3,4-Dihydropyrimidin-2(1H)-One Analogues: Microwave irradiated Synthesis with Antimicrobial and Antituberculosis Study

Author(s): Navin Patel*, Sabir Pathan, Hetal I. Soni.

Journal Name: Current Microwave Chemistry

Volume 6 , Issue 1 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: For rapid and sustainable synthesis, microwave irradiation method is serviceable. This present study deals with the preparation of oxadiazole and pyridine bearing 1,2,3,4- tetrahydro pyrimidine derivatives by microwave irradiation.

Objective: The present study aims to carry out rapid synthesis of chloro-acetamides of oxadiazoles of Biginelli product and amino cyano derivative of pyridine by microwave-assisted heating. Our efforts are focused on the introduction of chemical diversity in the molecular framework in order to synthesize pharmacologically interesting compounds.

Methods: Microwave irradiation was used for the synthesis of 2-((3-cyano-4-(3,4-dichloro phenyl)- 6-(4-hydroxy-3-methoxyphenyl) pyridin-2-yl) amino)-N-(5-(substituted) -(6-methyl-2-oxo -1,2,3,4- tetrahydro pyrimidin-5-yl)-1,3,4-oxadiazol-2-yl)acetamide by using Biginelli reaction. New structural analogues were confirmed by spectral studies followed by their screening for in vitro antibacterial activity against Staphylococcus aureus, Staphylococcus Pyogenus, Escherichia coli and Pseudomonas aeruginosa bacterial strains and for antifungal activity against Candida albicans, Aspergillus niger and Aspergillus clavatus by micro-broth dilution method. In vitro antimycobacterial activity determined out against (Mycobacterium tuberculosis) H37Rv strain using Lowenstein-Jensen medium.

Results: As compared to the conventional method, microwave irradiation method is advantageous for the synthesis of 1,2,3,4-tetrahydropyrimidin derivatives. Potent antimicrobial activities and antitubercular activity were found for some of the compounds.

Conclusion: Microwave irradiation method provided an effective way to discover a novel class of antimicrobial and antituberculosis agents. 1,2,3,4-tetrahydropyrimidin derivatives showed improved antimicrobial and good antituberculosis activity.

Keywords: 3, 4-Dihydropyrimidin-2(1H)-one, 1, 3, 4-Oxadiazole, microwave irradiation, spectral studies, antimicrobial activity, antimycobacterial activity.

[1]
Lancaster, M. Green Chemistry: An Introductory Text. In: Royal Society of Chemistry; Cambridge, 2010, pp. 1-16.
[2]
Joshi, U.J.; Gokhale, K.M.; Kanitkar, A.P. Green Chemistry: need of the hour. Indian J. Pharm. Educ. Res., 2011, 45, 168-174.
[3]
Ravichandran, S.; Karthikeyan, E. Microwave Synthesis: A potential tool for green chemistry. Int. J. Chemtech Res., 2011, 3, 466-470.
[4]
Kappe, C.O. Recent advances in the Biginelli dihydropyrimidine synthesis. New tricks from an old dog. Acc. Chem. Res., 2000, 33(12), 879-888.
[5]
Mohamed, M.I.; Kandile, N.G.; Zaky, H.T. Synthesis and antimicrobial activity of 1,3,4-oxadiazole-2(3h)-thione and azidomethanone derivatives based on quinoline-4-carbohydrazide derivatives. J. Hetero. Chem., 2017, 54, 35-43.
[6]
Kotla, V.V.; Garlapati, R.; Rao, C.V. Synthesis of new triazole and oxadiazole derivatives of quinazolin-4(3H)-one and their antimicrobial activity. J. Heterocycl. Chem., 2016, 53, 719-726.
[7]
Aluva, S.; Komsani, J.R.; Koppireddi, S.; Yadla, R. Microwave-assisted synthesis of 6-(5-Aryl-1,3,4-oxadiazol-2-yl)methyl-6H-indolo[2,3-b]quinoxalines. J. Heterocycl. Chem., 2015, 52, 1737-1742.
[8]
Kumar, K.A.; Jayaroopa, P.; Kumar, G.V. Synthesis of 2, 5-disubstituted-1,3,4-oxadiazoles using ethyl oleate as precursor. Int. J. Chemtech Res., 2013, 4, 2516-2520.
[9]
Chandra, T.; Garg, N.; Lata, S.; Saxena, K.K.; Kumar, A. Synthesis of substituted acridinyl pyrazoline derivatives and their evaluation for anti-inflammatory activity. Eur. J. Med. Chem., 2010, 45(5), 1772-1776.
[10]
Ramachandran, V.; Arumugasamy, K.; Singh, S.K.; Edayadulla, N.; Ramesh, P.; Kamaraj, S.K. Synthesis, antibacterial studies, and molecular modeling studies of 3,4-dihydropyrimidinone compounds. J. Chem. Biol., 2015, 9(1), 31-40.
[11]
Jalali, M.; Mahdavi, M.; Memarian, H.R.; Ranjbar, M.; Soleymani, M.; Fassihi, A.; Abedi, D. Antimicrobial evaluation of some novel derivatives of 3,4-dihydropyrimidine-2(1H)-one. Res. Pharm. Sci., 2012, 7(4), 243-247.
[12]
Mostafa, Y.A.; Hussein, M.A.; Radwan, A.A. Kfafy, Ael-H. Synthesis and antimicrobial activity of certain new 1,2,4-triazolo[1,5-a]pyrimidine derivatives. Arch. Pharm. Res., 2008, 31(3), 279-293.
[13]
Moldoveanu, C.C.; Mangalagiu, I.I. 4-Methyl- and 4-(Halophenyl)pyrimidinium (4-Halo benzoyl)methylides. Correlation of structure, stability, reactivity, and biological activity. Helv. Chim. Acta, 2005, 88, 2747-2756.
[14]
Ungureanu, M.; Moldoveanu, C.C.; Poeata, A.; Drochioiu, G.; Petrovanu, M.; Mangalagiu, I.I. New pyrimidine derivatives endowed with antibacterial activity or fongistatic in vitro. Ann. Pharm. Fr., 2006, 64, 287-288.
[15]
Yun, J.; Kang, S.; Park, S.; Yoon, H. Kim, M-Jeong.; Heu, S.; Ryu, S. Characterization of a novel amylolytic enzyme encoded by a gene from a soil-derived metagenomic library. Appl. Environ. Microbiol., 2004, 70(12), 7229-7235.
[16]
Van veldhoven, J.P.D.; Chang, L.C.W.; Von, F.D.; Künzel, J.K.; Mulder-Krieger, T.; Struensee-Link, R.; Beukers, M.W.; Brussee, J.; IJzerman, A.P. 4-Methyl- and 4-(Halophenyl)pyrimidinium (4-Halobenzoyl)methylides. Correlation of structure, stability, reactivity, and biological activity. Bioorg. Med. Chem., 2008, 16, 2741-2752.
[17]
Chhabria, M.T.; Bhatt, H.G.; Raval, H.G.; Oza, P.M. Synthesis and biological evaluation of some 5-ethoxycarbonyl-6-isopropylamino-4-(substitutedphenyl)aminopyrimidines as potent analgesic and anti-inflammatory agents. Bioorg. Med. Chem. Lett., 2007, 17(4), 1022-1024.
[18]
Sayle, K.L.; Bentley, J.; Boyle, F.T.; Calvert, A.H.; Cheng, Y.; Curtin, N.J.; Endicott, J.A.; Golding, B.T.; Hardcastle, I.R.; Jewsbury, P.; Mesguiche, V.; Newell, D.R.; Noble, M.E.M.; Parsons, R.J.; Pratt, D.J.; Wang, L.Z.; Griffin, R.J. Structure-based design of 2-arylamino-4-cyclohexylmethyl-5-nitroso-6-aminopyrimidine inhibitors of cyclin-dependent kinases 1 and 2. Bioorg. Med. Chem. Lett., 2003, 13(18), 3079-3082.
[19]
Youssouf, M.S.; Kaiser, P.; Singh, G.D.; Singh, S.; Bani, S.; Gupta, V.K.; Satti, N.K.; Suri, K.A.; Johri, R.K. Anti-histaminic, anti-inflammatory and bronchorelaxant activities of 2, 7-dimethyl-3-nitro-4H pyrido [1,2-a] pyrimidine-4-one. Int. Immunopharmacol., 2008, 8(7), 1049-1055.
[20]
Gasse, C.; Douguet, D.; Huteau, V.; Marchal, G.; Munier-Lehmann, H.; Pochet, S. Substituted benzyl-pyrimidines targeting thymidine monophosphate kinase of Mycobacterium tuberculosis: synthesis and in vitro anti-mycobacterial activity. Bioorg. Med. Chem., 2008, 16(11), 6075-6085.
[21]
Rammohan, P.; Taradas, S.; Tapas, S. Improved microwave-induced synthesis of indolyl chalcones. Arch. Appl. Sci. Res., 2014, 6, 138-141.
[22]
Revathi, R.; Sree, C.R.; Jayakumar, R.; Visagaperumal, D.; Anbalagan, N. Microwave assisted synthesis and biological activity of certain 4-hydroxy chalcones. Pharmacophore., 2013, 4, 59-69.
[23]
Shweta, S.; Choudhary, P.C.; Intodia, K. Microwave irradiation synthesis of various substituted chalcones using various heterogeneous catalysts under solvent-free conditions and their biological studies. Chem. Sci. Trans., 2013, 2, 343-348.
[24]
Bijo, M.; Unnikirishnan, G.; Shafeer, V.P.; Mohammed, M.C.; Femina, P. Microwave assisted synthesis, physicochemical proper Pharma Chem., 2011, 3, 627-631.
[25]
Majumdar, P.; Pati, A.; Patra, M.; Behera, R.K.; Behera, A.K. Acid hydrazides, potent reagents for synthesis of oxygen-, nitrogen-, and/or sulfur-containing heterocyclic rings. Chem. Rev., 2014, 114(5), 2942-2977.
[26]
Giri, S.; Basavaraja, K.M. Synthesis of 3-methoxy-2-(1,3,4-oxadiazolyl,1,3,4-thiadiazolyl and 1,2,4- triazolyl)naphtho[2,1-b]furans of biological interest. J. Chem. Pharm. Res., 2012, 4, 2643-2648.
[27]
Rattan, A.; Churchill, B.I. Antimicrobials in laboratory medicine. In:Livingstone ; New Delhi, 2000, pp. 85-108.
[28]
Medical Microbiology 11th ed. ELBS and E & S., Living stone; Briton, 1970.
[29]
Anargyros, P.; Astill, D.S.; Lim, I.S. Comparison of improved BACTEC and Lowenstein-Jensen media for culture of mycobacteria from clinical specimens. J. Clin. Microbiol., 1990, 28(6), 1288-1291.
[30]
Shah, R.R.; Mehta, R.D.; Parikh, A.R. Studies on isoniazide derivatives: preparation and antimicrobial activity of 2-aryl-3- (pyridylcarbomyl)-5-carboxymethyl-4-thiazolidinones. J. Indian Chem. Soc., 1985, 62B, 255-257.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 6
ISSUE: 1
Year: 2019
Page: [61 - 70]
Pages: 10
DOI: 10.2174/2213335606666190724093305

Article Metrics

PDF: 21
HTML: 2
EPUB: 1

Special-new-year-discount