Untangling the Metabolic Reprogramming in Brain Cancer: Discovering Key Molecular Players Using Mass Spectrometry

Author(s): Anatoly Sorokin* , Vsevolod Shurkhay , Stanislav Pekov , Evgeny Zhvansky , Daniil Ivanov , Eugene E. Kulikov , Igor Popov , Alexander Potapov , Eugene Nikolaev .

Journal Name: Current Topics in Medicinal Chemistry

Volume 19 , Issue 17 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Cells metabolism alteration is the new hallmark of cancer, as well as an important method for carcinogenesis investigation. It is well known that the malignant cells switch to aerobic glycolysis pathway occurring also in healthy proliferating cells. Recently, it was shown that in malignant cells de novo synthesis of the intracellular fatty acid replaces dietary fatty acids which change the lipid composition of cancer cells noticeably. These alterations in energy metabolism and structural lipid production explain the high proliferation rate of malignant tissues. However, metabolic reprogramming affects not only lipid metabolism but many of the metabolic pathways in the cell. 2-hydroxyglutarate was considered as cancer cell biomarker and its presence is associated with oxidative stress influencing the mitochondria functions. Among the variety of metabolite detection methods, mass spectrometry stands out as the most effective method for simultaneous identification and quantification of the metabolites. As the metabolic reprogramming is tightly connected with epigenetics and signaling modifications, the evaluation of metabolite alterations in cells is a promising approach to investigate the carcinogenesis which is necessary for improving current diagnostic capabilities and therapeutic capabilities. In this paper, we overview recent studies on metabolic alteration and oncometabolites, especially concerning brain cancer and mass spectrometry approaches which are now in use for the investigation of the metabolic pathway.

Keywords: Metabolic reprogramming, Mass spectrometry, Brain cancer, Oncometabolites, Metabolism, Lipids.

Hanahan, D.; Weinberg, R.A. The hallmarks of cancer. Cell, 2000, 100(1), 57-70.
[http://dx.doi.org/10.1016/S0092-8674(00)81683-9] [PMID: 10647931]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell, 2011, 144(5), 646-674.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
Min, H.Y.; Lee, H.Y. Oncogene-driven metabolic alterations in cancer. Biomol. Ther. (Seoul), 2018, 26(1), 45-56.
[http://dx.doi.org/10.4062/biomolther.2017.211] [PMID: 29212306]
Menendez, J.A.; Lupu, R. Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat. Rev. Cancer, 2007, 7(10), 763-777.
[http://dx.doi.org/10.1038/nrc2222] [PMID: 17882277]
Magi, S.; Iwamoto, K.; Okada-Hatakeyama, M. Current status of mathematical modeling of cancer-From the viewpoint of cancer hallmarks. Curr. Opin. Syst. Biol., 2017, 2, 39-48.
Vogelstein, B.; Papadopoulos, N.; Velculescu, V.E.; Zhou, S.; Diaz, L.A., Jr; Kinzler, K.W. Cancer genome landscapes. Science, 2013, 339(6127), 1546-1558.
[http://dx.doi.org/10.1126/science.1235122] [PMID: 23539594]
Parsons, D.W.; Jones, S.; Zhang, X.; Lin, J.C-H.; Leary, R.J.; Angenendt, P.; Mankoo, P.; Carter, H.; Siu, I-M.; Gallia, G.L.; Olivi, A.; McLendon, R.; Rasheed, B.A.; Keir, S.; Nikolskaya, T.; Nikolsky, Y.; Busam, D.A.; Tekleab, H.; Diaz, L.A., Jr; Hartigan, J.; Smith, D.R.; Strausberg, R.L.; Marie, S.K.; Shinjo, S.M.; Yan, H.; Riggins, G.J.; Bigner, D.D.; Karchin, R.; Papadopoulos, N.; Parmigiani, G.; Vogelstein, B.; Velculescu, V.E.; Kinzler, K.W. An integrated genomic analysis of human glioblastoma multiforme. Science, 2008, 321(5897), 1807-1812.
[http://dx.doi.org/10.1126/science.1164382] [PMID: 18772396]
Pavlova, N.N.; Thompson, C.B. The emerging hallmarks of cancer metabolism. Cell Metab., 2016, 23(1), 27-47.
[http://dx.doi.org/10.1016/j.cmet.2015.12.006] [PMID: 26771115]
Ward, P.S.; Thompson, C.B. Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. Cancer Cell, 2012, 21(3), 297-308.
[http://dx.doi.org/10.1016/j.ccr.2012.02.014] [PMID: 22439925]
Nørøxe, D.S.; Poulsen, H.S.; Lassen, U. Hallmarks of glioblastoma: A systematic review. ESMO Open, 2017, 1(6)e000144
[http://dx.doi.org/10.1136/esmoopen-2016-000144] [PMID: 28912963]
Cerella, C.; Gaigneaux, A.; Dicato, M.; Diederich, M. Antagonistic role of natural compounds in mtor-mediated metabolic reprogramming. Cancer Lett., 2015, 356(2 Pt A), 251-262.
Libby, C.J.; Tran, A.N.; Scott, S.E.; Griguer, C.; Hjelmeland, A.B. The pro-tumorigenic effects of metabolic alterations in glioblastoma including brain tumor initiating cells. Biochim. Biophys. Acta Rev. Cancer, 2018, 1869(2), 175-188.
[http://dx.doi.org/10.1016/j.bbcan.2018.01.004] [PMID: 29378228]
Colquhoun, A. Cell biology-metabolic crosstalk in glioma. Int. J. Biochem. Cell Biol., 2017, 89, 171-181.
[http://dx.doi.org/10.1016/j.biocel.2017.05.022] [PMID: 28549626]
Marie, S.K.N.; Shinjo, S.M.O. Metabolism and brain cancer. Clinics (São Paulo), 2011, 66(Suppl. 1), 33-43.
[http://dx.doi.org/10.1590/S1807-59322011001300005] [PMID: 21779721]
Beloribi-Djefaflia, S.; Vasseur, S.; Guillaumond, F. Lipid metabolic reprogramming in cancer cells. Oncogenesis, 2016, 5(1), e189-e10.
[http://dx.doi.org/10.1038/oncsis.2015.49] [PMID: 26807644]
Warburg, O.; Nguyen, T. The metabolism of tumors in the body. J. Gen. Physiol., 2015, 8(6), 519-530.
[PMID: 19872213]
Warburg, O. Lactic acid fermentation of the tumors. J. Mol. Med., 1927, 6(43), 2047-2048.
Warburg, O. On the origin of cancer cells. Science, 1956, 123(3191), 309-314.
[http://dx.doi.org/10.1126/science.123.3191.309] [PMID: 13298683]
Crick, F. Central dogma of molecular biology. Nature, 1970, 227(5258), 561-563.
[http://dx.doi.org/10.1038/227561a0] [PMID: 4913914]
Lin, S.; Yin, Y.A.; Jiang, X.; Sahni, N.; Yi, S. Multi-OMICs and genome editing perspectives on liver cancer signaling networks. BioMed Res. Int., 2016, 20166186281
[http://dx.doi.org/[DOI: http://10.1155/2016/6186281]
Cho, W.C-S. An omics perspective on cancer research; Springer Science & Business Media, Netherlands, 2010.
[http://dx.doi.org/[DOI: 10.1007/978-90-481-2675-0]]
van Ommen, B.; Stierum, R. Nutrigenomics: exploiting systems biology in the nutrition and health arena. Curr. Opin. Biotechnol., 2002, 13(5), 517-521.
[http://dx.doi.org/10.1016/S0958-1669(02)00349-X] [PMID: 12459347]
Afman, L.; Müller, M. Nutrigenomics: From molecular nutrition to prevention of disease. J. Am. Diet. Assoc., 2006, 106(4), 569-576.
[http://dx.doi.org/[DOI: 10.1016/j.jada.2006.01.001]
Mutch, D.M.; Wahli, W.; Williamson, G. Nutrigenomics and nutrigenetics: The emerging faces of nutrition. FASEB J., 2005, 19(12), 1602-1616.
[http://dx.doi.org/10.1096/fj.05-3911rev] [PMID: 16195369]
Dimitrov, D.V. The human gutome: Nutrigenomics of the host-microbiome interactions. OMICS, 2011, 15(7-8), 419-430.
[http://dx.doi.org/[DOI: 10.1089/omi.2010.0109]
Rinaldi, G.; Rossi, M.; Fendt, S.M. Metabolic interactions in cancer: cellular metabolism at the interface between the microenvironment, the cancer cell phenotype and the epigenetic landscape. Wiley Interdiscip. Rev. Syst. Biol. Med., 2018, 10(1), 1-18.
[http://dx.doi.org/10.1002/wsbm.1397] [PMID: 28857478]
Kacser, H.; Burns, J.A. The control of flux. Symp. Soc. Exp. Biol., 1973, 27, 65-104.
[PMID: 4148886]
Yu, X.; Li, S. Non-metabolic functions of glycolytic enzymes in tumorigenesis. Oncogene, 2017, 36(19), 2629-2636.
[http://dx.doi.org/10.1038/onc.2016.410] [PMID: 27797379]
Seyfried, T.N.; Kiebish, M.A.; Marsh, J.; Shelton, L.M.; Huysentruyt, L.C.; Mukherjee, P. Metabolic management of brain cancer. Biochim. Biophys. Acta, 2011, 1807(6), 577-594.
[http://dx.doi.org/[DOI: 10.1016/j.bbabio.2010.08.009]
Seyfried, T.N.; Flores, R.; Poff, A.M.; D’Agostino, D.P.; Mukherjee, P. Metabolic therapy: A new paradigm for managing malignant brain cancer. Cancer Lett., 2015, 356(2 Pt A), 289-300.
[http://dx.doi.org/10.1016/j.canlet.2014.07.015] [PMID: 25069036]
Su, J.Y.; Storey, K.B. Regulation of rainbow trout white muscle phosphofructokinase during exercise. Int. J. Biochem., 1994, 26(4), 519-528.
Lee, P.; Vousden, K.H.; Cheung, E.C. TIGAR, TIGAR, burning bright. Cancer Metab., 2014, 2(1), 1.
[http://dx.doi.org/10.1186/2049-3002-2-1] [PMID: 24383451]
Waitkus, M.S.; Diplas, B.H.; Yan, H. Isocitrate dehydrogenase mutations in gliomas. Neuro-oncol., 2016, 18(1), 16-26.
[http://dx.doi.org/10.1093/neuonc/nov136] [PMID: 26188014]
Nicoll, R.A.; Tomita, S.; Bredt, D.S. Auxiliary subunits assist AMPA-type glutamate receptors. Science, 2006, 311(5765), 1253-1256.
[http://dx.doi.org/10.1126/science.1123339] [PMID: 16513974]
Selwan, E.M.; Finicle, B.T.; Kim, S.M.; Edinger, A.L. Attacking the supply wagons to starve cancer cells to death. FEBS Lett., 2016, 590(7), 885-907.
[http://dx.doi.org/10.1002/1873-3468.12121] [PMID: 26938658]
Anjum, K.; Shagufta, B.I.; Abbas, S.Q.; Patel, S.; Khan, I.; Shah, S.A.A.; Akhter, N.; Hassan, S.S.U. Current status and future therapeutic perspectives of glioblastoma multiforme (GBM) therapy: A review. Biomed. Pharmacother., 2017, 92, 681-689.
[http://dx.doi.org/10.1016/j.biopha.2017.05.125] [PMID: 28582760]
Wallace, D.C. Mitochondria and cancer. Nat. Rev. Cancer, 2012, 12(10), 685-698.
[http://dx.doi.org/10.1038/nrc3365] [PMID: 23001348]
Guo, C.; Pirozzi, C.J.; Lopez, G.Y.; Yan, H. Isocitrate dehydrogenase mutations in gliomas: mechanisms, biomarkers and therapeutic target. Curr. Opin. Neurol., 2011, 24(6), 648-652.
[http://dx.doi.org/10.1097/WCO.0b013e32834cd415] [PMID: 22002076]
Lunt, S.Y.; Vander Heiden, M.G. Aerobic glycolysis: Meeting the metabolic requirements of cell proliferation. Annu. Rev. Cell Dev. Biol., 2011, 27(1), 441-464.
[http://dx.doi.org/10.1146/annurev-cellbio-092910-154237] [PMID: 21985671]
Hiller, K.; Metallo, C.M. Profiling metabolic networks to study cancer metabolism. Curr. Opin. Biotechnol., 2013, 24(1), 60-68.
[http://dx.doi.org/10.1016/j.copbio.2012.11.001] [PMID: 23206561]
Marin-Valencia, I.; Cho, S.K.; Rakheja, D.; Hatanpaa, K.J.; Kapur, P.; Mashimo, T.; Jindal, A.; Vemireddy, V.; Good, L.B.; Raisanen, J.; Sun, X.; Mickey, B.; Choi, C.; Takahashi, M.; Togao, O.; Pascual, J.M.; Deberardinis, R.J.; Maher, E.A.; Malloy, C.R.; Bachoo, R.M. Glucose metabolism via the pentose phosphate pathway, glycolysis and Krebs cycle in an orthotopic mouse model of human brain tumors. NMR Biomed., 2012, 25(10), 1177-1186.
[http://dx.doi.org/10.1002/nbm.2787] [PMID: 22383401]
Mashimo, T.; Pichumani, K.; Vemireddy, V.; Hatanpaa, K.J.; Singh, D.K.; Sirasanagandla, S.; Nannepaga, S.; Piccirillo, S.G.; Kovacs, Z.; Foong, C.; Huang, Z.; Barnett, S.; Mickey, B.E.; DeBerardinis, R.J.; Tu, B.P.; Maher, E.A.; Bachoo, R.M. Acetate is a bioenergetic substrate for human glioblastoma and brain metastases. Cell, 2014, 159(7), 1603-1614.
[http://dx.doi.org/10.1016/j.cell.2014.11.025] [PMID: 25525878]
Agnihotri, S.; Zadeh, G. Metabolic reprogramming in glioblastoma: The influence of cancer metabolism on epigenetics and unanswered questions. Neuro-oncol., 2016, 18(2), 160-172.
[http://dx.doi.org/10.1093/neuonc/nov125] [PMID: 26180081]
Vander Heiden, M.G.; Lunt, S.Y.; Dayton, T.L.; Fiske, B.P.; Israelsen, W.J.; Mattaini, K.R.; Vokes, N.I.; Stephanopoulos, G.; Cantley, L.C.; Metallo, C.M.; Locasale, J.W. Metabolic pathway alterations that support cell proliferation. Cold Spring Harb. Symp. Quant. Biol., 2011, 76(0), 325-334.
[http://dx.doi.org/10.1101/sqb.2012.76.010900] [PMID: 22262476]
Daye, D.; Wellen, K.E. Metabolic reprogramming in cancer: Unraveling the role of glutamine in tumorigenesis. Semin. Cell Dev. Biol., 2012, 23(4), 362-369.
[http://dx.doi.org/10.1016/j.semcdb.2012.02.002] [PMID: 22349059]
Keijer, J.; Bekkenkamp-Grovenstein, M.; Venema, D.; Dommels, Y. E. M. Bioactive food components, cancer cell growth limitation and reversal of glycolytic metabolism BBA - Bioenergetics, 2011, 1807(6), 697-706.
[PMID: 20732296] [http://dx.doi.org/10.1016/j.bbabio.2010.08.007]
Elia, I.; Schmieder, R.; Christen, S.; Fendt, S-M. Organ-specific cancer metabolism and its potential for therapy. Handb. Exp. Pharmacol., 2016, 233, 321-353.
Boros, L.G.; Torday, J.S.; Lim, S.; Bassilian, S.; Cascante, M.; Lee, W.N. Transforming growth factor beta2 promotes glucose carbon incorporation into nucleic acid ribose through the nonoxidative pentose cycle in lung epithelial carcinoma cells. Cancer Res., 2000, 60(5), 1183-1185.
[PMID: 10728670]
Mayers, J.R.; Vander Heiden, M.G. Famine versus feast: Understanding the metabolism of tumors in vivo. Trends Biochem. Sci., 2015, 40(3), 130-140.
[http://dx.doi.org/10.1016/j.tibs.2015.01.004] [PMID: 25639751]
Denzel, M.S.; Antebi, A. Hexosamine pathway and (ER) protein quality control. Curr. Opin. Cell Biol., 2015, 33, 14-18.
[http://dx.doi.org/10.1016/j.ceb.2014.10.001] [PMID: 25463841]
Yang, M.; Soga, T.; Pollard, P.J.; Adam, J. The emerging role of fumarate as an oncometabolite. Front. Oncol., 2012, 2, 85.
[http://dx.doi.org/10.3389/fonc.2012.00085] [PMID: 22866264]
Shim, E-H.; Livi, C.B.; Rakheja, D.; Tan, J.; Benson, D.; Parekh, V.; Kho, E-Y.; Ghosh, A.P.; Kirkman, R.; Velu, S.; Dutta, S.; Chenna, B.; Rea, S.L.; Mishur, R.J.; Li, Q.; Johnson-Pais, T.L.; Guo, L.; Bae, S.; Wei, S.; Block, K.; Sudarshan, S. L-2-Hydroxyglutarate: an epigenetic modifier and putative oncometabolite in renal cancer. Cancer Discov., 2014, 4(11), 1290-1298.
[http://dx.doi.org/10.1158/2159-8290.CD-13-0696] [PMID: 25182153]
Bradley, C.A. Oncometabolite mechanism unravelled. Nat. Rev. Urol., 2018, 15(11), 656-657.
[http://dx.doi.org/10.1038/s41585-018-0086-x] [PMID: 30185913]
Chowdhury, R.; Yeoh, K.K.; Tian, Y-M.; Hillringhaus, L.; Bagg, E.A.; Rose, N.R.; Leung, I.K.H.; Li, X.S.; Woon, E.C.Y.; Yang, M.; McDonough, M.A.; King, O.N.; Clifton, I.J.; Klose, R.J.; Claridge, T.D.; Ratcliffe, P.J.; Schofield, C.J.; Kawamura, A. The oncometabolite 2-hydroxyglutarate inhibits histone lysine demethylases. EMBO Rep., 2011, 12(5), 463-469.
[http://dx.doi.org/10.1038/embor.2011.43] [PMID: 21460794]
Mi, H.; Schreiber, F.; Moodie, S.; Czauderna, T.; Demir, E.; Haw, R.; Luna, A.; Le Novère, N.; Sorokin, A.; Villéger, A. Systems biology graphical notation: activity flow language level 1 version 1.2. J. Integr. Bioinform., 2015, 12(2), 265.
[http://dx.doi.org/10.1515/jib-2015-265] [PMID: 26528563]
Le Novère, N.; Hucka, M.; Mi, H.; Moodie, S.; Schreiber, F.; Sorokin, A.; Demir, E.; Wegner, K.; Aladjem, M.I.; Wimalaratne, S.M.; Bergman, F.T.; Gauges, R.; Ghazal, P.; Kawaji, H.; Li, L.; Matsuoka, Y.; Villéger, A.; Boyd, S.E.; Calzone, L.; Courtot, M.; Dogrusoz, U.; Freeman, T.C.; Funahashi, A.; Ghosh, S.; Jouraku, A.; Kim, S.; Kolpakov, F.; Luna, A.; Sahle, S.; Schmidt, E.; Watterson, S.; Wu, G.; Goryanin, I.; Kell, D.B.; Sander, C.; Sauro, H.; Snoep, J.L.; Kohn, K.; Kitano, H. The systems biology graphical notation. Nat. Biotechnol., 2009, 27(8), 735-741.
[http://dx.doi.org/10.1038/nbt.1558] [PMID: 19668183]
Molenaar, R.J.; Radivoyevitch, T.; Maciejewski, J.P.; van Noorden, C.J.F.; Bleeker, F.E. The driver and passenger effects of isocitrate dehydrogenase 1 and 2 mutations in oncogenesis and survival prolongation. Biochim. Biophys. Acta, 2014, 1846(2), 326-341.
[PMID: 24880135]
Balss, J.; Meyer, J.; Mueller, W.; Korshunov, A.; Hartmann, C.; von Deimling, A. Analysis of the IDH1 codon 132 mutation in brain tumors. Acta Neuropathol., 2008, 116(6), 597-602.
[http://dx.doi.org/10.1007/s00401-008-0455-2] [PMID: 18985363]
Kang, M.R.; Kim, M.S.; Oh, J.E.; Kim, Y.R.; Song, S.Y.; Seo, S.I.; Lee, J.Y.; Yoo, N.J.; Lee, S.H. Mutational analysis of IDH1 codon 132 in glioblastomas and other common cancers. Int. J. Cancer, 2009, 125(2), 353-355.
[http://dx.doi.org/10.1002/ijc.24379] [PMID: 19378339]
Bleeker, F.E.; Atai, N.A.; Lamba, S.; Jonker, A.; Rijkeboer, D.; Bosch, K.S.; Tigchelaar, W.; Troost, D.; Vandertop, W.P.; Bardelli, A.; Van Noorden, C.J. The prognostic IDH1(R132) mutation is associated with reduced NADP+-dependent IDH activity in glioblastoma. Acta Neuropathol., 2010, 119(4), 487-494.
[http://dx.doi.org/10.1007/s00401-010-0645-6] [PMID: 20127344]
Dang, L.; White, D.W.; Gross, S.; Bennett, B.D.; Bittinger, M.A.; Driggers, E.M.; Fantin, V.R.; Jang, H.G.; Jin, S.; Keenan, M.C.; Marks, K.M.; Prins, R.M.; Ward, P.S.; Yen, K.E.; Liau, L.M.; Rabinowitz, J.D.; Cantley, L.C.; Thompson, C.B.; Vander Heiden, M.G.; Su, S.M. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature, 2009, 462(7274), 739-744.
[http://dx.doi.org/10.1038/nature08617] [PMID: 19935646]
Kats, L.M.; Reschke, M.; Taulli, R.; Pozdnyakova, O.; Burgess, K.; Bhargava, P.; Straley, K.; Karnik, R.; Meissner, A.; Small, D.; Su, S.M.; Yen, K.; Zhang, J.; Pandolfi, P.P. Proto-oncogenic role of mutant IDH2 in leukemia initiation and maintenance. Cell Stem Cell, 2014, 14(3), 329-341.
[http://dx.doi.org/10.1016/j.stem.2013.12.016] [PMID: 24440599]
Xu, W.; Yang, H.; Liu, Y.; Yang, Y.; Wang, P.; Kim, S-H.; Ito, S.; Yang, C.; Wang, P.; Xiao, M-T.; Liu, L.X.; Jiang, W.Q.; Liu, J.; Zhang, J.Y.; Wang, B.; Frye, S.; Zhang, Y.; Xu, Y.H.; Lei, Q.Y.; Guan, K.L.; Zhao, S.M.; Xiong, Y. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases. Cancer Cell, 2011, 19(1), 17-30.
[http://dx.doi.org/10.1016/j.ccr.2010.12.014] [PMID: 21251613]
Lenting, K.; Khurshed, M.; Peeters, T. H.; van den Heuvel, C. N. A. M.; van Lith, S. A. M.; de Bitter, T.; Hendriks, W.; Span, P. N.; Molenaar, R. J.; Botman, D. Isocitrate dehydrogenase 1-mutated human gliomas depend on lactate and glutamate to alleviate metabolic stress. FASEB J., 2018, 33(1), 557-571.
[PMID: 30001166] [http://dx.doi.org/10.1096/fj.201800907RR]
Mu, X.; Zhao, T.; Xu, C.; Shi, W.; Geng, B.; Shen, J.; Zhang, C.; Pan, J.; Yang, J.; Hu, S. Oncometabolite Succinate to Promote Angiogenesis by Upregulating VEGF Expression through GPR91-Mediated STAT3 and ERK Activation. J. Clin. Orthod., 2017, 35(15)e23000
[PMID: 28061458] [http://dx.doi.org/[DOI: 10.18632/oncotarget.14485]
Collins, R.R.J.; Patel, K.; Putnam, W.C.; Kapur, P.; Rakheja, D. Oncometabolites: A new paradigm for oncology, metabolism, and the clinical laboratory. Clin. Chem., 2017, 63(12), 1812-1820.
[http://dx.doi.org/10.1373/clinchem.2016.267666] [PMID: 29038145]
Hjelmeland, A.B.; Wu, Q.; Heddleston, J.M.; Choudhary, G.S.; MacSwords, J.; Lathia, J.D.; McLendon, R.; Lindner, D.; Sloan, A.; Rich, J.N. Acidic stress promotes a glioma stem cell phenotype. Cell Death Differ., 2011, 18(5), 829-840.
[http://dx.doi.org/10.1038/cdd.2010.150] [PMID: 21127501]
Haley, E.M.; Tilson, S.G.; Triantafillu, U.L.; Magrath, J.W.; Kim, Y. Acidic pH with coordinated reduction of basic fibroblast growth factor maintains the glioblastoma stem cell-like phenotype in vitro. J. Biosci. Bioeng., 2017, 123(5), 634-641.
[http://dx.doi.org/10.1016/j.jbiosc.2016.12.006] [PMID: 28063758]
Filatova, A.; Acker, T.; Garvalov, B.K. The cancer stem cell niche(s): The crosstalk between glioma stem cells and their microenvironment. Biochim. Biophys. Acta, 2013, 1830(2), 2496-2508.
[http://dx.doi.org/[DOI: 10.1016/j.bbagen.2012.10.008]
Angelin, A.; Gil-de-Gómez, L.; Dahiya, S.; Jiao, J.; Guo, L.; Levine, M.H.; Wang, Z.; Quinn, W.J., III; Kopinski, P.K.; Wang, L.; Akimova, T.; Liu, Y.; Bhatti, T.R.; Han, R.; Laskin, B.L.; Baur, J.A.; Blair, I.A.; Wallace, D.C.; Hancock, W.W.; Beier, U.H. Foxp3 reprograms T Cell metabolism to function in low-glucose, high-lactate environments. Cell Metab., 2017, 25(6), 1282-1293.e7.
[http://dx.doi.org/10.1016/j.cmet.2016.12.018] [PMID: 28416194]
Lunt, S.Y.; Fendt, S-M. Metabolism-A cornerstone of cancer initiation, progression, immune evasion and treatment response. Curr. Opin. Syst. Biol., 2018, 8, 67-72.
Colegio, O.R.; Chu, N-Q.; Szabo, A.L.; Chu, T.; Rhebergen, A.M.; Jairam, V.; Cyrus, N.; Brokowski, C.E.; Eisenbarth, S.C.; Phillips, G.M.; Cline, G.W.; Phillips, A.J.; Medzhitov, R. Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature, 2014, 513(7519), 559-563.
[http://dx.doi.org/10.1038/nature13490] [PMID: 25043024]
Mirzaei, R.; Sarkar, S.; Yong, V.W.T. Cell exhaustion in glioblastoma: Intricacies of immune checkpoints. Trends Immunol., 2017, 38(2), 104-115.
[http://dx.doi.org/10.1016/j.it.2016.11.005] [PMID: 27964820]
Dokic, I.; Hartmann, C.; Herold-Mende, C.; Régnier-Vigouroux, A. Glutathione peroxidase 1 activity dictates the sensitivity of glioblastoma cells to oxidative stress. Glia, 2012, 60(11), 1785-1800.
[http://dx.doi.org/10.1002/glia.22397] [PMID: 22951908]
Salcher, S.; Hermann, M.; Kiechl-Kohlendorfer, U.; Ausserlechner, M.J.; Obexer, P. C10ORF10/DEPP-mediated ROS accumulation is a critical modulator of FOXO3-induced autophagy. Mol. Cancer, 2017, 16(1), 95.
[http://dx.doi.org/10.1186/s12943-017-0661-4] [PMID: 28545464]
Pistollato, F.; Abbadi, S.; Rampazzo, E.; Viola, G.; Della Puppa, A.; Cavallini, L.; Frasson, C.; Persano, L.; Panchision, D.M.; Basso, G. Hypoxia and succinate antagonize 2-deoxyglucose effects on glioblastoma. Biochem. Pharmacol., 2010, 80(10), 1517-1527.
[http://dx.doi.org/10.1016/j.bcp.2010.08.003] [PMID: 20705058]
Dahabieh, M.S.; Di Pietro, E.; Jangal, M.; Goncalves, C.; Witcher, M.; Braverman, N.E.; Del Rincón, S.V. Peroxisomes and cancer: The role of a metabolic specialist in a disease of aberrant metabolism. Biochim. Biophys. Acta Rev. Cancer, 2018, 1870(1), 103-121.
[http://dx.doi.org/10.1016/j.bbcan.2018.07.004] [PMID: 30012421]
Luo, X.; Cheng, C.; Tan, Z.; Li, N.; Tang, M.; Yang, L.; Cao, Y. Emerging roles of lipid metabolism in cancer metastasis. Mol. Cancer, 2017, 16(1), 76.
[http://dx.doi.org/10.1186/s12943-017-0646-3] [PMID: 28399876]
Hu, F.; Zhang, Y.; Song, Y. Lipid metabolism, metabolic syndrome and cancer. In: Lipid Metabolism; IntechOpen, 2013.
[http://dx.doi.org/[DOI: 10.5772/51821]
Kucharzewska, P.; Christianson, H.C.; Belting, M. Global profiling of metabolic adaptation to hypoxic stress in human glioblastoma cells. PLoS One, 2015, 10(1)e0116740
[http://dx.doi.org/10.1371/journal.pone.0116740] [PMID: 25633823]
Jiang, B.; Li, E-H.; Lu, Y-Y.; Jiang, Q.; Cui, D.; Jing, Y-F.; Xia, S-J. Inhibition of fatty-acid synthase suppresses p-akt and induces apoptosis in bladder cancer. Urology, 2012, 80(2), e9-e15.
[http://dx.doi.org/[DOI: 10.1016/j.urology.2012.02.046]
Chen, H-W.; Chang, Y-F.; Chuang, H-Y.; Tai, W-T.; Hwang, J-J. Targeted therapy with fatty acid synthase inhibitors in a human prostate carcinoma LNCaP/tk-Luc-bearing animal model. Prostate Cancer Prostatic Dis., 2012, 15(3), 260-264.
[http://dx.doi.org/[DOI: 10.1038/pcan.2012.15]
Valenzuela, R.; Valenzuela, A. overview about lipid structure In: Lipid Metabolism; InTech; , 2013; pp. 1-19.
Fahy, E.; Subramaniam, S.; Brown, H.A.; Glass, C.K.; Merrill, A.H.; Murphy, R.C.; Raetz, C.R.H.; Russell, D.W.; Seyama, Y.; Shaw, W.; Shimizu, T. Spener, F.; van Meer, G.; VanNieuwenhze, M.S.; White, S.H.; Witztum, J.L.; Dennis, E.A. A comprehensive classification system for lipids. J. Lipid Res., 2005, 46(5), 839-862.
[http://dx.doi.org/[DOI: 10.1194/jlr.E400004-JLR200]
Cirillo, A.; Di Salle, A.; Petillo, O.; Melone, M.A.B.; Grimaldi, G.; Bellotti, A.; Torelli, G. De’ Santi, M. S.; Cantatore, G.; Marinelli, A.; Galderisi, U.; Peluso, G. High grade glioblastoma is associated with aberrant Expression of ZFP57, a Protein Involved in Gene Imprinting, and of CPT1A and CPT1C that regulate fatty acid metabolism. Cancer Biol. Ther., 2014, 15(6), 735-741.
[http://dx.doi.org/[DOI: 10.4161/cbt.28408]
Hartmann, D.; Lucks, J.; Fuchs, S.; Schiffmann, S.; Schreiber, Y.; Ferreirós, N.; Merkens, J.; Marschalek, R.; Geisslinger, G.; Grösch, S. Long chain ceramides and very long chain ceramides have opposite effects on human breast and colon cancer cell growth. Int. J. Biochem. Cell Biol., 2012, 44(4), 620-628.
[http://dx.doi.org/[DOI: 10.1016/j.biocel.2011.12.019]
Lee, J.V.; Carrer, A.; Shah, S.; Snyder, N.W.; Wei, S.; Venneti, S.; Worth, A.J.; Yuan, Z-F.; Lim, H-W.; Liu, S.; Jackson, E.; Aiello, N.M.; Haas, N.B.; Rebbeck, T.R.; Judkins, A.; Won, K.J.; Chodosh, L.A.; Garcia, B.A.; Stanger, B.Z.; Feldman, M.D.; Blair, I.A.; Wellen, K.E. Akt-Dependent metabolic reprogramming regulates tumor cell histone acetylation. Cell Metab., 2014, 20(2), 306-319.
[http://dx.doi.org/[DOI: 10.1016/j.cmet.2014.06.004]
Faratian, D.; Goltsov, A.; Lebedeva, G.; Sorokin, A.; Moodie, S.; Mullen, P.; Kay, C.; Um, I.H.; Langdon, S.; Goryanin, I.I.; Harrison, D.J. Systems biology reveals new strategies for personalizing cancer medicine and confirms the role of PTEN in Resistance to Trastuzumab. Cancer Res., 2009, 69(16), 6713-6720.
[http://dx.doi.org/[DOI: 10.1158/0008-5472.CAN-09-0777]
Andersen, J.N.; Sathyanarayanan, S.; Di Bacco, A.; Chi, A.; Zhang, T.; Chen, A.H.; Dolinski, B.; Kraus, M.; Roberts, B.; Arthur, W.; Klinghoffer, R.A.; Gargano, D.; Li, L.; Feldman, I.; Lynch, B.; Rush, J.; Hendrickson, R.C. Blume-Jensen, P.; Paweletz, C.P. Pathway-Based identification of biomarkers for targeted therapeutics: personalized oncology with PI3K pathway inhibitors. Sci. Transl. Med., 2010, 2(43), 43-55.
[http://dx.doi.org/[DOI: 10.1126/scitranslmed.3001065]
Hsu, P.; Shi, Y. Regulation of autophagy by mitochondrial phospholipids in health and diseases. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2017, 1862(1), 114-129.
[http://dx.doi.org/[DOI: 10.1016/j.bbalip.2016.08.003]
Dall’Armi, C.; Devereaux, K.A.; Di Paolo, G. The role of lipids in the control of autophagy. Curr. Biol., 2013, 23(1), R33-R45.
[http://dx.doi.org/[DOI: 10.1016/j.cub.2012.10.041]
Marat, A.L.; Haucke, V. Phosphatidylinositol 3-phosphates-at the interface between cell signalling and membrane traffic. EMBO J., 2016, 35(6), 561-579.
[http://dx.doi.org/[DOI: 10.15252/embj.201593564]
Kersten, S. Triglyceride metabolism under attack. Cell Metab., 2017, 25(6), 1209-1210.
[http://dx.doi.org/[DOI: 10.1016/j.cmet.2017.05.005]
Panov, A.; Orynbayeva, Z.; Vavilin, V.; Lyakhovich, V. Fatty acids in energy metabolism of the central nervous system. BioMed Res. Int., 2014, 2014472459
[http://dx.doi.org/[DOI: 10.1155/2014/472459]
Bensaad, K.; Favaro, E.; Lewis, C.A.; Peck, B.; Lord, S.; Collins, J.M.; Pinnick, K.E.; Wigfield, S.; Buffa, F.M.; Li, J-L.; Zhang, Q.; Wakelam, M.J.O. Karpe, F.; Schulze, A.; Harris, A.L. Fatty acid uptake and lipid storage induced by hif-1 alpha contribute to cell growth and survival after hypoxia-reoxygenation. Cell Rep., 2015, 9(1), 349-365.
[http://dx.doi.org/[DOI: 10.1016/j.celrep.2014.08.056]
Boroughs, L.K.; DeBerardinis, R.J. Metabolic pathways promoting cancer cell survival and growth. Nat. Cell Biol., 2015, 17(4), 351-359.
[http://dx.doi.org/[doi: 10.1038/ncb3124]
Perez, E.; Castro-Sanchez, L.; Cortes-Reynos, P. Signal transduction pathways mediated by unsaturated free fatty acids in breast cancer cells.Breast Cancer-Carcinogenesis; Cell Growth and Signalling Pathways, 2011.
[http://dx.doi.org/[DOI: 10.5772/20414]
Kuhajda, F.P. Fatty acid metabolism and cancer. In: Encyclopedia of Biological Chemistry; , 2013; pp. 275-280.
Liu, Q.; Luo, Q.; Halim, A.; Song, G. Targeting lipid metabolism of cancer cells: a promising therapeutic strategy for cancer. Cancer Lett., 2017, 401, 1-31.
[http://dx.doi.org/[DOI: 10.1016/j.canlet.2017.05.002]
Yao, C-H.; Fowle-Grider, R.; Mahieu, N.G.; Liu, G-Y.; Chen, Y-J.; Wang, R.; Singh, M.; Potter, G.S.; Gross, R.W.; Schaefer, J.; Johnson, S.L. Patti, G.J. Exogenous fatty acids are the preferred source of membrane lipids in proliferating fibroblasts. Cell Chem. Biol., 2016, 23(4), 483-493.
[http://dx.doi.org/[DOI: 10.1016/j.chembiol.2016.03.007]
Louie, S.M.; Roberts, L.S.; Mulvihill, M.M.; Luo, K.; Nomura, D.K. Cancer Cells Incorporate and remodel exogenous palmitate into structural and oncogenic signaling lipids. BBA - Molecular and Cell Biol. Lipids, 2013, 1-25.
[http://dx.doi.org/[DOI: 10.1016/j.bbalip.2013.07.008]
Röhrig, F.; Schulze, A. The multifaceted roles of fatty acid synthesis in cancer. Nat. Rev. Cancer, 2016, 16(11), 732-749.
[http://dx.doi.org/[DOI: 10.1038/nrc.2016.89]
Grube, S.; Dünisch, P.; Freitag, D.; Klausnitzer, M.; Sakr, Y.; Walter, J.; Kalff, R.; Ewald, C. Overexpression of fatty acid synthase in human gliomas correlates with the who tumor grade and inhibition with orlistat reduces cell viability and triggers apoptosis. J. Neurooncol., 2014, 118(2), 277-287.
[http://dx.doi.org/[DOI: 10.1007/s11060-014-1452-z]
Wellen, K.E.; Thompson, C.B. A two-way street: reciprocal regulation of metabolism and signalling. Nat. Rev. Mol. Cell Biol., 2012, 13(4), 270-276.
[http://dx.doi.org/[DOI: 10.1038/nrm3305]
Aaes-Jorgensen, E. Essential fatty acids. Physiol. Rev., 1961, 41, 1-51.
[http://dx.doi.org/[DOI: 10.1152/physrev.1961.41.1.1]
Koizume, S.; Miyagi, Y. Lipid droplets: a key cellular organelle associated with cancer cell survival under normoxia and hypoxia. Int. J. Mol. Sci., 2016, 17E1430
[http://dx.doi.org/[DOI: 10.3390/ijms17091430]
Schönfeld, P.; Reiser, G. Brain energy metabolism spurns fatty acids as fuel due to their inherent mitotoxicity and potential capacity to unleash neurodegeneration. Neurochem. Int., 2017, 109, 68-77.
[http://dx.doi.org/[DOI: 10.1016/j.neuint.2017.03.018]
Donohoe, D.R.; Collins, L.B.; Wali, A.; Bigler, R.; Sun, W.; Bultman, S.J. The warburg effect dictates the mechanism of butyrate-mediated histone acetylation and cell proliferation. Mol. Cell, 2012, 48(4), 612-626.
[http://dx.doi.org/[DOI: 10.1016/j.molcel.2012.08.033]
Camarda, R.; Zhou, A.Y.; Kohnz, R.A.; Balakrishnan, S.; Mahieu, C.; Anderton, B.; Eyob, H.; Kajimura, S.; Tward, A.; Krings, G.; Nomura, D.K.; Goga, A. Inhibition of Fatty acid oxidation as a therapy for MYC-overexpressing triple-negative breast cancer. Nat. Med., 2016, 22(4), 427-432.
[http://dx.doi.org/[DOI: 10.1038/nm.4055]
Carracedo, A.; Cantley, L.C.; Pandolfi, P.P. Cancer metabolism: fatty acid oxidation in the limelight. Nat. Rev. Cancer, 2013, 13(4), 227-232.
[http://dx.doi.org/[DOI: 10.1038/nrc3483]
Hannun, Y.A.; Obeid, L.M. Ceramide: An intracellular signal for apoptosis. Trends Biochem. Sci., 1995, 20(2), 73-77.
[PMID: 7701566]
Ryland, L.K.; Fox, T.E.; Liu, X.; Loughran, T.P.; Kester, M. Dysregulation of sphingolipid metabolism in cancer. Cancer Biol. Ther., 2011, 11(2), 138-149.
[http://dx.doi.org/[DOI: 10.4161/cbt.11.2.14624]
Chalfant, C.E.; Spiegel, S. Sphingosine 1-phosphate and ceramide 1-phosphate: expanding roles in cell signaling. J. Cell Sci., 2005, 118(Pt 20), 4605-4612.
[http://dx.doi.org/[DOI: 10.1242/jcs.02637]
Zuo, Q-F.; Cao, L-Y.; Yu, T.; Gong, L.; Wang, L-N.; Zhao, Y-L.; Xiao, B.; Zou, Q-M. MicroRNA-22 inhibits tumor growth and metastasis in gastric cancer by directly targeting MMP14 and Snail. Cell Death Dis., 2015, 6e2000
[http://dx.doi.org/[DOI: 10.1038/cddis.2015.297]
Hao, Q.; Li, T.; Zhang, X.; Gao, P.; Qiao, P.; Li, S.; Geng, Z. Expression and roles of fatty acid synthase in hepatocellular carcinoma. Oncol. Rep., 2014, 32(6), 2471-2476.
[http://dx.doi.org/[DOI: 10.3892/or.2014.3484]
Grewal, S.I.S.; Jia, S. Heterochromatin revisited. Nat. Rev. Genet., 2007, 8(1), 35-46.
[http://dx.doi.org/[DOI: 10.1038/nrg2008]
Law, J.A.; Jacobsen, S.E. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat. Rev. Genet., 2010, 11(3), 204-220.
[http://dx.doi.org/[doi: 10.1038/nrg2719]
Gao, X.; Reid, M.A.; Kong, M.; Locasale, J.W. Metabolic interactions with cancer epigenetics. Mol. Aspects Med., 2017, 54, 50-57.
[http://dx.doi.org/[DOI: 10.1016/j.mam.2016.09.001]
Mahmood, N.; Cheishvili, D.; Arakelian, A.; Tanvir, I.; Khan, H.A.; Pépin, A-S.; Szyf, M.; Rabbani, S.A. Methyl Donor S-Adenosylmethionine (SAM) supplementation attenuates breast cancer growth, invasion, and metastasis in vivo; therapeutic and chemopreventive applications. Oncotarget, 2018, 9(4), 5169-5183.
[http://dx.doi.org/[DOI: 10.18632/oncotarget.23704]
Takahashi, H.; McCaffery, J.M.; Irizarry, R.A.; Boeke, J.D. Nucleocytosolic acetyl-coenzyme a synthetase is required for histone acetylation and global transcription. Mol. Cell, 2006, 23(2), 207-217.
[http://dx.doi.org/[DOI: 10.1016/j.molcel.2006.05.040]
Evertts, A.G.; Zee, B.M.; Dimaggio, P.A.; Gonzales-Cope, M.; Coller, H.A.; Garcia, B.A. Quantitative dynamics of the link between cellular metabolism and histone acetylation. J. Biol. Chem., 2013, 288(17), 12142-12151.
[http://dx.doi.org/[DOI: 10.1074/jbc.M112.428318]
Sutendra, G.; Kinnaird, A.; Dromparis, P.; Paulin, R.; Stenson, T.H.; Haromy, A.; Hashimoto, K.; Zhang, N.; Flaim, E.; Michelakis, E.D. A nuclear pyruvate dehydrogenase complex is important for the generation of acetyl-coa and histone acetylation. Cell, 2014, 158(1), 84-97.
[http://dx.doi.org/[DOI: 10.1016/j.cell.2014.04.046]
McDonnell, E.; Crown, S.B.; Fox, D.B.; Kitir, B.; Ilkayeva, O.R.; Olsen, C.A.; Grimsrud, P.A.; Hirschey, M.D. Lipids reprogram metabolism to become a major carbon source for histone acetylation. Cell Rep., 2016, 17(6), 1463-1472.
[http://dx.doi.org/[DOI: 10.1016/j.celrep.2016.10.012]
Scalbert, A.; Brennan, L.; Fiehn, O.; Hankemeier, T.; Kristal, B.S.; van Ommen, B.; Pujos-Guillot, E.; Verheij, E.; Wishart, D.; Wopereis, S. Mass-Spectrometry-based metabolomics: limitations and recommendations for future progress with particular focus on nutrition research. Metabolomics, 2009, 5(4), 435-458.
[http://dx.doi.org/[DOI: 10.1007/s11306-009-0168-0]
Takats, Z.; Strittmatter, N.; McKenzie, J.S. Ambient mass spectrometry in cancer research. Adv. Cancer Res., 2017, 134, 231-256.
[http://dx.doi.org/[DOI: 10.1016/bs.acr.2016.11.011]
Perrotti, F.; Rosa, C.; Cicalini, I.; Sacchetta, P.; Del Boccio, P.; Genovesi, D.; Pieragostino, D. Advances in lipidomics for cancer biomarkers discovery. Int. J. Mol. Sci., 2016, 17(12), 1992.
[http://dx.doi.org/[doi: 10.3390/ijms17121992]
Sahm, F.; Capper, D.; Pusch, S.; Balss, J.; Koch, A.; Langhans, C-D.; Okun, J.G.; von Deimling, A. Detection of 2-hydroxyglutarate in formalin-fixed paraffin-embedded glioma specimens by gas chromatography/mass spectrometry. Brain Pathol., 2012, 22(1), 26-31.
[http://dx.doi.org/[DOI: 10.1111/j.1750-3639.2011.00506.x]
Pirro, V.; Alfaro, C.M.; Jarmusch, A.K.; Hattab, E.M.; Cohen-Gadol, A.A.; Cooks, R.G. Intraoperative assessment of tumor margins during glioma resection by desorption electrospray ionization-mass spectrometry. Proc. Natl. Acad. Sci. USA, 2017, 114(26), 6700-6705.
[http://dx.doi.org/[DOI: 10.1073/pnas.1706459114]
Zhang, R.; Hu, P.; Zang, Q.; Yue, X.; Zhou, Z.; Xu, X.; Xu, J.; Li, S.; Chen, Y.; Qiang, B.; Pen, G. X.; Han, W.; Zhang, R.; Abliz, Z. LC-MS-Based metabolomics reveals metabolic signatures related to glioma stem-like cell self-renewal and differentiation. RSC Adv, 2017, 7(39), 24221-24232.
Koelmel, J.P.; Kroeger, N.M.; Ulmer, C.Z.; Bowden, J.A.; Patterson, R.E.; Cochran, J.A.; Beecher, C.W.W.; Garrett, T.J.; Yost, R.A. LipidMatch: an automated workflow for rule-based lipid identification using untargeted high-resolution tandem mass spectrometry data. BMC Bioinform, 2017, 18(1), 331.
[http://dx.doi.org/[DOI: https://doi.org/10.1186/s12859-017-1744-3]
Kyle, J.E.; Crowell, K.L.; Casey, C.P.; Fujimoto, G.M.; Kim, S.; Dautel, S.E.; Smith, R.D.; Payne, S.H.; Metz, T.O. LIQUID: an-open source software for identifying lipids in lc-ms/ms-based lipidomics data. Bioinformatics, 2017, 33(11), 1744-1746.
[http://dx.doi.org/[doi: 10.1093/bioinformatics/btx046]
Quehenberger, O.; Armando, A.M.; Dennis, E.A. High sensitivity quantitative lipidomics analysis of fatty acids in biological samples by gas chromatography-mass spectrometry. Biochim. Biophys. Acta, 2011, 1811(11), 648-656.
[http://dx.doi.org/[DOI: 10.1016/j.bbalip.2011.07.006]
Norris, J.L.; Caprioli, R.M. Analysis of tissue specimens by matrix-assisted laser desorption/ionization imaging mass spectrometry in biological and clinical research. Chem. Rev., 2013, 113(4), 2309-2342.
[http://dx.doi.org/[DOI: 10.1021/cr3004295]
Dill, A.L.; Ifa, D.R.; Manicke, N.E.; Ouyang, Z.; Cooks, R.G. Mass spectrometric imaging of lipids using desorption electrospray ionization. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2009, 877(26), 2883-2889.
[http://dx.doi.org/[DOI: 10.1016/j.jchromb.2008.12.058]
Eberlin, L.S. DESI-MS imaging of lipids and metabolites from biological samples. Methods Mol. Biol., 2014, 1198, 299-311.
[http://dx.doi.org/[DOI: 10.1007/978-1-4939-1258-2_20]
Jarmusch, A.K.; Pirro, V.; Baird, Z.; Hattab, E.M.; Cohen-Gadol, A.A.; Cooks, R.G. Lipid and metabolite profiles of human brain tumors by desorption electrospray Ionization-MS. Proc. Natl. Acad. Sci. USA, 2016, 113(6), 1486-1491.
[http://dx.doi.org/[DOI: 10.1073/pnas.1523306113]
Prajapati, B.G. “Mas Spec Pen”, The new future for cancer diagnosis: mini review. Biomed. J. Sci. Tech. Res., 2017, 1, 1202-1205.
[http://dx.doi.org/[DOI: 10.26717/BJSTR.2017.01.000397]
Balog, J.; Sasi-Szabó, L.; Kinross, J.; Lewis, M.R.; Muirhead, L.J.; Veselkov, K.; Mirnezami, R.; Dezső, B.; Damjanovich, L.; Darzi, A.; Nicholson, J.K.; Takáts, Z. Intraoperative tissue identification using rapid evaporative ionization mass spectrometry. Sci. Transl. Med., 2013, 5(194)194ra93
Liu, J.; Cooks, R.G.; Ouyang, Z. Biological tissue diagnostics using needle biopsy and spray ionization mass spectrometry. Anal. Chem., 2011, 83(24), 9221-9225.
Kononikhin, A.; Zhvansky, E.; Shurkhay, V.; Popov, I.; Bormotov, D.; Kostyukevich, Y.; Karchugina, S.; Indeykina, M.; Bugrova, A.; Starodubtseva, N.; Potapov, A.; Nikolaev, E.N. A novel direct spray-from-tissue ionization method for mass spectrometric analysis of human brain tumors. Anal. Bioanal. Chem., 2015, 407(25), 7797-7805.
Ifa, D.R.; Eberlin, L.S. Ambient ionization mass spectrometry for cancer diagnosis and surgical margin evaluation. Clin. Chem., 2016, 62(1), 111-123.
[http://dx.doi.org/[DOI: 10.1373/clinchem.2014.237172]
He, H.; Conrad, C.A.; Nilsson, C.L.; Ji, Y.; Schaub, T.M.; Marshall, A.G.; Emmett, M.R. Method for lipidomic analysis: p53 expression modulation of sulfatide, ganglioside, and phospholipid composition of U87 MG glioblastoma cells. Anal. Chem., 2007, 79(22), 8423-8430.
[http://dx.doi.org/[DOI: https://doi.org/10.1021/ac071413m]
Zhang, J.; Rector, J.; Lin, J.Q.; Young, J.H.; Sans, M.; Katta, N.; Giese, N.; Yu, W.; Nagi, C.; Suliburk, J.; Liu, J.; Bensussan, A.; DeHoog, R.J.; Garza, K.Y.; Ludolph, B.; Sorace, A.G.; Syed, A.; Zahedivash, A.; Milner, T.E.; Eberlin, L.S. Nondestructive tissue analysis for ex vivo and in vivo cancer diagnosis using a handheld mass spectrometry system. Sci. Transl. Med., 2017, 9(406)eaan3968
[http://dx.doi.org/[DOI: 10.1126/scitranslmed.aan3968]
Lee, S.T.; Lee, J.C.; Kim, J.W.; Cho, S.Y.; Seong, J.K.; Moon, M.H. Global changes in lipid profiles of mouse cortex, hippocampus, and hypothalamus upon p53 knockout. Sci. Rep., 2016, 6, 36510.
[http://dx.doi.org/[DOI: https://doi.org/10.1038/srep36510]
Fabris, D.; Rožman, M.; Sajko, T.; Vukelić, Ž. Aberrant ganglioside composition in glioblastoma multiforme and peritumoral tissue: a mass spectrometry characterization. Biochimie, 2017, 137, 56-68.
[http://dx.doi.org/[DOI: 10.1016/j.biochi.2017.03.001]
Eberlin, L.S.; Norton, I.; Orringer, D.; Dunn, I.F.; Liu, X.; Ide, J.L.; Jarmusch, A.K.; Ligon, K.L.; Jolesz, F.A.; Golby, A.J.; Santagata, S.; Agar, N.Y.; Cooks, R.G. Ambient mass spectrometry for the intraoperative molecular diagnosis of human brain tumors. Proc. Natl. Acad. Sci. USA, 2013, 110(5), 1611-1616.
[http://dx.doi.org/[DOI: 10.1073/pnas.1215687110]
Lydic, T.A.; Goo, Y-H. Lipidomics unveils the complexity of the lipidome in metabolic diseases. Clin. Transl. Med., 2018, 7(1), 4.
[http://dx.doi.org/[DOI: 10.1186/s40169-018-0182-9]
Chagovets, V.V.; Wang, Z.; Kononikhin, A.S.; Starodubtseva, N.L.; Borisova, A.; Salimova, D.; Popov, I.A.; Kozachenko, A.V.; Chingin, K.; Chen, H.; Frankevich, V.E.; Adamyan, L.V.; Sukhikh, G.T. Endometriosis foci differentiation by rapid lipid profiling using tissue spray ionization and high resolution mass spectrometry. Sci. Rep., 2017, 7(1), 2546.
[http://dx.doi.org/[DOI: https://doi.org/10.1038/s41598-017-02708-x]
Chagovets, V.; Wang, Z.; Kononikhin, A.; Starodubtseva, N.; Borisova, A.; Salimova, D.; Popov, I.; Kozachenko, A.; Chingin, K.; Chen, H.; Frankevich, V.; Adamyan, L.; Sukhikh, G. A comparison of tissue spray and lipid extract direct injection electrospray ionization mass spectrometry for the differentiation of eutopic and ectopic endometrial tissues. J. Am. Soc. Mass Spectrom., 2018, 29(2), 323-330.
Braverman, N.E.; Moser, A.B. Functions of plasmalogen lipids in health and disease. Biochim. Biophys. Acta, 2012, 1822(9), 1442-1452.
[http://dx.doi.org/[DOI: 10.1016/j.bbadis.2012.05.008]
Sorokin, A.; Zhvansky, E.; Bocharov, K.; Popov, I.; Zubtsov, D.; Vorobiev, A.; Nikolaev, E.; Shurkhay, V.; Potapov, A. Multi-Label classification of brain tumor mass spectrometry data in pursuit of tumor boundary detection Method. In: ICIIBMS 2017-2nd International Conference on Intelligent Informatics and Biomedical Sciences; Okinawa, Japan 24-26 Nov, 2017.

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2019
Page: [1521 - 1534]
Pages: 14
DOI: 10.2174/1568026619666190729154543
Price: $58

Article Metrics

PDF: 23