Bioactive Proteins in Channa striata Promote Wound Healing through Angiogenesis and Cell Proliferation

Author(s): Soon Hong Kwan, Nur Hidayah Kaz Abdul Aziz, Mohd Nazri Ismail*.

Journal Name: Protein & Peptide Letters

Volume 27 , Issue 1 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Channa striata are speculated to contain bioactive proteins with the ability to enhancing wound healing. It is commonly consumed after surgery for a faster recovery of the wound.

Objective: To identify the bioactive proteins and evaluate their ability in cell proliferation and angiogenesis promotion.

Material and Methods: Freeze-Dried Water Extracts (FDWE) and Spray-Dried Water Extracts (SDWE) of C. striata were tested with MTT assay using EA.hy926 endothelial cell line and ex-vivo aortic ring assay. Later the proteins were fractionated and analysed using an LC-QTOF mass spectrometer. The data generated were matched with human gene database for protein similarity and pathway identification.

Results: Both samples have shown positive cell proliferation and pro-angiogenic activity. Four essential proteins/genes were identified, which are collagen type XI, actin 1, myosin light chain and myosin heavy chain. The pathways discovered that related to these proteins are integrin pathway, Slit-Robo signalling pathway and immune response C-C Chemokine Receptor-3 signalling pathway in eosinophils, which contribute towards wound healing mechanism.

Conclusions: The results presented have demonstrated that C. striata FDWE and SDWE protein fractions contain bioactive proteins that are highly similar to human proteins and thus could be involved in the wound healing process via specific biological pathways.

Keywords: Angiogenesis, bioactive, bioinformatics, cell proliferation, Channa striata, protein, wound healing.

[1]
Mohammad Mohsin, A.; Ambak, M.A. Freshwater fishes of Peninsular Malaysia; Universiti Pertanian Malaysia, 1983.
[2]
Mustafa, A.; Sujuti, H.; Permatasari, N.; Widodo, M.A. Determination of nutrient contents and amino acid composition of Pasuruan Channa striata extract. IEESE Int. J. Sci. Technol., 2013, 2, 1.
[3]
Mustafa, A.; Widodo, M.A.; Kristianto, Y. Albumin and zinc content of snakehead fish (Channa striata) extract and its role in health. IEESE Int. J. Sci. Technol., 2012, 1, 1.
[4]
Mohd, S.M.; Abdul Manan, M.J. Therapeutic potential of the haruan (Channa striatus): from food to medicinal uses. Malays. J. Nutr., 2012, 18(1), 125-136.
[PMID: 23713236]
[5]
Rahayu, P.; Marcelline, F.; Sulistyaningrum, E.; Suhartono, M.T.; Tjandrawinata, R.R. Potential effect of striatin (DLBS0333), a bioactive protein fraction isolated from Channa striata for wound treatment. Asian Pac. J. Trop. Biomed., 2016, 6, 1001-1007.
[http://dx.doi.org/10.1016/j.apjtb.2016.10.008]
[6]
Dias, D.A.; Urban, S.; Roessner, U. A historical overview of natural products in drug discovery. Metabolites, 2012, 2(2), 303-336.
[http://dx.doi.org/10.3390/metabo2020303] [PMID: 24957513]
[7]
Edsberg, L.E.; Wyffels, J.T.; Brogan, M.S.; Fries, K.M. Analysis of the proteomic profile of chronic pressure ulcers. Wound Repair Regen., 2012, 20(3), 378-401.
[http://dx.doi.org/10.1111/j.1524-475X.2012.00791.x] [PMID: 22564231]
[8]
Soulet, F.; Kilarski, W.W.; Antczak, P.; Herbert, J.; Bicknell, R.; Falciani, F.; Bikfalvi, A. Gene signatures in wound tissue as evidenced by molecular profiling in the chick embryo model. BMC Genomics, 2010, 11, 495.
[http://dx.doi.org/10.1186/1471-2164-11-495] [PMID: 20840761]
[9]
Arodz, T.; Bonchev, D.; Diegelmann, R.F. A network approach to wound healing. Adv. Wound Care (New Rochelle), 2013, 2(9), 499-509.
[http://dx.doi.org/10.1089/wound.2012.0386] [PMID: 24527361]
[10]
Gam, L.H.; Leow, C.Y.; Baie, S. Proteomic analysis of snakehead fish (Channa striata) muscle tissue. Malays. J. Biochem. Mol. Biol., 2006, 14, 25-32.
[11]
Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 1976, 72, 248-254.
[http://dx.doi.org/10.1016/0003-2697(76)90527-3] [PMID: 942051]
[12]
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 65(1-2), 55-63.
[http://dx.doi.org/10.1016/0022-1759(83)90303-4] [PMID: 6606682]
[13]
Nicosia, R.F.; Ottinetti, A. Growth of microvessels in serum-free matrix culture of rat aorta. A quantitative assay of angiogenesis in vitro. Lab. Invest., 1990, 63(1), 115-122.
[PMID: 1695694]
[14]
Bellacen, K.; Lewis, E.C. Aortic ring assay. J. Vis. Exp., 2009, 33, 1564.
[http://dx.doi.org/10.3791%2F1564]
[15]
Kinter, M.; Sherman, N.E. Protein sequencing and identification using tandem mass spectrometry; John Wiley & Sons: Hoboken, NJ, United States, 2005.
[16]
Bhatia, V.N.; Perlman, D.H.; Costello, C.E.; McComb, M.E. Software tool for researching annotations of proteins: open-source protein annotation software with data visualization. Anal. Chem., 2009, 81(23), 9819-9823.
[http://dx.doi.org/10.1021/ac901335x] [PMID: 19839595]
[17]
Szklarczyk, D.; Morris, J.H.; Cook, H.; Kuhn, M.; Wyder, S.; Simonovic, M.; Santos, A.; Doncheva, N.T.; Roth, A.; Bork, P. The STRING database in 2017: quality-controlled protein–protein association networks, made broadly accessible. Nucleic Acids Res., 2017, 45(D1), D362-D368.
[PMID: 27924014]
[18]
Safran, M.; Dalah, I.; Alexander, J.; Rosen, N.; Iny Stein, T.; Shmoish, M.; Nativ, N.; Bahir, I.; Doniger, T.; Krug, H.; Sirota-Madi, A.; Olender, T.; Golan, Y.; Stelzer, G.; Harel, A.; Lancet, D. GeneCards Version 3: the human gene integrator. Database (Oxford), 2010, 2010baq020
[http://dx.doi.org/10.1093/database/baq020] [PMID: 20689021]
[19]
Adler, M.; Unger, M.; Lee, G. Surface composition of spray-dried particles of bovine serum albumin/trehalose/surfactant. Pharm. Res., 2000, 17(7), 863-870.
[http://dx.doi.org/10.1023/A:1007568511399] [PMID: 10990207]
[20]
Haque, M.A.; Adhikari, B. Drying and denaturation of proteins in spray drying process, Handbook of Industrial Drying , 2015; pp. 971-985.
[21]
Zakaria, Z.A.; Mat Jais, A.M.; Goh, Y.M.; Sulaiman, M.R.; Somchit, M.N. Amino acid and fatty acid composition of an aqueous extract of Channa striatus (Haruan) that exhibits antinociceptive activity. Clin. Exp. Pharmacol. Physiol., 2007, 34(3), 198-204.
[http://dx.doi.org/10.1111/j.1440-1681.2007.04572.x] [PMID: 17250639]
[22]
Stechmiller, J.K. Understanding the role of nutrition and wound healing. Nutr. Clin. Pract., 2010, 25(1), 61-68.
[http://dx.doi.org/10.1177/0884533609358997] [PMID: 20130158]
[23]
Ashburner, M.; Ball, C.A.; Blake, J.A.; Botstein, D.; Butler, H.; Cherry, J.M.; Davis, A.P.; Dolinski, K.; Dwight, S.S.; Eppig, J.T.; Harris, M.A.; Hill, D.P.; Issel-Tarver, L.; Kasarskis, A.; Lewis, S.; Matese, J.C.; Richardson, J.E.; Ringwald, M.; Rubin, G.M.; Sherlock, G. Gene ontology: tool for the unification of biology. Nat. Genet., 2000, 25(1), 25-29.
[http://dx.doi.org/10.1038/75556] [PMID: 10802651]
[24]
Lodish, H.; Berk, A.; Zipursky, S.L.; Matsudaira, P.; Baltimore, D.; Darnell, J. Molecular cell biology; WH Freeman: New York, NY, 1995.
[25]
Weber, K.; Osborn, M. Cytoskeleton: definition, structure and gene regulation. Pathol. Res. Pract., 1982, 175(2-3), 128-145.
[http://dx.doi.org/10.1016/S0344-0338(82)80104-0] [PMID: 6763693]
[26]
Abreu-Blanco, M.T.; Watts, J.J.; Verboon, J.M.; Parkhurst, S.M. Cytoskeleton responses in wound repair. Cell. Mol. Life Sci., 2012, 69(15), 2469-2483.
[http://dx.doi.org/10.1007/s00018-012-0928-2] [PMID: 22349211]
[27]
Slabodnick, M.; Prevo, B.; Gross, P.; Sheung, J.; Marshall, W. Visualizing cytoplasmic flow during single-cell wound healing in Stentor coeruleus. J. Vis. Exp., 2013, 82e50848
[28]
Sonnemann, K.J.; Bement, W.M. Wound repair: toward understanding and integration of single-cell and multicellular wound responses. Annu. Rev. Cell Dev. Biol., 2011, 27, 237-263.
[http://dx.doi.org/10.1146/annurev-cellbio-092910-154251] [PMID: 21721944]
[29]
Myllyharju, J.; Kivirikko, K.I. Collagens, modifying enzymes and their mutations in humans, flies and worms. Trends Genet., 2004, 20(1), 33-43.
[http://dx.doi.org/10.1016/j.tig.2003.11.004] [PMID: 14698617]
[30]
Tuckwell, D.S.; Ayad, S.; Grant, M.E.; Takigawa, M.; Humphries, M.J. Conformation dependence of integrin-type II collagen binding. Inability of collagen peptides to support alpha 2 beta 1 binding, and mediation of adhesion to denatured collagen by a novel alpha 5 beta 1-fibronectin bridge. J. Cell Sci., 1994, 107(Pt 4), 993-1005.
[PMID: 7520045]
[31]
Hynes, R.O. Integrins: versatility, modulation, and signaling in cell adhesion. Cell, 1992, 69(1), 11-25.
[http://dx.doi.org/10.1016/0092-8674(92)90115-S] [PMID: 1555235]
[32]
Barczyk, M.; Carracedo, S.; Gullberg, D. Integrins. Cell Tissue Res., 2010, 339(1), 269-280.
[http://dx.doi.org/10.1007/s00441-009-0834-6] [PMID: 19693543]
[33]
Hynes, R.O. Cell-matrix adhesion in vascular development. J. Thromb. Haemost., 2007, 5(Suppl. 1), 32-40.
[http://dx.doi.org/10.1111/j.1538-7836.2007.02569.x] [PMID: 17635706]
[34]
Hynes, R.O. The extracellular matrix: not just pretty fibrils. Science, 2009, 326(5957), 1216-1219.
[http://dx.doi.org/10.1126/science.1176009] [PMID: 19965464]
[35]
Munger, J.S.; Sheppard, D. Cross talk among TGF-β signaling pathways, integrins, and the extracellular matrix. Cold Spring Harb. Perspect. Biol., 2011, 3(11)a005017
[http://dx.doi.org/10.1101/cshperspect.a005017] [PMID: 21900405]
[36]
Schulz, J-N.; Zeltz, C.; Sørensen, I.W.; Barczyk, M.; Carracedo, S.; Hallinger, R.; Niehoff, A.; Eckes, B.; Gullberg, D. Reduced granulation tissue and wound strength in the absence of α11β1 integrin. J. Invest. Dermatol., 2015, 135(5), 1435-1444.
[http://dx.doi.org/10.1038/jid.2015.24] [PMID: 25634355]
[37]
Zeltz, C.; Gullberg, D. The integrin-collagen connection--a glue for tissue repair? J. Cell Sci., 2016, 129(4), 653-664.
[http://dx.doi.org/10.1242/jcs.180992] [PMID: 26857815]
[38]
Koivisto, L.; Heino, J.; Häkkinen, L.; Larjava, H. Integrins in wound healing. Adv. Wound Care (New Rochelle), 2014, 3(12), 762-783.
[http://dx.doi.org/10.1089/wound.2013.0436] [PMID: 25493210]
[39]
Zweers, M.C.; Davidson, J.M.; Pozzi, A.; Hallinger, R.; Janz, K.; Quondamatteo, F.; Leutgeb, B.; Krieg, T.; Eckes, B. Integrin α2β1 is required for regulation of murine wound angiogenesis but is dispensable for reepithelialization. J. Invest. Dermatol., 2007, 127(2), 467-478.
[http://dx.doi.org/10.1038/sj.jid.5700546] [PMID: 16977325]
[40]
Blockus, H.; Chédotal, A. Slit-Robo signaling. Development, 2016, 143(17), 3037-3044.
[http://dx.doi.org/10.1242/dev.132829] [PMID: 27578174]
[41]
Wang, K.H.; Brose, K.; Arnott, D.; Kidd, T.; Goodman, C.S.; Henzel, W.; Tessier-Lavigne, M. Biochemical purification of a mammalian slit protein as a positive regulator of sensory axon elongation and branching. Cell, 1999, 96(6), 771-784.
[http://dx.doi.org/10.1016/S0092-8674(00)80588-7] [PMID: 10102266]
[42]
Chen, H.; Zhang, M.; Tang, S.; London, N.R.; Li, D.Y.; Zhang, K. Slit-Robo Signaling in Ocular Angiogenesis. In: Retinal Degenerative Diseases. Advances in Experimental Medicine and Biology; Anderson, R.; Hollyfield, J.; LaVail, M. Eds.; Springer, New York, NY. , 2010, Vol . 664, .
[http://dx.doi.org/10.1007/978-1-4419-1399-9_52]
[43]
Bedell, V.M.; Yeo, S-Y.; Park, K.W.; Chung, J.; Seth, P.; Shivalingappa, V.; Zhao, J.; Obara, T.; Sukhatme, V.P.; Drummond, I.A.; Li, D.Y.; Ramchandran, R. roundabout4 is essential for angiogenesis in vivo. Proc. Natl. Acad. Sci. USA, 2005, 102(18), 6373-6378.
[http://dx.doi.org/10.1073/pnas.0408318102] [PMID: 15849270]
[44]
Dubrac, A.; Genet, G.; Ola, R.; Zhang, F.; Pibouin-Fragner, L.; Han, J.; Zhang, J.; Thomas, J-L.; Chedotal, A.; Schwartz, M.A.; Eichmann, A. Targeting NCK-mediated endothelial cell front-rear polarity inhibits Neovascularization. Circulation, 2016, 133(4), 409-421.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.115.017537] [PMID: 26659946]
[45]
Rama, N.; Dubrac, A.; Mathivet, T.; Ní Chárthaigh, R.A.; Genet, G.; Cristofaro, B.; Pibouin-Fragner, L.; Ma, L.; Eichmann, A.; Chédotal, A. Slit2 signaling through Robo1 and Robo2 is required for retinal neovascularization. Nat. Med., 2015, 21(5), 483-491.
[http://dx.doi.org/10.1038/nm.3849] [PMID: 25894826]
[46]
Zhang, B.; Dietrich, U.M.; Geng, J-G.; Bicknell, R.; Esko, J.D.; Wang, L. Repulsive axon guidance molecule Slit3 is a novel angiogenic factor. Blood, 2009, 114(19), 4300-4309.
[http://dx.doi.org/10.1182/blood-2008-12-193326] [PMID: 19741192]
[47]
Wu, M-F.; Liao, C-Y.; Wang, L-Y.; Chang, J.T. The role of Slit-Robo signaling in the regulation of tissue barriers. Tissue Barriers, 2017, 5(2)e1331155
[http://dx.doi.org/10.1080/21688370.2017.1331155] [PMID: 28598714]
[48]
Cowin, A. Role of the actin cytoskeleton in wound healing and scar formation. Primary Intention, 2006, 14, 39.
[49]
Bassett, E.G.; Baker, J.R.; de Souza, P. A light microscopical study of healing incised dermal wounds in rats, with special reference to eosinophil leucocytes and to the collagenous fibres of the periwound areas. Br. J. Exp. Pathol., 1977, 58(6), 581-605.
[PMID: 607982]
[50]
Kampen, G.T.; Stafford, S.; Adachi, T.; Jinquan, T.; Quan, S.; Grant, J.A.; Skov, P.S.; Poulsen, L.K.; Alam, R. Eotaxin induces degranulation and chemotaxis of eosinophils through the activation of ERK2 and p38 mitogen-activated protein kinases. Blood, 2000, 95(6), 1911-1917.
[PMID: 10706854]
[51]
Børset, M.; Lien, E.; Espevik, T.; Helseth, E.; Waage, A.; Sundan, A. Concomitant expression of hepatocyte growth factor/scatter factor and the receptor c-MET in human myeloma cell lines. J. Biol. Chem., 1996, 271(40), 24655-24661.
[http://dx.doi.org/10.1074/jbc.271.40.24655] [PMID: 8798732]
[52]
Pellegrin, S.; Mellor, H. Actin stress fibres. J. Cell Sci., 2007, 120(Pt 20), 3491-3499.
[http://dx.doi.org/10.1242/jcs.018473] [PMID: 17928305]
[53]
Smith, M.A.; Blankman, E.; Gardel, M.L.; Luettjohann, L.; Waterman, C.M.; Beckerle, M.C. A zyxin-mediated mechanism for actin stress fiber maintenance and repair. Dev. Cell, 2010, 19(3), 365-376.
[http://dx.doi.org/10.1016/j.devcel.2010.08.008] [PMID: 20833360]
[54]
Adachi, T.; Stafford, S.; Kayaba, H.; Chihara, J.; Alam, R. Myosin light chain kinase mediates eosinophil chemotaxis in a mitogen-activated protein kinase-dependent manner. J. Allergy Clin. Immunol., 2003, 111(1), 113-116.
[http://dx.doi.org/10.1067/mai.2003.27] [PMID: 12532105]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 27
ISSUE: 1
Year: 2020
Page: [48 - 59]
Pages: 12
DOI: 10.2174/0929866526666190730121711
Price: $65

Article Metrics

PDF: 13
HTML: 5

Special-new-year-discount