haney, C.H.; Urbach, J.; Ausubel, F.M. Differences and similarities: Innate immunity in plants and animals. Biochemist (Lond.), 2014, 36(5), 40-44.
[16]
Sexton, A.C.; Howlett, B.J. Parallels in fungal pathogenesis on plant and animal hosts. Eukaryot. Cell, 2006, 5(12), 1941-1949.
[http://dx.doi.org/10.1128/EC.00277-06] [PMID: 17041185]
[17]
Miller, D.G.; Wayner, D.D.M. Improved method for the Wacker oxidation of cyclic and internal olefins. J. Org. Chem., 1990, 55(9), 2924-2927.
[http://dx.doi.org/10.1021/jo00296a067]
[18]
Barthos, R.; Novodárszki, G.; Valyon, J. Heterogeneous catalytic Wacker oxidation of ethylene over oxide-supported Pd/VOx catalysts: the support effect. React. Kinet. Mech. Catal., 2017, 121(1), 17-29.
[http://dx.doi.org/10.1007/s11144-016-1123-5]
[19]
Costa, M.S.; Meireles, A.L.P.; Gusevskaya, E.V. Aerobic Palladium‐Catalyzed Oxidations in the Upgrading of Biorenewables: Oxidation of β‐Ionone and α‐Ionone. Asian J. Org. Chem., 2017, 6(11), 1628-1634.
[http://dx.doi.org/10.1002/ajoc.201700337]
[20]
Liu, B.; Jin, F.; Wang, T.; Yuan, X.; Han, W. Wacker‐type oxidation using an iron catalyst and ambient air: Application to late‐stage oxidation of complex molecules. Angew. Chem. Int. Ed. Engl., 2017, 56(41), 12712-12717.
[http://dx.doi.org/10.1002/anie.201707006] [PMID: 28815838]
[21]
Wang, Z.; Orellana, A. Convenient access to meta‐substituted phenols by palladium‐patalyzed Suzuki–Miyaura cross‐coupling and oxidation. Chemistry, 2017, 23(47), 11445-11449.
[http://dx.doi.org/10.1002/chem.201702651] [PMID: 28675764]
[22]
Chai, H.; Cao, Q.; Dornan, L.M.; Hughes, N.L.; Brown, C.L.; Nockemann, P.; Li, J.; Muldoon, M.J. Cationic palladium(II) complexes for catalytic Wacker‐type oxidation of styrenes to ketones using O2 as the sole oxidant. Eur. J. Inorg. Chem., 2017, 47, 5604-5608.
[http://dx.doi.org/10.1002/ejic.201700931]
[23]
Mecozzi, F.; Dong, J.J.; Saisaha, P.; Browne, W.R. Oxidation of vicinal diols to α-hydroxy ketones with H2O2 and a simple manganese catalyst. Eur. J. Org. Chem., 2017, 2017(46), 6919-6925.
[http://dx.doi.org/10.1002/ejoc.201701314] [PMID: 29398954]
[24]
Liang, Y.F.; Wu, K.; Song, S.; Li, X.; Huang, X.; Jiao, N. I2- or NBS-catalyzed highly efficient α-hydroxylation of ketones with dimethyl sulfoxide. Org. Lett., 2015, 17(4), 876-879.
[http://dx.doi.org/10.1021/ol5037387] [PMID: 25650782]
[25]
Voutyritsa, E.; Theodorou, A.; Kokotos, C.G. Green organocatalytic α-hydroxylation of ketones. Org. Biomol. Chem., 2016, 14(24), 5708-5713.
[http://dx.doi.org/10.1039/C6OB00036C] [PMID: 26867154]
[26]
Muhaimin; Harizon; Sinaga, M.S.; Syamsurizal; Afrida. Antifungal Potentials of Eusiderin A from Eusideroxylon zwagery. Bull. Soc. Nat. Prod. Chem., 2007, 7(1), 1-4.
[27]
Bueno, A.C.; Souza, A.O.; Gusevskaya, E.V. Palladium‐catalyzed allylic oxidation of monoterpenic alkenes with molecular oxygen. ChemCatChem, 2012, 4(9), 1382-1388.
[http://dx.doi.org/10.1002/cctc.201200066]
[28]
Michael, M.; Lerch, B.M.; Zachary, K.; Wickens, B.M.; Robert, H.G. Rapid access to β‐trifluoromethyl‐substituted ketones: Harnessing inductive effects in Wacker‐type oxidations of internal alkenes. Angew. Chem. Int. Ed., 2014, 126(33), 8798-8802.
[http://dx.doi.org/10.1002/ange.201404712]
[29]
Wickens, Z.K.; Skakuj, K.; Morandi, B.; Grubbs, R.H. Catalyst-controlled Wacker-type oxidation: facile access to functionalized aldehydes. J. Am. Chem. Soc., 2014, 136(3), 890-893.
[http://dx.doi.org/10.1021/ja411749k] [PMID: 24410719]
[30]
Wang, Y.F.; Gao, Y.R.; Mao, S.; Zhang, Y.L.; Guo, D.D.; Yan, Z.L.; Guo, S.H.; Wang, Y.Q. Wacker-type oxidation and dehydrogenation of terminal olefins using molecular oxygen as the sole oxidant without adding ligand. Org. Lett., 2014, 16(6), 1610-1613.
[http://dx.doi.org/10.1021/ol500218p] [PMID: 24606159]
[31]
Mitsudome, T.; Yoshida, S.; Mizugaki, T.; Jitsukawa, K.; Kaneda, K. Highly atom-efficient oxidation of electron-deficient internal olefins to ketones using a palladium catalyst. Angew. Chem. Int. Ed. Engl., 2013, 52(23), 5961-5964.
[http://dx.doi.org/10.1002/anie.201301611] [PMID: 23610030]
[32]
Morandi, B.; Wickens, Z.K.; Grubbs, R.H. Practical and general palladium-catalyzed synthesis of ketones from internal olefins. Angew. Chem. Int. Ed. Engl., 2013, 52(10), 2944-2948.
[http://dx.doi.org/10.1002/anie.201209541] [PMID: 23325587]
[33]
Wickens, Z.K.; Morandi, B.; Grubbs, R.H. Aldehyde-selective Wacker-type oxidation of unbiased alkenes enabled by a nitrite co-catalyst. Angew. Chem. Int. Ed. Engl., 2013, 52(43), 11257-11260.
[http://dx.doi.org/10.1002/anie.201306756] [PMID: 24039135]
[34]
Zhang, Z.; Kumamoto, Y.; Hashiguchi, T.; Mamba, T.; Murayama, H.; Yamamoto, E.; Ishida, T.; Honma, T.; Tokunaga, M. Wacker oxidation of terminal alkenes over ZrO2‐supported Pd nanoparticles under acid‐ and cocatalyst‐free conditions. ChemSusChem, 2017, 10(17), 3482-3489.
[http://dx.doi.org/10.1002/cssc.201701016] [PMID: 28834377]
[35]
Shin, S.; Lim, S. Antifungal effects of herbal essential oils alone and in combination with ketoconazole against Trichophyton spp. J. Appl. Microbiol., 2004, 97(6), 1289-1296.
[http://dx.doi.org/10.1111/j.1365-2672.2004.02417.x] [PMID: 15546420]
[36]
Gavanji, S.; Zaker, S.R.; Nejad, Z.G.; Bakhtari, A.; Bidabadi, E.S.; Larki, B. Comparative efficacy of herbal essences with amphotricin B and ketoconazole on Candida albicans in the in vitro condition. Integr. Med. Res., 2015, 4(2), 112-118.
[http://dx.doi.org/10.1016/j.imr.2015.01.003] [PMID: 28664116]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 7
ISSUE: 1
Year: 2020
Page: [44 - 54]
Pages: 11
DOI: 10.2174/2213337206666190730144041

Article Metrics

PDF: 9
HTML: 2

Special-new-year-discount