Inflammatory Response and Endothelial Dysfunction Following Cardiopulmonary Bypass: Pathophysiology and Pharmacological Targets

Author(s): Omar Giacinto, Umberto Satriano, Antonio Nenna*, Cristiano Spadaccio, Mario Lusini, Ciro Mastroianni, Francesco Nappi, Massimo Chello.

Journal Name: Recent Patents on Inflammation & Allergy Drug Discovery

Volume 13 , Issue 2 , 2019

Become EABM
Become Reviewer

Abstract:

Background: Endothelial injury occurring during cardiopulmonary bypass is a major contributing factor in the development of organ dysfunction, which leads to many of the postoperative complications occurring during cardiac surgery.

Objective: This narrative review aims to summarize the main mechanisms of cardiopulmonary bypass - related disease, evaluating the unfavorable events leading to tissue injury, with a description of current pharmacologic and non-pharmacologic mechanisms to reduce CPB-related injury.

Methods: A Medline/Pubmed/Scopus search was conducted using clinical queries with the key terms "cardiac surgery", “cardiopulmonary bypass”, "inflammation" and “endothelial injury”, and related MeSH terms, until July 2019. The search strategy included meta-analyses, randomized controlled trials, clinical trials, reviews and pertinent references. Patents were searched using the same key terms from https://patents.google.com/, www.uspto.gov, and www.freepatentsonline.com.

Results: In this review, we discuss the current knowledge of the mechanisms of vascular endothelial cell injury, the acute inflammatory response, and the regulatory factors that control the extent of vascular injury during extracorporeal circulation, summarizing the main target of anti-inflammatory pharmacologic and non-pharmacologic strategies.

Conclusion: Inflammatory response and endothelial dysfunction following cardiopulmonary bypass are the prices to pay for the benefits offered during cardiac surgery procedures. Counteracting the detrimental effect of extracorporeal circulation appears to be crucial to improve clinical outcomes in pediatric and adult cardiac surgery. The intrinsic complexity and the tight interplay of the factors involved might require a holistic approach against inflammation and endothelial response.

Keywords: Cardiac surgery, cardiopulmonary bypass, cytokine scavenger, endothelial dysfunction, extracorporeal circulation, glycocalyx, inflammation, neuromodulation.

[1]
Hirleman E, Larson DF. Cardiopulmonary bypass and edema: Physiology and pathophysiology. Perfusion 2008; 23(6): 311-22.
[http://dx.doi.org/10.1177/0267659109105079] [PMID: 19454559]
[2]
Schumacher J, Eichler W, Heringlake M, Sievers HH, Klotz KF. Intercompartmental fluid volume shifts during cardiopulmonary bypass measured by A-mode ultrasonography. Perfusion 2004; 19(5): 277-81.
[http://dx.doi.org/10.1191/0267659104pf753oa] [PMID: 15506031]
[3]
Della Rocca G, Coccia C. Acute lung injury in thoracic surgery. Curr Opin Anaesthesiol 2013; 26(1): 40-6.
[http://dx.doi.org/10.1097/ACO.0b013e32835c4ea2] [PMID: 23235524]
[4]
Kumar P, Shen Q, Pivetti CD, Lee ES, Wu MH, Yuan SY. Molecular mechanisms of endothelial hyperpermeability: Implications in inflammation. Expert Rev Mol Med 2009; 11e19
[http://dx.doi.org/10.1017/S1462399409001112] [PMID: 19563700]
[5]
van Nieuw Amerongen GP, Draijer R, Vermeer MA, van Hinsbergh VW. Transient and prolonged increase in endothelial permeability induced by histamine and thrombin: Role of protein kinases, calcium, and RhoA. Circ Res 1998; 83(11): 1115-23.
[http://dx.doi.org/10.1161/01.RES.83.11.1115] [PMID: 9831706]
[6]
Woodcock TE, Woodcock TM. Revised Starling equation and the glycocalyx model of transvascular fluid exchange: An improved paradigm for prescribing intravenous fluid therapy. Br J Anaesth 2012; 108(3): 384-94.
[http://dx.doi.org/10.1093/bja/aer515] [PMID: 22290457]
[7]
Brekke HK, Hammersborg SM, Lundemoen S, Mongstad A, Kvalheim VL, Haugen O, et al. Isoflurane in contrast to propofol promotes fluid extravasation during cardiopulmonary bypass in pigs. Anesthesiology 2013; 119(4): 861-70.
[http://dx.doi.org/10.1097/ALN.0b013e31829ab018] [PMID: 23719612]
[8]
Onorati F, Santarpino G, Tangredi G, Palmieri G, Rubino AS, Foti D, et al. Intra-aortic balloon pump induced pulsatile perfusion reduces endothelial activation and inflammatory response following cardiopulmonary bypass. Eur J Cardiothorac Surg 2009; 35(6): 1012-9.
[http://dx.doi.org/10.1016/j.ejcts.2008.12.037] [PMID: 19211261]
[9]
Miao H, Hu YL, Shiu YT, Yuan S, Zhao Y, Kaunas R, et al. Effects of flow patterns on the localization and expression of VE-cadherin at vascular endothelial cell junctions: In vivo and in vitro investigations. J Vasc Res 2005; 42(1): 77-89.
[http://dx.doi.org/10.1159/000083094] [PMID: 15637443]
[10]
Serrano CV Jr, Souza JA, Lopes NH, Fernandes JL, Nicolau JC, Blotta MH, et al. Reduced expression of systemic proinflammatory and myocardial biomarkers after off-pump versus on-pump coronary artery bypass surgery: A prospective randomized study. J Crit Care 2010; 25(2): 305-12.
[http://dx.doi.org/10.1016/j.jcrc.2009.06.009] [PMID: 19781902]
[11]
Eikemo H, Sellevold OF, Videm V. Markers for endothelial activation during open heart surgery. Ann Thorac Surg 2004; 77(1): 214-9.
[http://dx.doi.org/10.1016/S0003-4975(03)01060-9] [PMID: 14726064]
[12]
Toprak V, Sirin BH, Tok D, Ozbilgin K, Saribülbül O. The effect of cardiopulmonary bypass on the expression of inducible nitric oxide synthase, endothelial nitric oxide synthase, and vascular endothelial growth factor in the internal mammary artery. J Cardiothorac Vasc Anesth 2006; 20(1): 63-7.
[http://dx.doi.org/10.1053/j.jvca.2005.02.002] [PMID: 16458216]
[13]
Verrier ED, Morgan EN. Endothelial response to cardiopulmonary bypass surgery. Ann Thorac Surg 1998; 66(Suppl. 5): S17-9.
[http://dx.doi.org/10.1016/S0003-4975(98)00965-5] [PMID: 9869436]
[14]
Morariu AM, Maathuis MH, Asgeirsdottir SA, Leuvenink HG, Boonstra PW, van Oeveren W, et al. Acute isovolemic hemodilution triggers proinflammatory and procoagulatory endothelial activation in vital organs: Role of erythrocyte aggregation. Microcirculation 2006; 13(5): 397-409.
[http://dx.doi.org/10.1080/10739680600745992] [PMID: 16815825]
[15]
Guretzki HJ, Schleicher E, Gerbitz KD, Olgemöller B. Heparin induces endothelial extracellular matrix alterations and barrier dysfunction. Am J Physiol 1994; 267(4 Pt 1): C946-54.
[http://dx.doi.org/10.1152/ajpcell.1994.267.4.C946] [PMID: 7943290]
[16]
Farstad M, Heltne JK, Rynning SE, Onarheim H, Mongstad A, Eliassen F, et al. Can the use of methylprednisolone, vitamin C, or alpha-trinositol prevent cold-induced fluid extravasation during cardiopulmonary bypass in piglets? J Thorac Cardiovasc Surg 2004; 127(2): 525-34.
[http://dx.doi.org/10.1016/S0022-5223(03)01028-6] [PMID: 14762364]
[17]
Bronicki RA, Hall M. Cardiopulmonary bypass-induced inflammatory response: Pathophysiology and treatment. Pediatr Crit Care Med 2016; 17(Suppl. 8): S272-8.
[http://dx.doi.org/10.1097/PCC.0000000000000759] [PMID: 27490610]
[18]
Millar JE, Fanning JP, McDonald CI, McAuley DF, Fraser JF. The inflammatory response to Extracorporeal Membrane Oxygenation (ECMO): A review of the pathophysiology. Crit Care 2016; 20(1): 387.
[http://dx.doi.org/10.1186/s13054-016-1570-4] [PMID: 27890016]
[19]
Mihajlovic DM, Lendak DF, Brkic SV, Draskovic BG, Mitic GP, Novakov Mikic AS, et al. Endocan is useful biomarker of survival and severity in sepsis. Microvasc Res 2014; 93: 92-7.
[http://dx.doi.org/10.1016/j.mvr.2014.04.004] [PMID: 24769132]
[20]
Scherpereel A, Depontieu F, Grigoriu B, Cavestri B, Tsicopoulos A, Gentina T, et al. Endocan, a new endothelial marker in human sepsis. Crit Care Med 2006; 34(2): 532-7.
[http://dx.doi.org/10.1097/01.CCM.0000198525.82124.74] [PMID: 16424738]
[21]
Phan SH, Gannon DE, Ward PA, Karmiol S. Mechanism of neutrophil-induced xanthine dehydrogenase to xanthine oxidase conversion in endothelial cells: Evidence of a role for elastase. Am J Respir Cell Mol Biol 1992; 6(3): 270-8.
[http://dx.doi.org/10.1165/ajrcmb/6.3.270] [PMID: 1540391]
[22]
De Caterina R, Libby P, Peng HB, Thannickal VJ, Rajavashisth TB, Gimbrone MA Jr, et al. Nitric oxide decreases cytokine-induced endothelial activation. Nitric oxide selectively reduces endothelial expression of adhesion molecules and proinflammatory cytokines. J Clin Invest 1995; 96(1): 60-8.
[http://dx.doi.org/10.1172/JCI118074] [PMID: 7542286]
[23]
Kubes P, Suzuki M, Granger DN. Nitric oxide: An endogenous modulator of leukocyte adhesion. Proc Natl Acad Sci USA 1991; 88(11): 4651-5.
[http://dx.doi.org/10.1073/pnas.88.11.4651] [PMID: 1675786]
[24]
Schuger L, Varani J, Marks RM, Kunkel SL, Johnson KJ, Ward PA. Cytotoxicity of tumor necrosis factor-alpha for human umbilical vein endothelial cells. Lab Invest 1989; 61(1): 62-8.
[PMID: 2747218]
[25]
Campbell WN, Ding X, Goldblum SE. Interleukin-1 alpha and -beta augment pulmonary artery transendothelial albumin flux in vitro. Am J Physiol 1992; 263(1 Pt 1): L128-36.
[PMID: 1636722]
[26]
Robaye B, Mosselmans R, Fiers W, Dumont JE, Galand P. Tumor necrosis factor induces apoptosis (programmed cell death) in normal endothelial cells in vitro. Am J Pathol 1991; 138(2): 447-53.
[PMID: 1992769]
[27]
Thurston G, Suri C, Smith K, McClain J, Sato TN, Yancopoulos GD, et al. Leakage-resistant blood vessels in mice transgenically overexpressing angiopoietin-1. Science 1999; 286(5449): 2511-4.
[http://dx.doi.org/10.1126/science.286.5449.2511] [PMID: 10617467]
[28]
Thurston G, Rudge JS, Ioffe E, Zhou H, Ross L, Croll SD, et al. Angiopoietin-1 protects the adult vasculature against plasma leakage. Nat Med 2000; 6(4): 460-3.
[http://dx.doi.org/10.1038/74725] [PMID: 10742156]
[29]
Eklund L, Saharinen P. Angiopoietin signaling in the vasculature. Exp Cell Res 2013; 319(9): 1271-80.
[http://dx.doi.org/10.1016/j.yexcr.2013.03.011] [PMID: 23500414]
[30]
Hilbert T, Duerr GD, Hamiko M, Frede S, Rogers L, Baumgarten G, et al. Endothelial permeability following coronary artery bypass grafting: an observational study on the possible role of angiopoietin imbalance. Crit Care 2016; 20: 51.
[http://dx.doi.org/10.1186/s13054-016-1238-0] [PMID: 26951111]
[31]
Warren JS, Yabroff KR, Remick DG, Kunkel SL, Chensue SW, Kunkel RG, et al. Tumor necrosis factor participates in the pathogenesis of acute immune complex alveolitis in the rat. J Clin Invest 1989; 84(6): 1873-82.
[http://dx.doi.org/10.1172/JCI114374] [PMID: 2531759]
[32]
Rollins BJ. Chemokines. Blood 1997; 90(3): 909-28.
[PMID: 9242519]
[33]
Schall TJ, Bacon KB. Chemokines, leukocyte trafficking, and inflammation. Curr Opin Immunol 1994; 6(6): 865-73.
[http://dx.doi.org/10.1016/0952-7915(94)90006-X] [PMID: 7710711]
[34]
Springer TA. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 1994; 76(2): 301-14.
[http://dx.doi.org/10.1016/0092-8674(94)90337-9] [PMID: 7507411]
[35]
Albelda SM, Smith CW, Ward PA. Adhesion molecules and inflammatory injury. FASEB J 1994; 8(8): 504-12.
[http://dx.doi.org/10.1096/fasebj.8.8.8181668] [PMID: 8181668]
[36]
McEver RP, Beckstead JH, Moore KL, Marshall-Carlson L, Bainton DF. GMP-140, a platelet alpha-granule membrane protein, is also synthesized by vascular endothelial cells and is localized in Weibel-Palade bodies. J Clin Invest 1989; 84(1): 92-9.
[http://dx.doi.org/10.1172/JCI114175] [PMID: 2472431]
[37]
Newman PJ. The biology of PECAM-1. J Clin Invest 1997; 99(1): 3-8.
[http://dx.doi.org/10.1172/JCI119129] [PMID: 9011572]
[38]
Davie EW, Fujikawa K, Kisiel W. The coagulation cascade: Initiation, maintenance, and regulation. Biochemistry 1991; 30(43): 10363-70.
[http://dx.doi.org/10.1021/bi00107a001] [PMID: 1931959]
[39]
Böckmann S, Paegelow I. Kinins and kinin receptors: Importance for the activation of leukocytes. J Leukoc Biol 2000; 68(5): 587-92.
[PMID: 11073095]
[40]
Spronk HM, de Jong AM, Crijns HJ, Schotten U, Van Gelder IC, Ten Cate H. Pleiotropic effects of factor Xa and thrombin: What to expect from novel anticoagulants. Cardiovasc Res 2014; 101(3): 344-51.
[http://dx.doi.org/10.1093/cvr/cvt343] [PMID: 24385341]
[41]
Egorina EM, Sovershaev MA, Hansen JB. The role of tissue factor in systemic inflammatory response syndrome. Blood Coagul Fibrinolysis 2011; 22(6): 451-6.
[http://dx.doi.org/10.1097/MBC.0b013e328346ef3f] [PMID: 21597365]
[42]
Edmunds LH Jr, Colman RW. Thrombin during cardiopulmonary bypass. Ann Thorac Surg 2006; 82(6): 2315-22.
[http://dx.doi.org/10.1016/j.athoracsur.2006.06.072] [PMID: 17126170]
[43]
Borensztajn K, Peppelenbosch MP, Spek CA. Factor Xa: At the crossroads between coagulation and signaling in physiology and disease. Trends Mol Med 2008; 14(10): 429-40.
[http://dx.doi.org/10.1016/j.molmed.2008.08.001] [PMID: 18774340]
[44]
Esper SA, Subramaniam K, Tanaka KA. Pathophysiology of cardiopulmonary bypass: Current strategies for the prevention and treatment of anemia, coagulopathy, and organ dysfunction. Semin Cardiothorac Vasc Anesth 2014; 18(2): 161-76.
[http://dx.doi.org/10.1177/1089253214532375] [PMID: 24876231]
[45]
Schofield ZV, Woodruff TM, Halai R, Wu MC, Cooper MA. Neutrophils--a key component of ischemia-reperfusion injury. Shock 2013; 40(6): 463-70.
[http://dx.doi.org/10.1097/SHK.0000000000000044] [PMID: 24088997]
[46]
Kolaczkowska E, Kubes P. Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol 2013; 13(3): 159-75.
[http://dx.doi.org/10.1038/nri3399] [PMID: 23435331]
[47]
El-Benna J, Dang PM, Gougerot-Pocidalo MA. Priming of the neutrophil NADPH oxidase activation: Role of p47phox phosphorylation and NOX2 mobilization to the plasma membrane. Semin Immunopathol 2008; 30(3): 279-89.
[http://dx.doi.org/10.1007/s00281-008-0118-3] [PMID: 18536919]
[48]
Angus DC, Barnato AE, Linde-Zwirble WT, Weissfeld LA, Watson RS, Rickert T, et al. Use of intensive care at the end of life in the United States: An epidemiologic study. Crit Care Med 2004; 32(3): 638-43.
[http://dx.doi.org/10.1097/01.CCM.0000114816.62331.08] [PMID: 15090940]
[49]
Seebach J, Dieterich P, Luo F, Schillers H, Vestweber D, Oberleithner H, et al. Endothelial barrier function under laminar fluid shear stress. Lab Invest 2000; 80(12): 1819-31.
[http://dx.doi.org/10.1038/labinvest.3780193] [PMID: 11140695]
[50]
Koning NJ, Overmars MA, van den Brom CE, van Bezu J, Simon LE, Vonk AB, et al. Endothelial hyperpermeability after cardiac surgery with cardiopulmonary bypass as assessed using an in vitro bioassay for endothelial barrier function. Br J Anaesth 2016; 116(2): 223-32.
[http://dx.doi.org/10.1093/bja/aev411] [PMID: 26787791]
[51]
Koning NJ, Vonk AB, van Barneveld LJ, Beishuizen A, Atasever B, van den Brom CE, et al. Pulsatile flow during cardiopulmonary bypass preserves postoperative microcirculatory perfusion irrespective of systemic hemodynamics. J Appl Physiol 2012; 112(10): 1727-34.
[http://dx.doi.org/10.1152/japplphysiol.01191.2011] [PMID: 22403352]
[52]
Scholz M, Wimmer-Greinecker G, Simon A, Dzemali O, Chang HY, Kleine P, et al. Perioperative elastase activity in cardiac surgery and its role in endothelial leakage. Inflamm Res 2003; 52(10): 433-8.
[http://dx.doi.org/10.1007/s00011-003-1199-z] [PMID: 14520520]
[53]
Clajus C, Lukasz A, David S, Hertel B, Lichtinghagen R, Parikh SM, et al. Angiopoietin-2 is a potential mediator of endothelial barrier dysfunction following cardiopulmonary bypass. Cytokine 2012; 60(2): 352-9.
[http://dx.doi.org/10.1016/j.cyto.2012.04.002] [PMID: 22770562]
[54]
van Hinsbergh VW, van Nieuw Amerongen GP. Intracellular signalling involved in modulating human endothelial barrier function. J Anat 2002; 200(6): 549-60.
[http://dx.doi.org/10.1046/j.1469-7580.2002.00060.x] [PMID: 12162723]
[55]
Bianchi C, Araujo EG, Sato K, Sellke FW. Biochemical and structural evidence for pig myocardium adherens junction disruption by cardiopulmonary bypass. Circulation 2001; 104(12)(Suppl. 1): I319-24.
[http://dx.doi.org/10.1161/hc37t1.094519] [PMID: 11568076]
[56]
Khan TA, Bianchi C, Araujo E, Voisine P, Xu SH, Feng J, et al. Aprotinin preserves cellular junctions and reduces myocardial edema after regional ischemia and cardioplegic arrest. Circulation 2005; 112(Suppl. 9): I196-201.
[PMID: 16159815]
[57]
Giuliano JS Jr, Lahni PM, Bigham MT, Manning PB, Nelson DP, Wong HR, et al. Plasma angiopoietin-2 levels increase in children following cardiopulmonary bypass. Intensive Care Med 2008; 34(10): 1851-7.
[http://dx.doi.org/10.1007/s00134-008-1174-9] [PMID: 18516587]
[58]
Uchida T, Ito H, Yamamoto H, Ohno N, Asahara M, Yamada Y, et al. Elevated levels of angiopoietin-2 as a biomarker for respiratory failure after cardiac surgery. J Cardiothorac Vasc Anesth 2014; 28(5): 1293-301.
[http://dx.doi.org/10.1053/j.jvca.2014.03.004] [PMID: 25027103]
[59]
Rehm M, Bruegger D, Christ F, Conzen P, Thiel M, Jacob M, et al. Shedding of the endothelial glycocalyx in patients undergoing major vascular surgery with global and regional ischemia. Circulation 2007; 116(17): 1896-906.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.106.684852] [PMID: 17923576]
[60]
Nieuwdorp M, Meuwese MC, Mooij HL, Ince C, Broekhuizen LN, Kastelein JJ, et al. Measuring endothelial glycocalyx dimensions in humans: A potential novel tool to monitor vascular vulnerability. J Appl Physiol 2008; 104(3): 845-52.
[http://dx.doi.org/10.1152/japplphysiol.00440.2007] [PMID: 18162484]
[61]
Bruegger D, Jacob M, Rehm M, Loetsch M, Welsch U, Conzen P, et al. Atrial natriuretic peptide induces shedding of endothelial glycocalyx in coronary vascular bed of guinea pig hearts. Am J Physiol Heart Circ Physiol 2005; 289(5): H1993-9.
[http://dx.doi.org/10.1152/ajpheart.00218.2005] [PMID: 15964925]
[62]
Gouverneur M, Spaan JA, Pannekoek H, Fontijn RD, Vink H. Fluid shear stress stimulates incorporation of hyaluronan into endothelial cell glycocalyx. Am J Physiol Heart Circ Physiol 2006; 290(1): H458-2.
[http://dx.doi.org/10.1152/ajpheart.00592.2005] [PMID: 16126814]
[63]
Bai K, Wang W. Spatio-temporal development of the endothelial glycocalyx layer and its mechanical property in vitro. J R Soc Interface 2012; 9(74): 2290-8.
[http://dx.doi.org/10.1098/rsif.2011.0901] [PMID: 22417911]
[64]
Weinbaum S, Tarbell JM, Damiano ER. The structure and function of the endothelial glycocalyx layer. Annu Rev Biomed Eng 2007; 9: 121-67.
[http://dx.doi.org/10.1146/annurev.bioeng.9.060906.151959] [PMID: 17373886]
[65]
Keller MW, Geddes L, Spotnitz W, Kaul S, Duling BR. Microcirculatory dysfunction following perfusion with hyperkalemic, hypothermic, cardioplegic solutions and blood reperfusion. Effects of adenosine. Circulation 1991; 84(6): 2485-94.
[http://dx.doi.org/10.1161/01.CIR.84.6.2485] [PMID: 1659955]
[66]
Brettner F, Chappell D, Schwartz L, Lukasz A, Kumpers P, Becker BF, et al. Vascular endothelial dysfunction during cardiac surgery: On-Pump versus Off-Pump coronary surgery. Eur Surg Res 2017; 58(5-6): 354-68.
[http://dx.doi.org/10.1159/000480431] [PMID: 29073603]
[67]
Myers GJ, Wegner J. Endothelial glycocalyx and cardiopulmonary Bypass. J Extra Corpor Technol 2017; 49(3): 174-81.
[PMID: 28979041]
[68]
Ohkuda K, Nakahara K, Binder A, Staub NC. Venous air emboli in sheep: Reversible increase in lung microvascular permeability. J Appl Physiol 1981; 51(4): 887-94.
[http://dx.doi.org/10.1152/jappl.1981.51.4.887] [PMID: 7298434]
[69]
Thorsen T, Klausen H, Lie RT, Holmsen H. Bubble-induced aggregation of platelets: Effects of gas species, proteins, and decompression. Undersea Hyperb Med 1993; 20(2): 101-19.
[PMID: 8392414]
[70]
Malik AB, Johnson A, Tahamont MV. Mechanisms of lung vascular injury after intravascular coagulation. Ann N Y Acad Sci 1982; 384: 213-34.
[http://dx.doi.org/10.1111/j.1749-6632.1982.tb21374.x] [PMID: 6953821]
[71]
Sobolewski P, Kandel J, Eckmann DM. Air bubble contact with endothelial cells causes a calcium-independent loss in mitochondrial membrane potential. PLoS One 2012; 7(10)e47254
[http://dx.doi.org/10.1371/journal.pone.0047254] [PMID: 23091614]
[72]
Harris DN, Bailey SM, Smith PL, Taylor KM, Oatridge A, Bydder GM. Brain swelling in first hour after coronary artery bypass surgery. Lancet 1993; 342(8871): 586-7.
[http://dx.doi.org/10.1016/0140-6736(93)91412-F] [PMID: 8102722]
[73]
Hindman BJ, Moore SA, Cutkomp J, Smith T, Ross-Barta SE, Dexter F, et al. Brain expression of inducible cyclooxygenase 2 messenger RNA in rats undergoing cardiopulmonary bypass. Anesthesiology 2001; 95(6): 1380-8.
[http://dx.doi.org/10.1097/00000542-200112000-00017] [PMID: 11748396]
[74]
Rivest S, Lacroix S, Vallières L, Nadeau S, Zhang J, Laflamme N. How the blood talks to the brain parenchyma and the paraventricular nucleus of the hypothalamus during systemic inflammatory and infectious stimuli. Proc Soc Exp Biol Med 2000; 223(1): 22-38.
[http://dx.doi.org/10.1046/j.1525-1373.2000.22304.x] [PMID: 10632958]
[75]
Nussmeier NA, Searles BE. Inflammatory brain injury after cardiopulmonary bypass: Is it real? Anesth Analg 2010; 110(2): 288-90.
[http://dx.doi.org/10.1213/ANE.0b013e3181c8b1bb] [PMID: 20081124]
[76]
Jungwirth B, Eckel B, Blobner M, Kellermann K, Kochs EF, Mackensen GB. The impact of cardiopulmonary bypass on systemic interleukin-6 release, cerebral nuclear factor-kappa B expression, and neurocognitive outcome in rats. Anesth Analg 2010; 110(2): 312-20.
[http://dx.doi.org/10.1213/ANE.0b013e3181bbc42e] [PMID: 19861361]
[77]
Westaby S, Saatvedt K, White S, Katsumata T, van Oeveren W, Halligan PW. Is there a relationship between cognitive dysfunction and systemic inflammatory response after cardiopulmonary bypass? Ann Thorac Surg 2001; 71(2): 667-72.
[http://dx.doi.org/10.1016/S0003-4975(00)02405-X] [PMID: 11235725]
[78]
Jin R, Yang G, Li G. Inflammatory mechanisms in ischemic stroke: Role of inflammatory cells. J Leukoc Biol 2010; 87(5): 779-89.
[http://dx.doi.org/10.1189/jlb.1109766] [PMID: 20130219]
[79]
Greeley WJ, Ungerleider RM, Smith LR, Reves JG. The effects of deep hypothermic cardiopulmonary bypass and total circulatory arrest on cerebral blood flow in infants and children. J Thorac Cardiovasc Surg 1989; 97(5): 737-45.
[PMID: 2709864]
[80]
Bassan H, Gauvreau K, Newburger JW, Tsuji M, Limperopoulos C, Soul JS, et al. Identification of pressure passive cerebral perfusion and its mediators after infant cardiac surgery. Pediatr Res 2005; 57(1): 35-41.
[http://dx.doi.org/10.1203/01.PDR.0000147576.84092.F9] [PMID: 15531739]
[81]
McGowan FX Jr, Ikegami M, del Nido PJ, Motoyama EK, Kurland G, Davis PJ, et al. Cardiopulmonary bypass significantly reduces surfactant activity in children. J Thorac Cardiovasc Surg 1993; 106(6): 968-77.
[PMID: 8246579]
[82]
Ochs M, Nenadic I, Fehrenbach A, Albes JM, Wahlers T, Richter J, et al. Ultrastructural alterations in intraalveolar surfactant subtypes after experimental ischemia and reperfusion. Am J Respir Crit Care Med 1999; 160(2): 718-24.
[http://dx.doi.org/10.1164/ajrccm.160.2.9809060] [PMID: 10430751]
[83]
Doddo JM, Welsh LE, Salazar JD, Walinsky PL, Peck EA, Shake JG, et al. Effect of bronchial artery blood flow on cardiopulmonary bypass-induced lung injury. Am J Physiol Heart Circ Physiol 2004; 286(2): H693-700.
[http://dx.doi.org/10.1152/ajpheart.00888.2003] [PMID: 14563666]
[84]
Schlensak C, Doenst T, Preusser S, Wunderlich M, Kleinschmidt M, Beyersdorf F. Cardiopulmonary bypass reduction of bronchial blood flow: A potential mechanism for lung injury in a neonatal pig model. J Thorac Cardiovasc Surg 2002; 123(6): 1199-205.
[http://dx.doi.org/10.1067/mtc.2002.121977] [PMID: 12063469]
[85]
Shafique T, Johnson RG, Dai HB, Weintraub RM, Sellke FW. Altered pulmonary microvascular reactivity after total cardiopulmonary bypass. J Thorac Cardiovasc Surg 1993; 106(3): 479-86.
[PMID: 8361191]
[86]
Serraf A, Sellak H, Herve P, Bonnet N, Robotin M, Detruit H, et al. Vascular endothelium viability and function after total cardiopulmonary bypass in neonatal piglets. Am J Respir Crit Care Med 1999; 159(2): 544-51.
[http://dx.doi.org/10.1164/ajrccm.159.2.9803024] [PMID: 9927371]
[87]
Wessel DL, Adatia I, Giglia TM, Thompson JE, Kulik TJ. Use of inhaled nitric oxide and acetylcholine in the evaluation of pulmonary hypertension and endothelial function after cardiopulmonary bypass. Circulation 1993; 88(5 Pt 1): 2128-38.
[http://dx.doi.org/10.1161/01.CIR.88.5.2128] [PMID: 8222107]
[88]
Duke T, South M, Stewart A. Altered activation of the L-arginine nitric oxide pathway during and after cardiopulmonary bypass. Perfusion 1997; 12(6): 405-10.
[http://dx.doi.org/10.1177/026765919701200609] [PMID: 9413853]
[89]
Schulze-Neick I, Penny DJ, Rigby ML, Morgan C, Kelleher A, Collins P, et al. L-Arginine and substance P reverse the pulmonary endothelial dysfunction caused by congenital heart surgery. Circulation 1999; 100(7): 749-55.
[http://dx.doi.org/10.1161/01.CIR.100.7.749] [PMID: 10449698]
[90]
Ng CS, Wan S, Arifi AA, Yim AP. Inflammatory response to pulmonary ischemia-reperfusion injury. Surg Today 2006; 36(3): 205-14.
[http://dx.doi.org/10.1007/s00595-005-3124-2] [PMID: 16493527]
[91]
Ward PA. The sepsis seesaw: Seeking a heart salve. Nat Med 2009; 15(5): 497-8.
[http://dx.doi.org/10.1038/nm0509-497] [PMID: 19424210]
[92]
Blatchford JW III, Barragry TP, Lillehei TJ, Ring WS. Effects of cardioplegic arrest on left ventricular systolic and diastolic function of the intact neonatal heart. J Thorac Cardiovasc Surg 1994; 107(2): 527-35.
[PMID: 8302073]
[93]
Yellon DM, Hausenloy DJ. Myocardial reperfusion injury. N Engl J Med 2007; 357(11): 1121-35.
[http://dx.doi.org/10.1056/NEJMra071667] [PMID: 17855673]
[94]
Prasad A, Stone GW, Holmes DR, Gersh B. Reperfusion injury, microvascular dysfunction, and cardioprotection: The “dark side” of reperfusion. Circulation 2009; 120(21): 2105-12.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.108.814640] [PMID: 19933949]
[95]
Egan JR, Butler TL, Cole AD, Aharonyan A, Baines D, Street N, et al. Myocardial ischemia is more important than the effects of cardiopulmonary bypass on myocardial water handling and postoperative dysfunction: a pediatric animal model. J Thorac Cardiovasc Surg 2008; 136: 1265-73.
[96]
Tsao PS, Aoki N, Lefer DJ, Johnson G III, Lefer AM. Time course of endothelial dysfunction and myocardial injury during myocardial ischemia and reperfusion in the cat. Circulation 1990; 82(4): 1402-12.
[http://dx.doi.org/10.1161/01.CIR.82.4.1402] [PMID: 2401073]
[97]
Nichols WW, Mehta JL, Donnelly WH, Lawson D, Thompson L, ter Riet M. Reduction in coronary vasodilator reserve following coronary occlusion and reperfusion in anesthetized dog: Role of endothelium-derived relaxing factor, myocardial neutrophil infiltration and prostaglandins. J Mol Cell Cardiol 1988; 20(10): 943-54.
[http://dx.doi.org/10.1016/S0022-2828(88)80148-2] [PMID: 2851052]
[98]
Turer AT, Hill JA. Pathogenesis of myocardial ischemia-reperfusion injury and rationale for therapy. Am J Cardiol 2010; 106(3): 360-8.
[http://dx.doi.org/10.1016/j.amjcard.2010.03.032] [PMID: 20643246]
[99]
Buja LM. Myocardial ischemia and reperfusion injury. Cardiovasc Pathol 2005; 14(4): 170-5.
[http://dx.doi.org/10.1016/j.carpath.2005.03.006] [PMID: 16009313]
[100]
Fischer UM, Cox CS Jr, Laine GA, Mehlhorn U, Bloch W, Allen SJ. Induction of cardioplegic arrest immediately activates the myocardial apoptosis signal pathway. Am J Physiol Heart Circ Physiol 2007; 292(3): H1630-3.
[http://dx.doi.org/10.1152/ajpheart.00006.2005] [PMID: 17085543]
[101]
Landry DW, Oliver JA. The pathogenesis of vasodilatory shock. N Engl J Med 2001; 345(8): 588-95.
[http://dx.doi.org/10.1056/NEJMra002709] [PMID: 11529214]
[102]
Gajarski RJ, Stefanelli CB, Graziano JN, Kaciroti N, Charpie JR, Vazquez D. Adrenocortical response in infants undergoing cardiac surgery with cardiopulmonary bypass and circulatory arrest. Pediatr Crit Care Med 2010; 11(1): 44-51.
[http://dx.doi.org/10.1097/PCC.0b013e3181a64743] [PMID: 19451847]
[103]
Bronicki RA. Is cardiac surgery sufficient to create insufficiency? Pediatr Crit Care Med 2010; 11(1): 150-1.
[http://dx.doi.org/10.1097/PCC.0b013e3181ae4cc4] [PMID: 20051796]
[104]
Jäättelä M, Ilvesmäki V, Voutilainen R, Stenman UH, Saksela E. Tumor necrosis factor as a potent inhibitor of adrenocorticotropin-induced cortisol production and steroidogenic P450 enzyme gene expression in cultured human fetal adrenal cells. Endocrinology 1991; 128(1): 623-9.
[http://dx.doi.org/10.1210/endo-128-1-623] [PMID: 1702707]
[105]
Mekontso-Dessap A, Houël R, Soustelle C, Kirsch M, Thébert D, Loisance DY. Risk factors for post-cardiopulmonary bypass vasoplegia in patients with preserved left ventricular function. Ann Thorac Surg 2001; 71(5): 1428-32.
[http://dx.doi.org/10.1016/S0003-4975(01)02486-9] [PMID: 11383777]
[106]
Levin MA, Lin HM, Castillo JG, Adams DH, Reich DL, Fischer GW. Early on-cardiopulmonary bypass hypotension and other factors associated with vasoplegic syndrome. Circulation 2009; 120(17): 1664-71.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.108.814533] [PMID: 19822810]
[107]
Brix-Christensen V, Tonnesen E, Hjortdal VE, Chew M, Flo C, Marqversen J, et al. Neutrophils and platelets accumulate in the heart, lungs, and kidneys after cardiopulmonary bypass in neonatal pigs. Crit Care Med 2002; 30(3): 670-6.
[http://dx.doi.org/10.1097/00003246-200203000-00029] [PMID: 11990932]
[108]
Murphy GJ, Lin H, Coward RJ, Toth T, Holmes R, Hall D, et al. An initial evaluation of post-cardiopulmonary bypass acute kidney injury in swine. Eur J Cardiothorac Surg 2009; 36(5): 849-55.
[http://dx.doi.org/10.1016/j.ejcts.2009.05.042] [PMID: 19692256]
[109]
Klausner JM, Paterson IS, Goldman G, Kobzik L, Rodzen C, Lawrence R, et al. Postischemic renal injury is mediated by neutrophils and leukotrienes. Am J Physiol 1989; 256(5 Pt 2): F794-802.
[PMID: 2541628]
[110]
Xia ZY, Liu XY, Zhan LY, He YH, Luo T, Xia Z. Ginsenosides compound (shen-fu) attenuates gastrointestinal injury and inhibits inflammatory response after cardiopulmonary bypass in patients with congenital heart disease. J Thorac Cardiovasc Surg 2005; 130(2): 258-64.
[http://dx.doi.org/10.1016/j.jtcvs.2005.02.046] [PMID: 16077384]
[111]
Rossi M, Sganga G, Mazzone M, Valenza V, Guarneri S, Portale G, et al. Cardiopulmonary bypass in man: Role of the intestine in a self-limiting inflammatory response with demonstrable bacterial translocation. Ann Thorac Surg 2004; 77(2): 612-8.
[http://dx.doi.org/10.1016/S0003-4975(03)01520-0] [PMID: 14759448]
[112]
Ohri SK, Velissaris T. Gastrointestinal dysfunction following cardiac surgery. Perfusion 2006; 21(4): 215-23.
[http://dx.doi.org/10.1191/0267659106pf871oa] [PMID: 16939115]
[113]
Doguet F, Litzler PY, Tamion F, et al. Changes in mesenteric vascular reactivity and inflammatory response after cardiopulmonary bypass in a rat model. Ann Thorac Surg 2004; 77(6): 2130-7.
[http://dx.doi.org/10.1016/j.athoracsur.2003.10.034] [PMID: 15172281]
[114]
Riddington DW, Venkatesh B, Boivin CM, Bonser RS, Elliott TS, Marshall T, et al. Intestinal permeability, gastric intramucosal pH, and systemic endotoxemia in patients undergoing cardiopulmonary bypass. JAMA 1996; 275(13): 1007-12.
[http://dx.doi.org/10.1001/jama.1996.03530370045029] [PMID: 8596232]
[115]
Lequier LL, Nikaidoh H, Leonard SR, Bokovoy JL, White ML, Scannon PJ, et al. Preoperative and postoperative endotoxemia in children with congenital heart disease. Chest 2000; 117(6): 1706-12.
[http://dx.doi.org/10.1378/chest.117.6.1706] [PMID: 10858406]
[116]
Michalopoulos AS, Geroulanos S, Mentzelopoulos SD. Determinants of candidemia and candidemia-related death in cardiothoracic ICU patients. Chest 2003; 124(6): 2244-55.
[http://dx.doi.org/10.1378/chest.124.6.2244] [PMID: 14665507]
[117]
Salsano A, Giacobbe DR, Sportelli E, Olivieri GM, Brega C, Di Biase C, et al. Risk factors for infections due to carbapenem-resistant Klebsiella pneumoniae after open heart surgery. Interact Cardiovasc Thorac Surg 2016; 23(5): 762-8.
[http://dx.doi.org/10.1093/icvts/ivw228] [PMID: 27371609]
[118]
Frazier WJ, Hall MW. Immunoparalysis and adverse outcomes from critical illness. Pediatr Clin North Am 2008; 55(3): 647-68.
[http://dx.doi.org/10.1016/j.pcl.2008.02.009] [PMID: 18501759]
[119]
Ward NS, Casserly B, Ayala A. The compensatory anti-inflammatory response syndrome (CARS) in critically ill patients. Clin Chest Med 2008; 29(4): 617-25.
[http://dx.doi.org/10.1016/j.ccm.2008.06.010] [PMID: 18954697]
[120]
Zhai QH, Futrell N, Chen FJ. Gene expression of IL-10 in relationship to TNF-alpha, IL-1beta and IL-2 in the rat brain following middle cerebral artery occlusion. J Neurol Sci 1997; 152(2): 119-24.
[http://dx.doi.org/10.1016/S0022-510X(97)00154-8] [PMID: 9415530]
[121]
Volk HD, Reinke P, Krausch D, Zuckermann H, Asadullah K, Muller JM, et al. Monocyte deactivation--rationale for a new therapeutic strategy in sepsis. Intensive Care Med 1996; 22(Suppl. 4): S474-81.
[http://dx.doi.org/10.1007/BF01743727] [PMID: 8923092]
[122]
Allen ML, Peters MJ, Goldman A, Elliott M, James I, Callard R, et al. Early postoperative monocyte deactivation predicts systemic inflammation and prolonged stay in pediatric cardiac intensive care. Crit Care Med 2002; 30(5): 1140-5.
[http://dx.doi.org/10.1097/00003246-200205000-00031] [PMID: 12006816]
[123]
Allen ML, Hoschtitzky JA, Peters MJ, Elliott M, Goldman A, James I, et al. Interleukin-10 and its role in clinical immunoparalysis following pediatric cardiac surgery. Crit Care Med 2006; 34(10): 2658-65.
[http://dx.doi.org/10.1097/01.CCM.0000240243.28129.36] [PMID: 16932228]
[124]
Cornell TT, Sun L, Hall MW, Gurney JG, Ashbrook MJ, Ohye RG, et al. Clinical implications and molecular mechanisms of immunoparalysis after cardiopulmonary bypass. J Thorac Cardiovasc Surg 2012; 143(5): 1160-6.e1.
[http://dx.doi.org/10.1016/j.jtcvs.2011.09.011] [PMID: 21996297]
[125]
Evora PR, Bottura C, Arcêncio L, Albuquerque AA, Évora PM, Rodrigues AJ. Key points for curbing cardiopulmonary bypass inflammation. Acta Cir Bras 2016; 31(Suppl. 1): 45-52.
[http://dx.doi.org/10.1590/S0102-86502016001300010] [PMID: 27142905]
[126]
Landis RC, Brown JR, Fitzgerald D, Likosky DS, Shore-Lesserson L, Baker RA, et al. Attenuating the systemic inflammatory response to adult cardiopulmonary bypass: A critical review of the evidence base. J Extra Corpor Technol 2014; 46(3): 197-211.
[PMID: 26357785]
[127]
Shum-Tim D, Tchervenkov CI, Laliberte E, Jamal AM, Nimeh T, Luo CY, et al. Timing of steroid treatment is important for cerebral protection during cardiopulmonary bypass and circulatory arrest: Minimal protection of pump prime methylprednisolone. Eur J Cardiothorac Surg 2003; 24(1): 125-32.
[http://dx.doi.org/10.1016/S1010-7940(03)00164-7] [PMID: 12853056]
[128]
Checchia PA, Bronicki RA, Costello JM, Nelson DP. Steroid use before pediatric cardiac operations using cardiopulmonary bypass: An international survey of 36 centers. Pediatr Crit Care Med 2005; 6(4): 441-4.
[http://dx.doi.org/10.1097/01.PCC.0000163678.20704.C5] [PMID: 15982431]
[129]
Abrahamov D. Compositions and methods for treating postoperative complications of cardiopulmonary surgery. US Application US20160089423 (2016), WO2016071761 (2016) & US20170354722 (2017).
[130]
Summar ML, Barr FE. Intravenous administration of citrulline during surgery. US Application US20160374972 (2016) & WO2017004233 (2017)
[131]
Borow K, Travis DW. Methods for performing a coronary artery bypass graft procedure. EP3100739 (2016).
[132]
Salzman AL, Jagtap P, Southan GJ. Substituted 1- pyrrolidinyloxy, 1-piperidinyloxy and 1-azepanyloxy compounds for treating diseases associated with oxidative stress or endothelial dysfunction. US9604932 (2017).
[133]
Salzman AL, Jagtap P, Southan GJ. Method for treating diseases associated with oxidative stress or endothelial dysfunction. US20170327466 (2017).
[134]
Jay GD, Sullivan BD, Schmidt TA, et al. Use of PRG4 as an anti-inflammatory agent. WO2016123123 (2016) & US20180015141 (2018).
[135]
Pollard B. Cardiac glycosides to treat cystic fibrosis and other IL-8 dependent disorders. US20140187505 (2014).
[136]
Allan CK, Newburger JW, McGrath E, Elder J, Psoinos C, Laussen PC, et al. The relationship between inflammatory activation and clinical outcome after infant cardiopulmonary bypass. Anesth Analg 2010; 111(5): 1244-51.
[http://dx.doi.org/10.1213/ANE.0b013e3181f333aa] [PMID: 20829561]
[137]
Blomquist S, Gustafsson V, Manolopoulos T, Pierre L. Clinical experience with a novel endotoxin adsorbtion device in patients undergoing cardiac surgery. Perfusion 2009; 24(1): 13-7.
[http://dx.doi.org/10.1177/0267659109106730] [PMID: 19567543]
[138]
De Silva RJ, Armstrong J, Bottrill F, Goldsmith K, Colah S, Vuylsteke A. A lipopolysaccharide adsorber in adult cardiopulmonary bypass: A single centre randomised controlled pilot trial. Interact Cardiovasc Thorac Surg 2010; 11(1): 86-92.
[http://dx.doi.org/10.1510/icvts.2010.233304] [PMID: 20385666]
[139]
Honore PM, Jacobs R, Joannes-Boyau O, De Regt J, De Waele E, van Gorp V, et al. Newly designed CRRT membranes for sepsis and SIRS - A pragmatic approach for bedside intensivists summarizing the more recent advances: a systematic structured review. ASAIO J 2013; 59(2): 99-106.
[http://dx.doi.org/10.1097/MAT.0b013e3182816a75] [PMID: 23438770]
[140]
Gruda MC, Ruggeberg KG, O’Sullivan P, Guliashvili T, Scheirer AR, Golobish TD, et al. Broad adsorption of sepsis-related PAMP and DAMP molecules, mycotoxins, and cytokines from whole blood using CytoSorb® sorbent porous polymer beads. PLoS One 2018; 13(1)e0191676
[http://dx.doi.org/10.1371/journal.pone.0191676] [PMID: 29370247]
[141]
Baumann A, Buchwald D, Annecke T, Hellmich M, Zahn PK, Hohn A. RECCAS - REmoval of Cytokines during CArdiac Surgery: Study protocol for a randomised controlled trial. Trials 2016; 17(1): 137.
[http://dx.doi.org/10.1186/s13063-016-1265-9] [PMID: 26971164]
[142]
Levine JA, Faltys MA. Single-pulse activation of the cholinergic anti-inflammatory pathway to treat chronic inflammation US8788034 (2014).
[143]
Levine JA, Faltys MA. Extremely low duty-cycle activation of the cholinergic anti-inflammatory pathway to treat chronic inflammation. US9211410 (2015) & US9849286 (2018).
[144]
Tracey KJ, Rosas-Ballina M. Methods and systems for reducing inflammation by neuromodulation of T-cell activity. US9211409 (2015).
[145]
Tracey KJ, Rosas-Ballina M, Faltys MA, Zitnik RJ. Methods and systems for reducing inflammation by neuromodulation and administration of an anti-inflammatory drug. US9662490 (2017).
[146]
Bright C. Systems and methods for sympathetic cardiopulmonary neuromodulation. WO2016176333 (2016) & US9855317 (2018).
[147]
Moss J, Lingen M, Singleton PA, Garcia JGN. Use of opioid antagonists to attenuate endothelial cell proliferation and migration. US9662390 (2017).
[148]
Johansson P, Ostrowski SR. Compounds capable of modulating/ preserving endothelial integrity for use in prevention or treatment of acute traumatic coagulopathy and resuscitated cardiac arrest. US20150057325 (2015).
[149]
Johansson P, Ostrowski SR. Methods of treating and preventing endothelial dysfunction using bardoxolone methyl or analogs thereof. US20150080465 (2015).
[150]
Chin MPH, Meyer CJ. Methods of treating and preventing endothelial dysfunction using bardoxolone methyl or analogs thereof. US20150080465 (2015).
[151]
Chin MPH, Meyer CJ. Methods of treating and preventing endothelial dysfunction using bardoxololone methyl or analogs thereof. WO2015027206 (2015).


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 13
ISSUE: 2
Year: 2019
Page: [158 - 173]
Pages: 16
DOI: 10.2174/1872213X13666190724112644

Article Metrics

PDF: 22
HTML: 4