Pharmacological Interventions and Rehabilitation Approach for Enhancing Brain Self-repair and Stroke Recovery

Author(s): Rafał Szelenberger, Joanna Kostka, Joanna Saluk-Bijak, Elżbieta Miller*.

Journal Name: Current Neuropharmacology

Volume 18 , Issue 1 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Neuroplasticity is a natural process occurring in the brain for the entire life. Stroke is the leading cause of long term disability and a huge medical and financial problem throughout the world. Research conducted over the past decade focused mainly on neuroprotection in the acute phase of stroke while very little studies target the chronic stage. Recovery after stroke depends on the ability of our brain to reestablish the structural and functional organization of neurovascular networks. Combining adjuvant therapies and drugs may enhance the repair processes and restore impaired brain functions. Currently, there are some drugs and rehabilitative strategies that can facilitate brain repair and improve clinical effect even years after stroke onset. Moreover, some of the compounds such as citicoline, fluoxetine, niacin, levodopa, etc. are already in clinical use or are being trialed in clinical issues. Many studies are also testing cell therapies; in our review, we focused on studies where cells have been implemented at the early stage of stroke. Next, we discuss pharmaceutical interventions. In this section, we selected methods of cognitive, behavioral, and physical rehabilitation as well as adjuvant interventions for neuroprotection including noninvasive brain stimulation and extremely low-frequency electromagnetic field. The modern rehabilitation represents a new model of physical interventions with the limited therapeutic window up to six months after stroke. However, previous studies suggest that the time window for stroke recovery is much longer than previously thought. This review attempts to present the progress in neuroprotective strategies, both pharmacological and non-pharmacological that can stimulate the endogenous neuroplasticity in post-stroke patients.

Keywords: Stroke, neuroprotection, recovery, drugs, rehabilitation, rehabilitation, stem cell.

[1]
Hankey, G. J. Stroke. Lancet, 2017, 389(10069), 641-654.
[http://dx.doi.org/10.1016/S0140-6736(16)30962-X] [PMID: 27637676]
[3]
Feigin, V.L.; Forouzanfar, M.H.; Krishnamurthi, R. For the global burden of diseases, injuries, and risk factors study 2010 (GBD 2010) and the GBD stroke experts group. (2014) Global and regional burden of stroke during 1990–2010: findings from the Global Burden of Disease Study. Lancet, 2010, 383(9913), 245-254.
[http://dx.doi.org/10.1016/S0140-6736(13)61953-4] [PMID: 24449944]
[4]
Hillis, A.E.; Tippett, D.C. Stroke recovery: Surprising influences and residual consequences. Adv. Med., 2014. 2014378263
[http://dx.doi.org/10.1155/2014/378263] [PMID: 25844378]
[5]
Murphy, T.H.; Corbett, D. Plasticity during stroke recovery: from synapse to behaviour. Nat. Rev. Neurosci., 2009, 10(12), 861-872.
[http://dx.doi.org/10.1038/nrn2735] [PMID: 19888284]
[6]
Whishaw, I.Q. Loss of the innate cortical engram for action patterns used in skilled reaching and the development of behavioral compensation following motor cortex lesions in the rat. Neuropharmacology, 2000, 39(5), 788-805.
[http://dx.doi.org/10.1016/S0028-3908(99)00259-2] [PMID: 10699445]
[7]
Levin, M.F.; Kleim, J.A.; Wolf, S.L. What do motor “recovery” and “compensation” mean in patients following stroke? Neurorehabil. Neural Repair, 2009, 23(4), 313-319.
[http://dx.doi.org/10.1177/1545968308328727] [PMID: 19118128]
[8]
Hillis, A.E.; Ulatowski, J.A.; Barker, P.B.; Torbey, M.; Ziai, W.; Beauchamp, N.J.; Oh, S.; Wityk, R.J. A pilot randomized trial of induced blood pressure elevation: effects on function and focal perfusion in acute and subacute stroke. Cerebrovasc. Dis., 2003, 16(3), 236-246.
[http://dx.doi.org/10.1159/000071122] [PMID: 12865611]
[9]
Fuchs, E.; Flügge, G. Adult neuroplasticity: More than 40 years of research. Neural Plast., 2014. 541870
[10]
Nudo, R.J. Postinfarct cortical plasticity and behavioral recovery. Stroke, 2007, 38(2), 840-845.
[http://dx.doi.org/10.1161/01.STR.0000247943.12887.d2] [PMID: 17261749]
[11]
Xu, Y.; Hou, Q.H.; Russell, S.D.; Bennett, B.C.; Sellers, A.J.; Lin, Q.; Huang, D.F. Neuroplasticity in post-stroke gait recovery and noninvasive brain stimulation. Neural Regen. Res., 2015, 10(12), 2072-2080.
[http://dx.doi.org/10.4103/1673-5374.172329] [PMID: 26889202]
[12]
Sidaway, M.; Czernicka, E.; Sosnowski, A. The effects of post stroke rehabilitation-constraint-induced movement therapy in relations to neuroplasticity recovery processes. Adv Reh, 2013, 27(2), 37-43.
[http://dx.doi.org/10.2478/rehab-2014-0012]
[13]
Devan, B.D.; Berger, K.; McDonald, R.J. The emergent engram: A historical legacy and contemporary discovery. Front. Behav. Neurosci., 2018, 12, 168.
[http://dx.doi.org/10.3389/fnbeh.2018.00168] [PMID: 30131682]
[14]
Jablonka, J.A.; Witte, O.W.; Kossut, M. Photothrombotic infarct impairs experience-dependent plasticity in neighboring cortex. Neuroreport, 2007, 18(2), 165-169.
[http://dx.doi.org/10.1097/WNR.0b013e328010feff] [PMID: 17301683]
[15]
Machaliński, B.; Lażewski-Banaszak, P.; Dąbkowska, E.; Paczkowska, E.; Gołąb-Janowska, M.; Nowacki, P. The role of neurotrophic factors in regeneration of the nervous system. Neurol. Neurochir. Pol., 2012, 46(6), 579-590.
[PMID: 23319226]
[16]
Wysokiński, A.; Gruszczyński, W. Neurotrofiny - Aktualny stan wiedzy. Postepy Psychiatr. Neurol., 2012, 17(4), 385-390.
[17]
Huang, E.J.; Reichardt, L.F. Neurotrophins: roles in neuronal development and function. Annu. Rev. Neurosci., 2001, 24, 677-736.
[http://dx.doi.org/10.1146/annurev.neuro.24.1.677] [PMID: 11520916]
[18]
Ernfors, P.; Van De Water, T.; Loring, J.; Jaenisch, R. Complementary roles of BDNF and NT-3 in vestibular and auditory development. Neuron, 1995, 14(6), 1153-1164.
[http://dx.doi.org/10.1016/0896-6273(95)90263-5] [PMID: 7605630]
[19]
Marciniak, K.; Butwicka, A.; Nowak, J.Z. PEDF –endogenny czynnik o silnym działaniu neuroprotekcyjnym, neurotroficznym i antyangiogennym. Postepy Hig. Med. Dosw., 2006, 60, 387-396.
[20]
Airavaara, M.; Chiocco, M.J.; Howard, D.B.; Zuchowski, K.L.; Peränen, J.; Liu, C.; Fang, S.; Hoffer, B.J.; Wang, Y.; Harvey, B.K. Widespread cortical expression of MANF by AAV serotype 7: localization and protection against ischemic brain injury. Exp. Neurol., 2010, 225(1), 104-113.
[http://dx.doi.org/10.1016/j.expneurol.2010.05.020] [PMID: 20685313]
[21]
Giulian, D.; Young, D.G.; Woodward, J.; Brown, D.C.; Lachman, L.B. Interleukin-1 is an astroglial growth factor in the developing brain. J. Neurosci., 1988, 8(2), 709-714.
[http://dx.doi.org/10.1523/JNEUROSCI.08-02-00709.1988] [PMID: 3257519]
[22]
Seebach, B.S.; Arvanov, V.; Mendell, L.M. Effects of BDNF and NT-3 on development of Ia/motoneuron functional connectivity in neonatal rats. J. Neurophysiol., 1999, 81(5), 2398-2405.
[http://dx.doi.org/10.1152/jn.1999.81.5.2398] [PMID: 10322075]
[23]
Benedetti, F.; Poletti, S.; Hoogenboezem, T.A.; Locatelli, C.; Ambrée, O.; de Wit, H.; Wijkhuijs, A.J.; Mazza, E.; Bulgarelli, C.; Vai, B.; Colombo, C.; Smeraldi, E.; Arolt, V.; Drexhage, H.A. Stem Cell Factor (SCF) is a putative biomarker of antidepressant response. J. Neuroimmune Pharmacol., 2016, 11(2), 248-258.
[http://dx.doi.org/10.1007/s11481-016-9672-y] [PMID: 27108110]
[24]
Rosenstein, J.M.; Krum, J.M.; Ruhrberg, C. VEGF in the nervous system. Organogenesis, 2010, 6(2), 107-114.
[http://dx.doi.org/10.4161/org.6.2.11687] [PMID: 20885857]
[25]
Barkho, B.Z.; Zhao, X. Adult neural stem cells: response to stroke injury and potential for therapeutic applications. Curr. Stem Cell Res. Ther., 2011, 6(4), 327-338.
[http://dx.doi.org/10.2174/157488811797904362] [PMID: 21466483]
[26]
Arvidsson, A.; Collin, T.; Kirik, D.; Kokaia, Z.; Lindvall, O. Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat. Med., 2002, 8(9), 963-970.
[http://dx.doi.org/10.1038/nm747] [PMID: 12161747]
[27]
Powers, W.J.; Rabinstein, A.A.; Ackerson, T.; Adeoye, O.M.; Bambakidis, N.C.; Becker, K.; Biller, J.; Brown, M.; Demaerschalk, B.M.; Hoh, B.; Jauch, E.C.; Kidwell, C.S.; Leslie-Mazwi, T.M.; Ovbiagele, B.; Scott, P.A.; Sheth, K.N.; Southerland, A.M.; Summers, D.V.; Tirschwell, D.L. Guidelines for the early management of patients with acute ischemic stroke: A guideline for healthcare professionals from the american heart association/american stroke association. Stroke, 2018, 49(3), e46-e110.
[http://dx.doi.org/10.1161/STR.0000000000000158] [PMID: 29367334]
[28]
Hacke, W.; Kaste, M.; Bluhmki, E.; Brozman, M.; Dávalos, A.; Guidetti, D.; Larrue, V.; Lees, K.R.; Medeghri, Z.; Machnig, T.; Schneider, D.; von Kummer, R.; Wahlgren, N.; Toni, D. Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. N. Engl. J. Med., 2008, 359(13), 1317-1329.
[http://dx.doi.org/10.1056/NEJMoa0804656] [PMID: 18815396]
[29]
Lees, K.R.; Bluhmki, E.; von Kummer, R.; Brott, T.G.; Toni, D.; Grotta, J.C.; Albers, G.W.; Kaste, M.; Marler, J.R.; Hamilton, S.A.; Tilley, B.C.; Davis, S.M.; Donnan, G.A.; Hacke, W.; Allen, K.; Mau, J.; Meier, D.; del Zoppo, G.; De Silva, D.A.; Butcher, K.S.; Parsons, M.W.; Barber, P.A.; Levi, C.; Bladin, C.; Byrnes, G. Time to treatment with intravenous alteplase and outcome in stroke: an updated pooled analysis of ECASS, ATLANTIS, NINDS, and EPITHET trials. Lancet, 2010, 375(9727), 1695-1703.
[http://dx.doi.org/10.1016/S0140-6736(10)60491-6] [PMID: 20472172]
[30]
Gravanis, I.; Tsirka, S.E. tPA as a therapeutic target in stroke. Expert Opin. Ther. Targets, 2008, 12(2)
[http://dx.doi.org/10.1517/14728222.12.2.159] [PMID: 18208365]
[31]
Long, D.; Young, J. Dexamphetamine treatment in stroke. QJM, 2003, 96(9), 673-685.
[http://dx.doi.org/10.1093/qjmed/hcg113] [PMID: 12925723]
[32]
Crisostomo, E.A.; Duncan, P.W.; Propst, M.; Dawson, D.V.; Davis, J.N. Evidence that amphetamine with physical therapy promotes recovery of motor function in stroke patients. Ann. Neurol., 1988, 23(1), 94-97.
[http://dx.doi.org/10.1002/ana.410230117] [PMID: 3345072]
[33]
Walker-Batson, D.; Smith, P.; Curtis, S.; Unwin, H.; Greenlee, R. Amphetamine paired with physical therapy accelerates motor recovery after stroke. Further evidence. Stroke, 1995, 26(12), 2254-2259.
[http://dx.doi.org/10.1161/01.STR.26.12.2254] [PMID: 7491646]
[34]
Sonde, L.; Nordström, M.; Nilsson, C.G.; Lökk, J.; Viitanen, M. A double-blind placebo-controlled study of the effects of amphetamine and physiotherapy after stroke. Cerebrovasc. Dis., 2001, 12(3), 253-257.
[http://dx.doi.org/10.1159/000047712] [PMID: 11641592]
[35]
Goldstein, L.B.; Lennihan, L.; Rabadi, M.J.; Good, D.C.; Reding, M.J.; Dromerick, A.W.; Samsa, G.P.; Pura, J. Effect of dextroamphetamine on poststroke motor recovery: A randomized clinical trial. JAMA Neurol., 2018, 75(12), 1494-1501.
[http://dx.doi.org/10.1001/jamaneurol.2018.2338] [PMID: 30167675]
[36]
Khor, S.P.; Hsu, A. The pharmacokinetics and pharmacodynamics of levodopa in the treatment of Parkinson’s disease. Curr. Clin. Pharmacol., 2007, 2(3), 234-243.
[http://dx.doi.org/10.2174/157488407781668802] [PMID: 18690870]
[37]
Scheidtmann, K.; Fries, W.; Müller, F.; Koenig, E. Effect of levodopa in combination with physiotherapy on functional motor recovery after stroke: a prospective, randomised, double-blind study. Lancet, 2001, 358(9284), 787-790.
[http://dx.doi.org/10.1016/S0140-6736(01)05966-9] [PMID: 11564483]
[38]
Acler, M.; Fiaschi, A.; Manganotti, P. Long-term levodopa administration in chronic stroke patients. A clinical and neurophysiologic single-blind placebo-controlled cross-over pilot study. Restor. Neurol. Neurosci., 2009, 27(4), 277-283.
[PMID: 19738321]
[39]
Restemeyer, C.; Weiller, C.; Liepert, J. No effect of a levodopa single dose on motor performance and motor excitability in chronic stroke. A double-blind placebo-controlled cross-over pilot study. Restor. Neurol. Neurosci., 2007, 25(2), 143-150.
[PMID: 17726273]
[40]
Lim, C.M.; Kim, S.W.; Park, J.Y.; Kim, C.; Yoon, S.H.; Lee, J.K. Fluoxetine affords robust neuroprotection in the postischemic brain via its anti-inflammatory effect. J. Neurosci. Res., 2009, 87(4), 1037-1045.
[http://dx.doi.org/10.1002/jnr.21899] [PMID: 18855941]
[41]
Berends, H.I.; Nijlant, J.; van Putten, M.; Movig, K.L.; IJzerman, M.J. Single dose of fluoxetine increases muscle activation in chronic stroke patients. Clin. Neuropharmacol., 2009, 32(1), 1-5.
[PMID: 19536922]
[42]
Chollet, F.; Tardy, J.; Albucher, J.F.; Thalamas, C.; Berard, E.; Lamy, C.; Bejot, Y.; Deltour, S.; Jaillard, A.; Niclot, P.; Guillon, B.; Moulin, T.; Marque, P.; Pariente, J.; Arnaud, C.; Loubinoux, I. Fluoxetine for motor recovery after acute ischaemic stroke (FLAME): a randomised placebo-controlled trial. Lancet Neurol., 2011, 10(2), 123-130.
[http://dx.doi.org/10.1016/S1474-4422(10)70314-8] [PMID: 21216670]
[43]
Effects of fluoxetine on functional outcomes after acute stroke (FOCUS): a pragmatic, double-blind, randomised, controlled trial. Lancet, 2019, 393(10168), 265-274.
[http://dx.doi.org/10.1016/S0140-6736(18)32823-X] [PMID: 30528472]
[44]
Keener, A.; Sanossian, N. Niacin for stroke prevention: Evidence and rationale. CNS Neurosci. Ther., 2008, 14(4), 287-294.
[http://dx.doi.org/10.1111/j.1755-5949.2008.00055.x] [PMID: 19040554]
[45]
Paternò, R.; Ruocco, A.; Postiglione, A.; Hubsch, A.; Andresen, I.; Lang, M.G. Reconstituted high-density lipoprotein exhibits neuroprotection in two rat models of stroke. Cerebrovasc. Dis., 2004, 17(2-3), 204-211.
[http://dx.doi.org/10.1159/000075792] [PMID: 14707423]
[46]
Cui, X.; Chopp, M.; Zacharek, A.; Roberts, C.; Buller, B.; Ion, M.; Chen, J. Niacin treatment of stroke increases synaptic plasticity and axon growth in rats. Stroke, 2010, 41(9), 2044-2049.
[http://dx.doi.org/10.1161/STROKEAHA.110.589333] [PMID: 20671245]
[47]
Mokudai, T.; Ayoub, I.A.; Sakakibara, Y.; Lee, E.J.; Ogilvy, C.S.; Maynard, K.I. Delayed treatment with nicotinamide (Vitamin B(3)) improves neurological outcome and reduces infarct volume after transient focal cerebral ischemia in Wistar rats. Stroke, 2000, 31(7), 1679-1685.
[http://dx.doi.org/10.1161/01.STR.31.7.1679] [PMID: 10884473]
[48]
Pekna, M.; Pekny, M.; Nilsson, M. Modulation of neural plasticity as a basis for stroke rehabilitation. Stroke, 2012, 43(10), 2819-2828.
[http://dx.doi.org/10.1161/STROKEAHA.112.654228] [PMID: 22923444]
[49]
Benowitz, L.I.; Goldberg, D.E.; Madsen, J.R.; Soni, D.; Irwin, N. Inosine stimulates extensive axon collateral growth in the rat corticospinal tract after injury. Proc. Natl. Acad. Sci. USA, 1999, 96(23), 13486-13490.
[http://dx.doi.org/10.1073/pnas.96.23.13486] [PMID: 10557347]
[50]
Zai, L.; Ferrari, C.; Subbaiah, S.; Havton, L.A.; Coppola, G.; Strittmatter, S.; Irwin, N.; Geschwind, D.; Benowitz, L.I. Inosine alters gene expression and axonal projections in neurons contralateral to a cortical infarct and improves skilled use of the impaired limb. J. Neurosci., 2009, 29(25), 8187-8197.
[http://dx.doi.org/10.1523/JNEUROSCI.0414-09.2009] [PMID: 19553458]
[51]
Chen, P.; Goldberg, D.E.; Kolb, B.; Lanser, M.; Benowitz, L.I. Inosine induces axonal rewiring and improves behavioral outcome after stroke. Proc. Natl. Acad. Sci. USA, 2002, 99(13), 9031-9036.
[http://dx.doi.org/10.1073/pnas.132076299] [PMID: 12084941]
[52]
Adibhatla, R.M.; Hatcher, J.F.; Dempsey, R.J. Citicoline: neuroprotective mechanisms in cerebral ischemia. J. Neurochem., 2002, 80(1), 12-23.
[http://dx.doi.org/10.1046/j.0022-3042.2001.00697.x] [PMID: 11796739]
[53]
Secades, J.J.; Frontera, G. CDP-choline: pharmacological and clinical review. Methods Find. Exp. Clin. Pharmacol., 1995, 17(Suppl. B), 1-54.
[PMID: 8709678]
[54]
Aronowski, J.; Strong, R.; Grotta, J.C. Citicoline for treatment of experimental focal ischemia: Histologic and behavioral outcome. Neurol. Res., 1996, 18(6), 570-574.
[http://dx.doi.org/10.1080/01616412.1996.11740473] [PMID: 8985961]
[55]
Schäbitz, W.R.; Weber, J.; Takano, K.; Sandage, B.W.; Locke, K.W.; Fisher, M. The effects of prolonged treatment with citicoline in temporary experimental focal ischemia. J. Neurol. Sci., 1996, 138(1-2), 21-25.
[http://dx.doi.org/10.1016/0022-510X(95)00341-X] [PMID: 8791234]
[56]
Hazama, T.; Hasegawa, T.; Ueda, S.; Sakuma, A. Evaluation of the effect of CDP-choline on poststroke hemiplegia employing a double-blind controlled trial. Assessed by a new rating scale for recovery in hemiplegia. Int. J. Neurosci., 1980, 11(3), 211-225.
[http://dx.doi.org/10.3109/00207458009147587] [PMID: 7002829]
[57]
Clark, W.M.; Warach, S.J.; Pettigrew, L.C.; Gammans, R.E.; Sabounjian, L.A. A randomized dose-response trial of citicoline in acute ischemic stroke patients. Neurology, 1997, 49(3), 671-678.
[http://dx.doi.org/10.1212/WNL.49.3.671] [PMID: 9305321]
[58]
Warach, S.; Pettigrew, L.C.; Dashe, J.F.; Pullicino, P.; Lefkowitz, D.M.; Sabounjian, L.; Harnett, K.; Schwiderski, U.; Gammans, R. Effect of citicoline on ischemic lesions as measured by diffusion-weighted magnetic resonance imaging. Citicoline 010 Investigators. Ann. Neurol., 2000, 48(5), 713-722.
[http://dx.doi.org/10.1002/1531-8249(200011)48:5<713:AID-ANA4>3.0.CO;2-#] [PMID: 11079534]
[59]
Dávalos, A.; Alvarez-Sabín, J.; Castillo, J.; Díez-Tejedor, E.; Ferro, J.; Martínez-Vila, E.; Serena, J.; Segura, T.; Cruz, V.T.; Masjuan, J.; Cobo, E.; Secades, J.J. Citicoline in the treatment of acute ischaemic stroke: an international, randomised, multicentre, placebo-controlled study (ICTUS trial). Lancet, 2012, 380(9839), 349-357.
[http://dx.doi.org/10.1016/S0140-6736(12)60813-7] [PMID: 22691567]
[60]
Marei, H.E.; Hasan, A.; Rizzi, R.; Althani, A.; Afifi, N.; Cenciarelli, C.; Caceci, T.; Shuaib, A. Potential of stem cell-based therapy for ischemic stroke. Front. Neurol., 2018, 9, 34.
[http://dx.doi.org/10.3389/fneur.2018.00034] [PMID: 29467713]
[61]
Moniche, F.; Rosado-de-Castro, P.H.; Escudero, I.; Zapata, E.; de la Torre Laviana, F.J.; Mendez-Otero, R.; Carmona, M.; Piñero, P.; Bustamante, A.; Lebrato, L.; Cabezas, J.A.; Gonzalez, A.; de Freitas, G.R.; Montaner, J. Increasing dose of autologous bone marrow mononuclear cells transplantation is related to stroke outcome: Results from a pooled analysis of two clinical trials. Stem Cells Int., 2016, 20168657173
[http://dx.doi.org/10.1155/2016/8657173] [PMID: 27525011]
[62]
World Health Organisation. International Classification of Functioning, Disability and Health; World Health Organisation: Geneva, 2001.
[63]
Stroke unit trialists’ collaborations. Organised inpatient (stroke unit) care for stroke. Cochrane Database Syst. Rev., 2013, 11(9)CD000197
[PMID: 24026639]
[64]
Hebert, D.; Lindsay, M.P.; McIntyre, A.; Kirton, A.; Rumney, P.G.; Bagg, S.; Bayley, M.; Dowlatshahi, D.; Dukelow, S.; Garnhum, M.; Glasser, E.; Halabi, M.L.; Kang, E.; MacKay-Lyons, M.; Martino, R.; Rochette, A.; Rowe, S.; Salbach, N.; Semenko, B.; Stack, B.; Swinton, L.; Weber, V.; Mayer, M.; Verrilli, S.; DeVeber, G.; Andersen, J.; Barlow, K.; Cassidy, C.; Dilenge, M.E.; Fehlings, D.; Hung, R.; Iruthayarajah, J.; Lenz, L.; Majnemer, A.; Purtzki, J.; Rafay, M.; Sonnenberg, L.K.; Townley, A.; Janzen, S.; Foley, N.; Teasell, R. Canadian stroke best practice recommendations: Stroke rehabilitation practice guidelines, update 2015. Int. J. Stroke, 2016, 11(4), 459-484.
[http://dx.doi.org/10.1177/1747493016643553] [PMID: 27079654]
[65]
Langhorne, P.; Collier, J.M.; Bate, P.J.; Thuy, M.N.; Bernhardt, J. Very early versus delayed mobilisation after stroke. Cochrane Database Syst. Rev., 2018, 10CD006187
[http://dx.doi.org/10.1002/14651858.CD006187.pub3] [PMID: 30321906]
[66]
Lee, T.D.; Swanson, L.R.; Hall, A.L. What is repeated in a repetition? Effects of practice conditions on motor skill acquisition. Phys. Ther., 1991, 71(2), 150-156.
[http://dx.doi.org/10.1093/ptj/71.2.150] [PMID: 1989010]
[67]
Winstein, C.J.; Stein, J.; Arena, R.; Bates, B.; Cherney, L.R.; Cramer, S.C.; Deruyter, F.; Eng, J.J.; Fisher, B.; Harvey, R.L.; Lang, C.E.; MacKay-Lyons, M.; Ottenbacher, K.J.; Pugh, S.; Reeves, M.J.; Richards, L.G.; Stiers, W.; Zorowitz, R.D. Guidelines for adult stroke rehabilitation and recovery: A guideline for healthcare professionals from the american heart association/american stroke association. Stroke, 2016, 47(6), e98-e169.
[http://dx.doi.org/10.1161/STR.0000000000000098] [PMID: 27145936]
[68]
French, B.; Thomas, L.H.; Coupe, J.; McMahon, N.E.; Connell, L.; Harrison, J.; Sutton, C.J.; Tishkovskaya, S. Watkins, C.L. Repetitive task training for improving functional ability after stroke. Cochrane Database Syst. Rev., 2006. CD006073
[http://dx.doi.org/10.1002/14651858.CD006073.pub3]
[69]
Pollock, A.; Baer, G.; Campbell, P.; Choo, P.L.; Forster, A.; Morris, J.; Pomeroy, V.M.; Langhorne, P. Physical rehabilitation approaches for the recovery of function and mobility following stroke. Cochrane Database Syst. Rev., 2014, 22(4) CD001920
[http://dx.doi.org/10.1002/14651858.CD001920.pub3] [PMID: 24756870]
[70]
Kendall, B.J.; Gothe, N.P. Effect of aerobic exercise interventions on mobility among stroke patients: A systematic review. Am. J. Phys. Med. Rehabil., 2016, 95(3), 214-224.
[http://dx.doi.org/10.1097/PHM.0000000000000416] [PMID: 26544857]
[71]
Mackay, C.P.; Kuys, S.S.; Brauer, S.G. The effect of aerobic exercise on brain-derived neurotrophic factor in people with neurological disorders: A systematic review and meta-analysis. Neural Plast., 2017, 2017 4716197
[http://dx.doi.org/10.1155/2017/4716197] [PMID: 29057125]
[72]
Ploughman, M.; Austin, M.W.; Glynn, L.; Corbett, D. The effects of poststroke aerobic exercise on neuroplasticity: a systematic review of animal and clinical studies. Transl. Stroke Res., 2015, 6(1), 13-28.
[http://dx.doi.org/10.1007/s12975-014-0357-7] [PMID: 25023134]
[73]
Stoller, O.; de Bruin, E.D.; Knols, R.K.; Hunt, K.J. Effects of cardiovascular exercise early after stroke: systematic review and meta-analysis. BMC Neurol., 2012, 12, 45.
[http://dx.doi.org/10.1186/1471-2377-12-45]
[74]
Pang, M.Y.; Charlesworth, S.A.; Lau, R.W.; Chung, R.C. Using aerobic exercise to improve health outcomes and quality of life in stroke: evidence-based exercise prescription recommendations. Cerebrovasc. Dis., 2013, 35(1), 7-22.
[http://dx.doi.org/10.1159/000346075] [PMID: 23428993]
[75]
Austin, M.W.; Ploughman, M.; Glynn, L.; Corbett, D. Aerobic exercise effects on neuroprotection and brain repair following stroke: a systematic review and perspective. Neurosci. Res., 2014, 87, 8-15.
[http://dx.doi.org/10.1016/j.neures.2014.06.007] [PMID: 24997243]
[76]
Corbetta, D.; Sirtori, V.; Castellini, G.; Moja, L.; Gatti, R. Constraint-induced movement therapy for upper extremities in people with stroke. Cochrane Database Syst. Rev., 2015, 8(10) CD004433
[http://dx.doi.org/10.1002/14651858.CD004433.pub3] [PMID: 26446577]
[77]
Wist, S.; Clivaz, J.; Sattelmayer, M. Muscle strengthening for hemiparesis after stroke: A meta-analysis. Ann. Phys. Rehabil. Med., 2016, 59(2), 114-124.
[http://dx.doi.org/10.1016/j.rehab.2016.02.001] [PMID: 26969343]
[78]
Merhrolz, J.; Pohl, M.; Platz, T.; Kugler, J.; Elsner, B. Electromechanical and robot-assisted arm training for improving activities of daily living, arm function, and arm muscle strength after stroke. Cochrane Database Syst. Rev., 2015. CD006876
[http://dx.doi.org/10.1002/14651858.CD006876.pub5]
[79]
Mehrholz, J.; Thomas, S.; Werner, C.; Kugler, J.; Pohl, M.; Elsner, B. Electromechanical-assisted training for walking after stroke. Cochrane Database Syst. Rev., 2017. CD006185
[80]
Thieme, H.; Morkisch, N.; Mehrholz, J.; Pohl, M.; Behrens, J.; Borgetto, B.; Dohle, C. Mirror therapy for improving motor function after stroke. Cochrane Database Syst. Rev., 2018. CD008449
[http://dx.doi.org/10.1002/14651858.CD008449.pub3]
[81]
Louie, D.R.; Lim, S.B.; Eng, J.J. The efficacy of lower extremity mirror therapy for improving balance, gait, and motor function poststroke: A systematic review and meta-analysis. J. Stroke Cerebrovasc. Dis., 2019, 28(1), 107-120.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2018.09.017] [PMID: 30314760]
[82]
Salazar, A.P.S.; Vaz, P.G.; Marchese, R.R.; Stein, C.; Pinto, C.; Pagnussat, A.S. Noninvasive brain stimulation improves hemispatial neglect after stroke: A systematic review and meta-analysis. Arch. Phys. Med. Rehabil., 2018, 99(2), 355-366.e1.
[http://dx.doi.org/10.1016/j.apmr.2017.07.009] [PMID: 28802812]
[83]
Vaz, P.G.; Salazar, A.P.D.S.; Stein, C.; Marchese, R.R.; Lukrafka, J.L.; Plentz, R.D.M.; Pagnussat, A.S. Noninvasive brain stimulation combined with other therapies improves gait speed after stroke: a systematic review and meta-analysis. Top. Stroke Rehabil., 2019, 26(3), 201-213.
[http://dx.doi.org/10.1080/10749357.2019.1565696] [PMID: 30735104]
[84]
Kang, N.; Summers, J.J.; Cauraugh, J.H. Non-invasive brain stimulation improves paretic limb force production: A systematic review and meta-analysis. Brain Stimul., 2016, 9(5), 662-670.
[http://dx.doi.org/10.1016/j.brs.2016.05.005] [PMID: 27262725]
[85]
Elsner, B.; Kugler, J.; Pohl, M.; Mehrholz, J. Transcranial direct current stimulation (tDCS) for improving activities of daily living, and physical and cognitive functioning, in people after stroke. Cochrane Database Syst. Rev., 2016, 21(3) CD009645
[86]
Laver, K.E.; Lange, B.; George, S.; Deutsch, J.E.; Saposnik, G.; Crotty, M. Virtual reality for stroke rehabilitation. Cochrane Database Syst. Rev., 2017. CD008349
[http://dx.doi.org/10.1002/14651858.CD008349.pub4]
[87]
Palma, G.C.; Freitas, T.B.; Bonuzzi, G.M.; Soares, M.A.; Leite, P.H.; Mazzini, N.A.; Almeida, M.R.; Pompeu, J.E.; Torriani-Pasin, C. Effects of virtual reality for stroke individuals based on the International classification of functioning and health: A systematic review. Top. Stroke Rehabil., 2017, 24(4), 269-278.
[http://dx.doi.org/10.1080/10749357.2016.1250373] [PMID: 27796177]
[88]
Eraifej, J.; Clark, W.; France, B.; Desando, S.; Moore, D. Effectiveness of upper limb functional electrical stimulation after stroke for the improvement of activities of daily living and motor function: a systematic review and meta-analysis. Syst. Rev., 2017, 6, 40.
[http://dx.doi.org/10.1186/s13643-017-0435-5]
[89]
Vafadar, A.K.; Côté, J.N.; Archambault, P.S. Effectiveness of functional electrical stimulation in improving clinical outcomes in the upper arm following stroke: a systematic review and meta-analysis. BioMed Res. Int., 2015, 2015 729768
[http://dx.doi.org/10.1155/2015/729768] [PMID: 25685805]
[90]
Hong, Z.; Sui, M.; Zhuang, Z.; Liu, H.; Zheng, X.; Cai, C.; Jin, D. Effectiveness of Neuromuscular Electrical Stimulation on Lower Limbs of Patients With Hemiplegia After Chronic Stroke: A Systematic Review. Arch. Phys. Med. Rehabil., 2018, 99(5), 1011-1022.e1.
[http://dx.doi.org/10.1016/j.apmr.2017.12.019] [PMID: 29357280]
[91]
Stein, C.; Fritsch, C.G.; Robinson, C.; Sbruzzi, G.; Plentz, R.D. Effects of electrical stimulation in spastic muscles after stroke: Systematic review and meta-analysis of randomized controlled trials. Stroke, 2015, 46(8), 2197-2205.
[http://dx.doi.org/10.1161/STROKEAHA.115.009633] [PMID: 26173724]
[92]
Marcolino, M.A.Z.; Hauck, M.; Stein, C.; Schardong, J.; Pagnussat, A.S.; Plentz, R.D.M. Effects of transcutaneous electrical nerve stimulation alone or as additional therapy on chronic post-stroke spasticity: systematic review and meta-analysis of randomized controlled trials. Disabil. Rehabil., 2018, 16, 1-13.
[http://dx.doi.org/10.1080/09638288.2018.1503736] [PMID: 30326752]
[93]
Momosaki, R.; Yamada, N.; Ota, E.; Abo, M. Repetitive peripheral magnetic stimulation for activities of daily living and functional ability in people after stroke. Cochrane Database Syst. Rev., 2017. CD011968
[http://dx.doi.org/10.1002/14651858.CD011968.pub2]
[94]
Smith, A.C.; Saunders, D.H.; Mead, G. Cardiorespiratory fitness after stroke: A systematic review. Int. J. Stroke, 2012, 7(6), 499-510.
[http://dx.doi.org/10.1111/j.1747-4949.2012.00791.x] [PMID: 22568786]
[95]
Lee, C.D.; Blair, S.N. Cardiorespiratory fitness and stroke mortality in men. Med. Sci. Sports Exerc., 2002, 34(4), 592-595.
[PMID: 11932565]
[96]
Billinger, S.A.; Coughenour, E.; Mackay-Lyons, M.J.; Ivey, F.M. Reduced cardiorespiratory fitness after stroke: biological consequences and exercise-induced adaptations. Stroke Res. Treat., 2012, 2012 959120
[http://dx.doi.org/10.1155/2012/959120] [PMID: 21876848]
[97]
Saunders, D.H.; Sanderson, M.; Hayes, S.; Kilrane, M.; Greig, C.A.; Brazzelli, M.; Mead, G.E. Physical fitness training for stroke patients. Cochrane Database Syst. Rev., 2016. CD003316
[98]
Wang, C.; Redgrave, J.; Shafizadeh, M.; Majid, A.; Kilner, K.; Ali, A.N. Aerobic exercise interventions reduce blood pressure in patients after stroke or transient ischaemic attack: a systematic review and meta-analysis. Br. J. Sports. Med., 2018.pii: bjsports-2017-098903.
[http://dx.doi.org/10.1136/bjsports-2017-098903]
[99]
Quaney, B.M.; Boyd, L.A.; McDowd, J.M.; Zahner, L.H.; He, J.; Mayo, M.S.; Macko, R.F. Aerobic exercise improves cognition and motor function poststroke. Neurorehabil. Neural Repair, 2009, 23(9), 879-885.
[http://dx.doi.org/10.1177/1545968309338193] [PMID: 19541916]
[100]
Chodzko-Zajko, W.J.; Proctor, D.N.; Fiatarone Singh, M.A.; Minson, C.T.; Nigg, C.R.; Salem, G.J.; Skinner, J.S. American College of Sports Medicine position stand. Exercise and physical activity for older adults. Med. Sci. Sports Exerc., 2009, 41(7), 1510-1530.
[http://dx.doi.org/10.1249/MSS.0b013e3181a0c95c] [PMID: 19516148]
[101]
Billinger, S.A.; Arena, R.; Bernhardt, J.; Eng, J.J.; Franklin, B.A.; Johnson, C.M.; MacKay-Lyons, M.; Macko, R.F.; Mead, G.E.; Roth, E.J.; Shaughnessy, M.; Tang, A. Physical activity and exercise recommendations for stroke survivors: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke, 2014, 45(8), 2532-2553.
[http://dx.doi.org/10.1161/STR.0000000000000022] [PMID: 24846875]
[102]
Sun, J.; Ke, Z.; Yip, S.P.; Hu, X.L.; Zheng, X.X.; Tong, K.Y. Gradually increased training intensity benefits rehabilitation outcome after stroke by BDNF upregulation and stress suppression. BioMed Res. Int., 2014, 2014925762
[http://dx.doi.org/10.1155/2014/925762] [PMID: 25045713]
[103]
Quirié, A.; Hervieu, M.; Garnier, P.; Demougeot, C.; Mossiat, C.; Bertrand, N.; Martin, A.; Marie, C.; Prigent-Tessier, A. Comparative effect of treadmill exercise on mature BDNF production in control versus stroke rats. PLoS One, 2012, 7(9) e44218
[http://dx.doi.org/10.1371/journal.pone.0044218] [PMID: 22962604]
[104]
Mang, C.S.; Campbell, K.L.; Ross, C.J.; Boyd, L.A. Promoting neuroplasticity for motor rehabilitation after stroke: considering the effects of aerobic exercise and genetic variation on brain-derived neurotrophic factor. Phys. Ther., 2013, 93(12), 1707-1716.
[http://dx.doi.org/10.2522/ptj.20130053] [PMID: 23907078]
[105]
Kwakkel, G.; Veerbeek, J.M.; van Wegen, E.E.; Wolf, S.L. Constraint-induced movement therapy after stroke. Lancet Neurol., 2015, 14(2), 224-234.
[http://dx.doi.org/10.1016/S1474-4422(14)70160-7] [PMID: 25772900]
[106]
Taub, E.; Morris, D.M. Constraint-induced movement therapy to enhance recovery after stroke. Curr. Atheroscler. Rep., 2001, 3(4), 279-286.
[http://dx.doi.org/10.1007/s11883-001-0020-0] [PMID: 11389792]
[107]
Ryan, A.S.; Ivey, F.M.; Serra, M.C.; Hartstein, J.; Hafer-Macko, C.E. Sarcopenia and Physical Function in Middle-Aged and Older Stroke Survivors. Arch. Phys. Med. Rehabil., 2017, 98(3), 495-499.
[http://dx.doi.org/10.1016/j.apmr.2016.07.015] [PMID: 27530769]
[108]
Kostka, J.; Niwald, M.; Guligowska, A.; Kostka, T.; Miller, E. Muscle power, contraction velocity and functional performance after stroke. Brain Behav., 2019, 9(4) e01243
[http://dx.doi.org/10.1002/brb3.1243] [PMID: 30821102]
[109]
Vinstrup, J.; Calatayud, J.; Jakobsen, M.D.; Sundstrup, E.; Andersen, L.L. Focusing on increasing velocity during heavy resistance knee flexion exercise boosts hamstring muscle activity in chronic stroke patients. Neurol. Res. Int., 2016. 20166523724
[http://dx.doi.org/10.1155/2016/6523724] [PMID: 27525118]
[110]
Lin, I.H.; Tsai, H.T.; Wang, C.Y.; Hsu, C.Y.; Liou, T.H.; Lin, Y.N. Effectiveness and superiority of rehabilitative treatments in enhancing motor recovery within 6 months poststroke: A systemic review. Arch. Phys. Med. Rehabil., 2019, 100(2), 366-378.
[http://dx.doi.org/10.1016/j.apmr.2018.09.123] [PMID: 30686327]
[111]
Calabrò, R.S.; Cacciola, A.; Bertè, F.; Manuli, A.; Leo, A.; Bramanti, A.; Naro, A.; Milardi, D.; Bramanti, P. Robotic gait rehabilitation and substitution devices in neurological disorders: where are we now? Neurol. Sci., 2016, 37(4), 503-514.
[http://dx.doi.org/10.1007/s10072-016-2474-4] [PMID: 26781943]
[112]
Deconinck, F.J.; Smorenburg, A.R.; Benham, A.; Ledebt, A.; Feltham, M.G.; Savelsbergh, G.J. Reflections on mirror therapy: a systematic review of the effect of mirror visual feedback on the brain. Neurorehabil. Neural Repair, 2015, 29(4), 349-361.
[http://dx.doi.org/10.1177/1545968314546134] [PMID: 25160567]
[113]
Hao, Z.; Wang, D.; Zeng, Y.; Liu, M. Repetitive transcranial magnetic stimulation for improving function after stroke. Cochrane Database Syst. Rev., 2013, 31(5) CD008862
[PMID: 23728683]
[114]
Lewis, G.N.; Rosie, J.A. Virtual reality games for movement rehabilitation in neurological conditions: how do we meet the needs and expectations of the users? Disabil. Rehabil., 2012, 34(22), 1880-1886.
[http://dx.doi.org/10.3109/09638288.2012.670036] [PMID: 22480353]
[115]
Knutson, J.S.; Fu, M.J.; Sheffler, L.R.; Chae, J. Neuromuscular electrical stimulation for motor restoration in hemiplegia. Phys. Med. Rehabil. Clin. N. Am., 2015, 26(4), 729-745.
[http://dx.doi.org/10.1016/j.pmr.2015.06.002] [PMID: 26522909]
[116]
Pollock, A.; Farmer, S.E.; Brady, M.C.; Langhorne, P.; Mead, G.E.; Mehrholz, J.; van Wijck, F. Interventions for improving upper limb function after stroke. Cochrane Database Syst. Rev., 2014, 12(11) CD010820
[http://dx.doi.org/10.1002/14651858.CD010820.pub2] [PMID: 25387001]
[117]
Miyamoto, T.; Iwakura, T.; Matsuoka, N.; Iwamoto, M.; Takenaka, M.; Akamatsu, Y.; Moritani, T. Impact of prolonged neuromuscular electrical stimulation on metabolic profile and cognition-related blood parameters in type 2 diabetes: A randomized controlled cross-over trial. Diabetes Res. Clin. Pract., 2018, 142, 37-45.
[http://dx.doi.org/10.1016/j.diabres.2018.05.032] [PMID: 29802953]
[118]
Kimura, T.; Kaneko, F.; Iwamoto, E.; Saitoh, S.; Yamada, T. Neuromuscular electrical stimulation increases serum brain-derived neurotrophic factor in humans. Exp. Brain Res., 2019, 237(1), 47-56.
[http://dx.doi.org/10.1007/s00221-018-5396-y] [PMID: 30306243]
[119]
Cichoń, N.; Czarny, P.; Bijak, M.; Miller, E.; Śliwiński, T.; Szemraj, J.; Saluk-Bijak, J. Benign effect of extremely low-frequency electromagnetic field on brain plasticity assessed by nitric oxide metabolism during poststroke rehabilitation. Oxid. Med. Cell. Longev., 2017, 2017 2181942
[http://dx.doi.org/10.1155/2017/2181942] [PMID: 29138675]
[120]
Cichon, N.; Bijak, M.; Czarny, P.; Miller, E.; Synowiec, E.; Sliwinski, T.; Saluk-Bijak, J. Increase in blood levels of growth factors involved in the neuroplasticity process by using an extremely low frequency electromagnetic field in post-stroke patients. Front. Aging Neurosci., 2018, 10, 294.
[http://dx.doi.org/10.3389/fnagi.2018.00294]


Rights & PermissionsPrintExport Cite as


Article Details

VOLUME: 18
ISSUE: 1
Year: 2020
Page: [51 - 64]
Pages: 14
DOI: 10.2174/1570159X17666190726104139
Price: $65

Article Metrics

PDF: 23
HTML: 4