Bile Acids and Farnesoid X Receptor: Novel Target for the Treatment of Diabetic Cardiomyopathy

Author(s): Chao Li , Yunlun Li* , Zhibo Gai* .

Journal Name: Current Protein & Peptide Science

Volume 20 , Issue 10 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Diabetes mellitus (DM) has become an increasingly common disease with high disability and mortality rates. Diabetes complications are the main cause of diabetes death and about 50% of diabetic patients died from heart disease in developed countries reported by World Health Organization. Diabetic cardiomyopathy (DCM) has been considered as a high incidence and serious complication of DM and plays a key role in the incidence and development of diabetes related heart failure. Metabolism dysregulation is regarded as an important and earlier factor occurred in the pathogenesis of DCM. Insulin resistance, oxidative stress, inflammation and mitochondrial dysfunction also contribute to the development of DCM. Farnesoid X Receptor (FXR) is a member of nuclear receptor superfamily, and plays a critical role in regulating lipid and glucose metabolism, oxidative stress and inflammation. FXR is activated by primary bile acids (BAs) such as chenodeoxycholic acid, cholic acid and synthetic agonists such as obeticholic acid. BAs are the main active ingredients of many natural products and traditional medicines, especially bile or gallstones in animals, such as calculus bovis. Due to the regulatory effect of FXR on glucose and lipid metabolism, oxidative stress and inflammation, the treatment of BAs and FXR agonists for metabolic syndrome and DCM have gained more attention. This review will focus on the pathogenesis of diabetic cardiomyopathy and the regulatory effect of BAs and FXR on DCM.

Keywords: Bile Acids, farnesoid X receptor, diabetic cardiomyopathy, oxidative stress, inflammation, mitochondrial dysfunction.

Cho, N.H.; Shaw, J.E.; Karuranga, S.; Huang, Y.; da Rocha Fernandes, J.D.; Ohlrogge, A.W.; Malanda, B. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res. Clin. Pract., 2018, 138, 271-281.
New WHO statistics highlight increases in blood pressure and diabetes, other noncommunicable risk factors. Cent. Eur. J. Public Health, 2012, 20(2), 149.
Rubler, S.; Dlugash, J.; Yuceoglu, Y.Z.; Kumral, T.; Branwood, A.W.; Grishman, A. New type of cardiomyopathy associated with diabetic glomerulosclerosis. Am. J. Cardiol., 1972, 30(6), 595-602.
Kannel, W.B.; Hjortland, M.; Castelli, W.P. Role of diabetes in congestive heart failure: The Framingham study. Am. J. Cardiol., 1974, 34(1), 29-34.
Jia, G.; Hill, M.A.; Sowers, J.R. Diabetic cardiomyopathy: An update of mechanisms contributing to this clinical entity. Circ. Res., 2018, 122(4), 624-638.
Hu, X.; Bai, T.; Xu, Z.; Liu, Q.; Zheng, Y.; Cai, L. Pathophysiological fundamentals of diabetic cardiomyopathy. Compr. Physiol., 2017, 7(2), 693-711.
Sandesara, P.B.; O’Neal, W.T.; Kelli, H.M.; Samman-Tahhan, A.; Hammadah, M.; Quyyumi, A.A.; Sperling, L.S. The prognostic significance of diabetes and microvascular complications in patients with heart failure with preserved ejection fraction. Diabetes Care, 2018, 41(1), 150-155.
Maisch, B.; Alter, P.; Pankuweit, S. Diabetic cardiomyopathy--fact or fiction? Herz, 2011, 36(2), 102-115.
Jia, G.; DeMarco, V.G.; Sowers, J.R. Insulin resistance and hyperinsulinaemia in diabetic cardiomyopathy. Nat. Rev. Endocrinol., 2016, 12(3), 144-153.
Russo, I.; Frangogiannis, N.G. Diabetes-associated cardiac fibrosis: Cellular effectors, molecular mechanisms and therapeutic opportunities. J. Mol. Cell. Cardiol., 2016, 90, 84-93.
Martinot, E.; Sedes, L.; Baptissart, M.; Lobaccaro, J.M.; Caira, F.; Beaudoin, C.; Volle, D.H. Bile acids and their receptors. Mol. Aspects Med., 2017, 56, 2-9.
Spinelli, V.; Chavez-Talavera, O.; Tailleux, A.; Staels, B. Metabolic effects of bile acid sequestration: Impact on cardiovascular risk factors. Curr. Opin. Endocrinol. Diabetes Obes., 2016, 23(2), 138-144.
Forman, B.M.; Goode, E.; Chen, J.; Oro, A.E.; Bradley, D.J.; Perlmann, T.; Noonan, D.J.; Burka, L.T.; McMorris, T.; Lamph, W.W.; Evans, R.M.; Weinberger, C. Identification of a nuclear receptor that is activated by farnesol metabolites. Cell, 1995, 81(5), 687-693.
Moris, D.; Giaginis, C.; Tsourouflis, G.; Theocharis, S. Farnesoid-X Receptor (FXR) as a promising pharmaceutical target in atherosclerosis. Curr. Med. Chem., 2017, 24(11), 1147-1157.
Hageman, J.; Herrema, H.; Groen, A.K.; Kuipers, F. A role of the bile salt receptor FXR in atherosclerosis. Arterioscler. Thromb. Vasc. Biol., 2010, 30(8), 1519-1528.
Porez, G.; Prawitt, J.; Gross, B.; Staels, B. Bile acid receptors as targets for the treatment of dyslipidemia and cardiovascular disease. J. Lipid Res., 2012, 53(9), 1723-1737.
Ali, A.H.; Carey, E.J.; Lindor, K.D. Recent advances in the development of farnesoid X receptor agonists. Ann. Transl. Med., 2015, 3(1), 5.
Brendel, C.; Schoonjans, K.; Botrugno, O.A.; Treuter, E.; Auwerx, J. The small heterodimer partner interacts with the liver X receptor alpha and represses its transcriptional activity. Mol. Endocrinol., 2002, 16(9), 2065-2076.
De Fabiani, E.; Mitro, N.; Anzulovich, A.C.; Pinelli, A.; Galli, G.; Crestani, M. The negative effects of bile acids and tumor necrosis factor-alpha on the transcription of cholesterol 7alpha-hydroxylase gene (CYP7A1) converge to hepatic nuclear factor-4: A novel mechanism of feedback regulation of bile acid synthesis mediated by nuclear receptors. J. Biol. Chem., 2001, 276(33), 30708-30716.
Pu, J.; Yuan, A.; Shan, P.; Gao, E.; Wang, X.; Wang, Y.; Lau, W.B.; Koch, W.; Ma, X.L.; He, B. Cardiomyocyte-expressed farnesoid-X-receptor is a novel apoptosis mediator and contributes to myocardial ischaemia/reperfusion injury. Eur. Heart J., 2013, 34(24), 1834-1845.
He, F.; Li, J.; Mu, Y.; Kuruba, R.; Ma, Z.; Wilson, A.; Alber, S.; Jiang, Y.; Stevens, T.; Watkins, S.; Pitt, B.; Xie, W.; Li, S. Downregulation of endothelin-1 by farnesoid X receptor in vascular endothelial cells. Circ. Res., 2006, 98(2), 192-199.
Li, Y.T.; Swales, K.E.; Thomas, G.J.; Warner, T.D.; Bishop-Bailey, D. Farnesoid x receptor ligands inhibit vascular smooth muscle cell inflammation and migration. Arterioscler. Thromb. Vasc. Biol., 2007, 27(12), 2606-2611.
Xu, Y.; Li, F.; Zalzala, M.; Xu, J.; Gonzalez, F.J.; Adorini, L.; Lee, Y.K.; Yin, L.; Zhang, Y. Farnesoid X receptor activation increases reverse cholesterol transport by modulating bile acid composition and cholesterol absorption in mice. Hepatology, 2016, 64(4), 1072-1085.
Mencarelli, A.; Cipriani, S.; Renga, B.; D’Amore, C.; Palladino, G.; Distrutti, E.; Baldelli, F.; Fiorucci, S. FXR activation improves myocardial fatty acid metabolism in a rodent model of obesity-driven cardiotoxicity. Nutr. Metab. Cardiovasc. Dis., 2013, 23(2), 94-101.
Diamant, M.; Lamb, H.J.; Smit, J.W.; de Roos, A.; Heine, R.J. Diabetic cardiomyopathy in uncomplicated type 2 diabetes is associated with the metabolic syndrome and systemic inflammation. Diabetologia, 2005, 48(8), 1669-1670.
Song, Y.; Wang, J.; Li, Y.; Du, Y.; Arteel, G.E.; Saari, J.T.; Kang, Y.J.; Cai, L. Cardiac metallothionein synthesis in streptozotocin-induced diabetic mice, and its protection against diabetes-induced cardiac injury. Am. J. Pathol., 2005, 167(1), 17-26.
Tschope, C.; Walther, T.; Escher, F.; Spillmann, F.; Du, J.; Altmann, C.; Schimke, I.; Bader, M.; Sanchez-Ferrer, C.F.; Schultheiss, H.P.; Noutsias, M. Transgenic activation of the kallikrein-kinin system inhibits intramyocardial inflammation, endothelial dysfunction and oxidative stress in experimental diabetic cardiomyopathy. FASEB J., 2005, 19(14), 2057-2059.
Varga, Z.V.; Giricz, Z.; Liaudet, L.; Hasko, G.; Ferdinandy, P.; Pacher, P. Interplay of oxidative, nitrosative/nitrative stress, inflammation, cell death and autophagy in diabetic cardiomyopathy. Biochim. Biophys. Acta, 2015, 1852(2), 232-242.
Westermann, D.; Walther, T.; Savvatis, K.; Escher, F.; Sobirey, M.; Riad, A.; Bader, M.; Schultheiss, H.P.; Tschope, C. Gene deletion of the kinin receptor B1 attenuates cardiac inflammation and fibrosis during the development of experimental diabetic cardiomyopathy. Diabetes, 2009, 58(6), 1373-1381.
Rajesh, M.; Mukhopadhyay, P.; Batkai, S.; Patel, V.; Saito, K.; Matsumoto, S.; Kashiwaya, Y.; Horvath, B.; Mukhopadhyay, B.; Becker, L.; Hasko, G.; Liaudet, L.; Wink, D.A.; Veves, A.; Mechoulam, R.; Pacher, P. Cannabidiol attenuates cardiac dysfunction, oxidative stress, fibrosis, and inflammatory and cell death signaling pathways in diabetic cardiomyopathy. J. Am. Coll. Cardiol., 2010, 56(25), 2115-2125.
Westermann, D.; Van Linthout, S.; Dhayat, S.; Dhayat, N.; Schmidt, A.; Noutsias, M.; Song, X.Y.; Spillmann, F.; Riad, A.; Schultheiss, H.P.; Tschope, C. Tumor necrosis factor-alpha antagonism protects from myocardial inflammation and fibrosis in experimental diabetic cardiomyopathy. Basic Res. Cardiol., 2007, 102(6), 500-507.
Sharma, A.; Tate, M.; Mathew, G.; Vince, J.E.; Ritchie, R.H.; de Haan, J.B. Oxidative stress and NLRP3-inflammasome activity as significant drivers of diabetic cardiovascular complications: Therapeutic implications. Front. Physiol., 2018, 9, 114.
Westermann, D.; Rutschow, S.; Jager, S.; Linderer, A.; Anker, S.; Riad, A.; Unger, T.; Schultheiss, H.P.; Pauschinger, M.; Tschope, C. Contributions of inflammation and cardiac matrix metalloproteinase activity to cardiac failure in diabetic cardiomyopathy: the role of angiotensin type 1 receptor antagonism. Diabetes, 2007, 56(3), 641-646.
Klein, J.B.; Wang, G.W.; Zhou, Z.; Buridi, A.; Kang, Y.J. Inhibition of tumor necrosis factor-alpha-dependent cardiomyocyte apoptosis by metallothionein. Cardiovasc. Toxicol., 2002, 2(3), 209-218.
Westermann, D.; Rutschow, S.; Van Linthout, S.; Linderer, A.; Bucker-Gartner, C.; Sobirey, M.; Riad, A.; Pauschinger, M.; Schultheiss, H.P.; Tschope, C. Inhibition of p38 mitogen-activated protein kinase attenuates left ventricular dysfunction by mediating pro-inflammatory cardiac cytokine levels in a mouse model of diabetes mellitus. Diabetologia, 2006, 49(10), 2507-2513.
Luo, B.; Huang, F.; Liu, Y.; Liang, Y.; Wei, Z.; Ke, H.; Zeng, Z.; Huang, W.; He, Y. NLRP3 Inflammasome as a Molecular Marker in Diabetic Cardiomyopathy. Front. Physiol., 2017, 8, 519.
Jin, C.; Flavell, R.A. Innate sensors of pathogen and stress: linking inflammation to obesity. J. Allergy Clin. Immunol., 2013, 132(2), 287-294.
Wen, H.; Gris, D.; Lei, Y.; Jha, S.; Zhang, L.; Huang, M.T.; Brickey, W.J.; Ting, J.P. Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nat. Immunol., 2011, 12(5), 408-415.
Liao, P.C.; Chao, L.K.; Chou, J.C.; Dong, W.C.; Lin, C.N.; Lin, C.Y.; Chen, A.; Ka, S.M.; Ho, C.L.; Hua, K.F. Lipopolysaccharide/adenosine triphosphate-mediated signal transduction in the regulation of NLRP3 protein expression and caspase-1-mediated interleukin-1beta secretion. Inflamm. Res., 2013, 62(1), 89-96.
Luo, B.; Li, B.; Wang, W.; Liu, X.; Xia, Y.; Zhang, C.; Zhang, M.; Zhang, Y.; An, F. NLRP3 gene silencing ameliorates diabetic cardiomyopathy in a type 2 diabetes rat model. PLoS One, 2014, 9(8)e104771
Liu, X.; Zhang, Z.; Ruan, J.; Pan, Y.; Magupalli, V.G.; Wu, H.; Lieberman, J. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature, 2016, 535(7610), 153-158.
Sborgi, L.; Ruhl, S.; Mulvihill, E.; Pipercevic, J.; Heilig, R.; Stahlberg, H.; Farady, C.J.; Muller, D.J.; Broz, P.; Hiller, S. GSDMD membrane pore formation constitutes the mechanism of pyroptotic cell death. EMBO J., 2016, 35(16), 1766-1778.
Franchi, L.; Munoz-Planillo, R.; Nunez, G. Sensing and reacting to microbes through the inflammasomes. Nat. Immunol., 2012, 13(4), 325-332.
Kumar, S.; Prasad, S.; Sitasawad, S.L. Multiple antioxidants improve cardiac complications and inhibit cardiac cell death in streptozotocin-induced diabetic rats. PLoS One, 2013, 8(7)e67009
Hanniman, E.A.; Lambert, G.; McCarthy, T.C.; Sinal, C.J. Loss of functional farnesoid X receptor increases atherosclerotic lesions in apolipoprotein E-deficient mice. J. Lipid Res., 2005, 46(12), 2595-2604.
Mencarelli, A.; Renga, B.; Distrutti, E.; Fiorucci, S. Antiatherosclerotic effect of farnesoid X receptor. Am. J. Physiol. Heart Circ. Physiol., 2009, 296(2), H272-H281.
Gai, Z.; Visentin, M.; Gui, T.; Zhao, L.; Thasler, W.E.; Hausler, S.; Hartling, I.; Cremonesi, A.; Hiller, C.; Kullak-Ublick, G.A. Effects of farnesoid X receptor activation on arachidonic acid metabolism, NF-kB signaling, and hepatic inflammation. Mol. Pharmacol., 2018, 94(2), 802-811.
Li, C.; Li, J.; Weng, X.; Lan, X.; Chi, X. Farnesoid X receptor agonist CDCA reduces blood pressure and regulates vascular tone in spontaneously hypertensive rats. J. Am. Soc. Hypertens., 2015, 9(7), 507-516 e7.
Duncan, J.G. Mitochondrial dysfunction in diabetic cardiomyopathy. Biochim. Biophys. Acta, 2011, 1813(7), 1351-1359.
Montaigne, D.; Marechal, X.; Coisne, A.; Debry, N.; Modine, T.; Fayad, G.; Potelle, C.; El Arid, J.M.; Mouton, S.; Sebti, Y.; Duez, H.; Preau, S.; Remy-Jouet, I.; Zerimech, F.; Koussa, M.; Richard, V.; Neviere, R.; Edme, J.L.; Lefebvre, P.; Staels, B. Myocardial contractile dysfunction is associated with impaired mitochondrial function and dynamics in type 2 diabetic but not in obese patients. Circulation, 2014, 130(7), 554-564.
Shen, X.; Zheng, S.; Metreveli, N.S.; Epstein, P.N. Protection of cardiac mitochondria by overexpression of MnSOD reduces diabetic cardiomyopathy. Diabetes, 2006, 55(3), 798-805.
Hafstad, A.D.; Boardman, N.; Aasum, E. How exercise may amend metabolic disturbances in diabetic cardiomyopathy. Antioxid. Redox Signal., 2015, 22(17), 1587-1605.
Yilmaz, S.; Canpolat, U.; Aydogdu, S.; Abboud, H.E. Diabetic cardiomyopathy; summary of 41 years. Korean Circ. J., 2015, 45(4), 266-272.
Teshima, Y.; Takahashi, N.; Nishio, S.; Saito, S.; Kondo, H.; Fukui, A.; Aoki, K.; Yufu, K.; Nakagawa, M.; Saikawa, T. Production of reactive oxygen species in the diabetic heart. Roles of mitochondria and NADPH oxidase. Circ. J., 2014, 78(2), 300-306.
Saks, V.; Dzeja, P.; Schlattner, U.; Vendelin, M.; Terzic, A.; Wallimann, T. Cardiac system bioenergetics: metabolic basis of the Frank-Starling law. J. Physiol., 2006, 571(Pt 2), 253-273.
Fauconnier, J.; Lanner, J.T.; Zhang, S.J.; Tavi, P.; Bruton, J.D.; Katz, A.; Westerblad, H. Insulin and inositol 1,4,5-trisphosphate trigger abnormal cytosolic Ca2+ transients and reveal mitochondrial Ca2+ handling defects in cardiomyocytes of ob/ob mice. Diabetes, 2005, 54(8), 2375-2381.
Anderson, E.J.; Rodriguez, E.; Anderson, C.A.; Thayne, K.; Chitwood, W.R.; Kypson, A.P. Increased propensity for cell death in diabetic human heart is mediated by mitochondrial-dependent pathways. Am. J. Physiol. Heart Circ. Physiol., 2011, 300(1), H118-H124.
Bianchi, K.; Vandecasteele, G.; Carli, C.; Romagnoli, A.; Szabadkai, G.; Rizzuto, R. Regulation of Ca2+ signalling and Ca2+-mediated cell death by the transcriptional coactivator PGC-1alpha. Cell Death Differ., 2006, 13(4), 586-596.
Buchanan, J.; Mazumder, P.K.; Hu, P.; Chakrabarti, G.; Roberts, M.W.; Yun, U.J.; Cooksey, R.C.; Litwin, S.E.; Abel, E.D. Reduced cardiac efficiency and altered substrate metabolism precedes the onset of hyperglycemia and contractile dysfunction in two mouse models of insulin resistance and obesity. Endocrinology, 2005, 146(12), 5341-5349.
Lee, C.G.; Kim, Y.W.; Kim, E.H.; Meng, Z.; Huang, W.; Hwang, S.J.; Kim, S.G. Farnesoid X receptor protects hepatocytes from injury by repressing miR-199a-3p, which increases levels of LKB1., Gastroenterology, 2012, 142(5), 1206-1217 e7.
Xia, Y.; Zhang, F.; Zhao, S.; Li, Y.; Chen, X.; Gao, E.; Xu, X.; Xiong, Z.; Zhang, X.; Zhang, J.; Zhao, H.; Wang, W.; Wang, H.; Guo, Y.; Liu, Y.; Li, C.; Wang, S.; Zhang, L.; Yan, W.; Tao, L. Adiponectin determines farnesoid X receptor agonism-mediated cardioprotection against post-infarction remodeling and dysfunction. Cardiovasc. Res., 2018, 114(10), 1335-1349.
Li, C.; Jiang, F.; Li, Y.L.; Jiang, Y.H.; Yang, W.Q.; Sheng, J.; Xu, W.J.; Zhu, Q.J. Rhynchophylla total alkaloid rescues autophagy, decreases oxidative stress and improves endothelial vasodilation in spontaneous hypertensive rats. Acta Pharmacol. Sin., 2018, 39(3), 345-356.
Han, C.Y.; Kim, T.H.; Koo, J.H.; Kim, S.G. Farnesoid X receptor as a regulator of fuel consumption and mitochondrial function. Arch. Pharm. Res., 2016, 39(8), 1062-1074.
Seok, S.; Fu, T.; Choi, S.E.; Li, Y.; Zhu, R.; Kumar, S.; Sun, X.; Yoon, G.; Kang, Y.; Zhong, W.; Ma, J.; Kemper, B.; Kemper, J.K. Transcriptional regulation of autophagy by an FXR-CREB axis. Nature, 2014, 516(7529), 108-111.
Manley, S.; Ni, H.M.; Williams, J.A.; Kong, B.; DiTacchio, L.; Guo, G.; Ding, W.X. Farnesoid X receptor regulates forkhead Box O3a activation in ethanol-induced autophagy and hepatotoxicity. Redox Biol., 2014, 2, 991-1002.
Pickering, R.J.; Rosado, C.J.; Sharma, A.; Buksh, S.; Tate, M.; de Haan, J.B. Recent novel approaches to limit oxidative stress and inflammation in diabetic complications. Clin. Transl. Immunol, 2018, 7(4)e1016
Liu, Q.; Wang, S.; Cai, L. Diabetic cardiomyopathy and its mechanisms: Role of oxidative stress and damage. J. Diabetes Investig., 2014, 5(6), 623-634.
Giacco, F.; Brownlee, M. Oxidative stress and diabetic complications. Circ. Res., 2010, 107(9), 1058-1070.
Kayama, Y.; Raaz, U.; Jagger, A.; Adam, M.; Schellinger, I.N.; Sakamoto, M.; Suzuki, H.; Toyama, K.; Spin, J.M.; Tsao, P.S. Diabetic cardiovascular disease induced by oxidative stress. Int. J. Mol. Sci., 2015, 16(10), 25234-25263.
Faria, A.; Persaud, S.J. Cardiac oxidative stress in diabetes: Mechanisms and therapeutic potential. Pharmacol. Ther., 2017, 172, 50-62.
Brownlee, M. The pathobiology of diabetic complications: A unifying mechanism. Diabetes, 2005, 54(6), 1615-1625.
Halestrap, A.P. What is the mitochondrial permeability transition pore? J. Mol. Cell. Cardiol., 2009, 46(6), 821-831.
Rajesh, M.; Batkai, S.; Kechrid, M.; Mukhopadhyay, P.; Lee, W.S.; Horvath, B.; Holovac, E.; Cinar, R.; Liaudet, L.; Mackie, K.; Hasko, G.; Pacher, P. Cannabinoid 1 receptor promotes cardiac dysfunction, oxidative stress, inflammation, and fibrosis in diabetic cardiomyopathy. Diabetes, 2012, 61(3), 716-727.
Gao, L.; Mann, G.E. Vascular NAD(P)H oxidase activation in diabetes: a double-edged sword in redox signalling. Cardiovasc. Res., 2009, 82(1), 9-20.
Roe, N.D.; Thomas, D.P.; Ren, J. Inhibition of NADPH oxidase alleviates experimental diabetes-induced myocardial contractile dysfunction. Diabetes Obes. Metab., 2011, 13(5), 465-473.
Kuroda, J.; Ago, T.; Matsushima, S.; Zhai, P.; Schneider, M.D.; Sadoshima, J. NADPH oxidase 4 (Nox4) is a major source of oxidative stress in the failing heart. Proc. Natl. Acad. Sci. USA, 2010, 107(35), 15565-15570.
Rajesh, M.; Mukhopadhyay, P.; Batkai, S.; Mukhopadhyay, B.; Patel, V.; Hasko, G.; Szabo, C.; Mabley, J.G.; Liaudet, L.; Pacher, P. Xanthine oxidase inhibitor allopurinol attenuates the development of diabetic cardiomyopathy. J. Cell. Mol. Med., 2009, 13(8B), 2330-2341.
Li, J.; Wilson, A.; Kuruba, R.; Zhang, Q.; Gao, X.; He, F.; Zhang, L.M.; Pitt, B.R.; Xie, W.; Li, S. FXR-mediated regulation of eNOS expression in vascular endothelial cells. Cardiovasc. Res., 2008, 77(1), 169-177.
Dong, L.; Han, X.; Tao, X.; Xu, L.; Xu, Y.; Fang, L.; Yin, L.; Qi, Y.; Li, H.; Peng, J. Protection by the total flavonoids from Rosa laevigata michx fruit against lipopolysaccharide-induced liver injury in mice via modulation of FXR signaling. Foods, 2018, 7(6)E88
Gai, Z.; Gui, T.; Hiller, C.; Kullak-Ublick, G.A. Farnesoid X receptor protects against kidney injury in uninephrectomized obese mice. J. Biol. Chem., 2016, 291(5), 2397-2411.
Jung, E.H.; Lee, J.H.; Kim, S.C.; Kim, Y.W. AMPK activation by liquiritigenin inhibited oxidative hepatic injury and mitochondrial dysfunction induced by nutrition deprivation as mediated with induction of farnesoid X receptor. Eur. J. Nutr., 2017, 56(2), 635-647.
Zhang, Y.; Xu, Y.; Qi, Y.; Xu, L.; Song, S.; Yin, L.; Tao, X.; Zhen, Y.; Han, X.; Ma, X.; Liu, K.; Peng, J. Protective effects of dioscin against doxorubicin-induced nephrotoxicity via adjusting FXR-mediated oxidative stress and inflammation. Toxicology, 2017, 378, 53-64.
Gai, Z.; Chu, L.; Xu, Z.; Song, X.; Sun, D.; Kullak-Ublick, G.A. Farnesoid X receptor activation protects the kidney from ischemia-reperfusion damage. Sci. Rep., 2017, 7(1), 9815.
Ge, M.; Yao, W.; Wang, Y.; Yuan, D.; Chi, X.; Luo, G.; Hei, Z. Propofol alleviates liver oxidative stress via activating Nrf2 pathway. J. Surg. Res., 2015, 196(2), 373-381.
Weerachayaphorn, J.; Cai, S.Y.; Soroka, C.J.; Boyer, J.L. Nuclear factor erythroid 2-related factor 2 is a positive regulator of human bile salt export pump expression. Hepatology, 2009, 50(5), 1588-1596.
Chi, X.; Zhang, R.; Shen, N.; Jin, Y.; Alina, A.; Yang, S.; Lin, S. Sulforaphane reduces apoptosis and oncosis along with protecting liver injury-induced ischemic reperfusion by activating the Nrf2/ARE pathway. Hepatol. Int., 2015, 9(2), 321-329.

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2019
Page: [976 - 983]
Pages: 8
DOI: 10.2174/1389203720666190726152847
Price: $58

Article Metrics

PDF: 15