Generic placeholder image

Current Biochemical Engineering (Discontinued)

Editor-in-Chief

ISSN (Print): 2212-7119
ISSN (Online): 2212-7127

Review Article

Smart and Intelligent Stimuli Responsive Materials: An Innovative Step in Drug Delivery System

Author(s): Arijit Guha*, Md. Adil Shaharyar , Kazi Asraf Ali, Sanjit Kr. Roy and Ketousetuo Kuotsu

Volume 6, Issue 1, 2020

Page: [41 - 52] Pages: 12

DOI: 10.2174/2212711906666190723142057

Abstract

Background: In the field of drug delivery, smart and intelligent approaches have gained significant attention among researchers in order to improve the efficacy of conventional dosage forms. Material science has played a key role in developing these intelligent systems that can deliver therapeutic cargo on-demand. Stimuli responsive material based drug delivery systems have emerged as one of the most promising innovative tools for site-specific delivery. Several endogenous and exogenous stimuli have been exploited to devise “stimuli-responsive” materials for targeted drug delivery.

Methods: For better understanding, these novel systems have been broadly classified into two categories: Internally Regulated Systems (pH, ionic strength, glucose, enzymes, and endogenous receptors) and Externally Regulated Systems (Light, magnetic field, electric field, ultrasound, and temperature). This review has followed a systematic approach through separately describing the design, development, and applications of each stimuli-responsive system in a constructive manner.

Results: The development includes synthesis and characterization of each system, which has been discussed in a structured manner. From advantages to drawbacks, a detailed description has been included for each smart stimuli responsive material. For a complete review in this niche area of drug delivery, a wide range of therapeutic applications including recent advancement of these smart materials have been incorporated.

Conclusion: From the current scenario to future development, a precise overview of each type of system has been discussed in this article. In summary, it is expected that researchers working in this novel area will be highly benefited from this scientific review.

Keywords: Stimuli, cargo, endogenous, exogenous, therapeutic, Drug Delivery System.

Graphical Abstract
[1]
S.S. Davis, and L. Illum, "Long circulating microparticulate drug carriers", Int. J. Pharm., vol. 176, pp. 1-8, 1998.
[2]
C. Vauthier, and D. Labarre, "Modular biomimetic drug delivery systems", J. Drug Deliv. Sci. Technol., vol. 18, pp. 59-68, 2008.
[http://dx.doi.org/10.1016/S1773-2247(08)50008-6]
[3]
P. Aneja, M. Rahman, S. Beg, S. Aneja, V. Dhingra, and R. Chugh, "Cancer targeted magic bullets for effective treatment of cancer", Recent Pat. Antiinfect. Drug Discov., vol. 9, no. 2, pp. 121-135, 2014.
[http://dx.doi.org/10.2174/1574891X10666150415120506] [PMID: 25876849]
[4]
M. Rahman, M.Z. Ahmad, J. Ahmad, J. Firdous, F.J. Ahmad, G. Mushtaq, M.A. Kamal, and S. Akhter, "Role of graphene nano-composites in cancer therapy: theranostic applications, metabolic fate and toxicity issues", Curr. Drug Metab., vol. 16, no. 5, pp. 397-409, 2015.
[http://dx.doi.org/10.2174/1389200215666141125120633] [PMID: 25429670]
[5]
M.Z. Ahmad, S. Akhter, M. Anwar, A. Kumar, M. Rahman, A.H. Talasaz, and F.J. Ahmad, "Colorectal cancer targeted Irinotecan-Assam Bora rice starch based microspheres: A mechanistic, pharmacokinetic and biochemical investigation", Drug Dev. Ind. Pharm., vol. 39, no. 12, pp. 1936-1943, 2013.
[http://dx.doi.org/10.3109/03639045.2012.719906] [PMID: 23013140]
[6]
P. Pandey, M. Rahman, P.C. Bhatt, S. Beg, B. Paul, A. Hafeez, F.A. Al-Abbasi, M.S. Nadeem, O. Baothman, F. Anwar, and V. Kumar, "Implication of nano-antioxidant therapy for treatment of hepatocellular carcinoma using PLGA nanoparticles of rutin", Nanomedicine (Lond.), vol. 13, no. 8, pp. 849-870, 2018.
[http://dx.doi.org/10.2217/nnm-2017-0306] [PMID: 29565220]
[7]
B.B.C. Youan, "Chronopharmaceutics: Gimmick or clinically relevant approach to drug delivery?", J. Control. Release, vol. 98, no. 3, pp. 337-353, 2004.
[http://dx.doi.org/10.1016/j.jconrel.2004.05.015] [PMID: 15312991]
[8]
C. Alvarez-Lorenzo, and A. Concheiro, "Intelligent drug delivery systems: polymeric micelles and hydrogels", Mini Rev. Med. Chem., vol. 8, no. 11, pp. 1065-1074, 2008.
[http://dx.doi.org/10.2174/138955708785909952] [PMID: 18855723]
[9]
M. Rahman, S. Beg, A. Verma, I. Kazmi, D.K. Patel, F. Anwar, F.A. Al Abbasi, and V. Kumar, "Therapeutic applications of liposomal based drug delivery and drug targeting for immune linked inflammatory maladies: A contemporary view point", Curr. Drug Targets, vol. 18, no. 13, pp. 1558-1571, 2017.
[http://dx.doi.org/10.2174/1389450118666170414113926] [PMID: 28413980]
[10]
M. Rahman, V. Kumar, S. Beg, G. Sharma, O.P. Katare, and F. Anwar, "Emergence of liposome as targeted magic bullet for inflammatory disorders: current state of the art", Artif. Cells Nanomed. Biotechnol., vol. 44, no. 7, pp. 1597-1608, 2016.
[http://dx.doi.org/10.3109/21691401.2015.1129617] [PMID: 26758815]
[11]
C. Alvarez-Lorenzo, L. Bromberg, and A. Concheiro, "Light-sensitive intelligent drug delivery systems", Photochem. Photobiol., vol. 85, no. 4, pp. 848-860, 2009.
[http://dx.doi.org/10.1111/j.1751-1097.2008.00530.x] [PMID: 19222790]
[12]
T. Bartil, M. Bounekhel, C. Cedric, and R. Jeerome, "Swelling behavior and release properties of pH-sensitive hydrogels based on methacrylic derivatives", Acta Pharm., vol. 57, no. 3, pp. 301-314, 2007.
[http://dx.doi.org/10.2478/v10007-007-0024-6] [PMID: 17878110]
[13]
P. Gupta, K. Vermani, and S. Garg, "Hydrogels: from controlled release to pH-responsive drug delivery", Drug Discov. Today, vol. 7, no. 10, pp. 569-579, 2002.
[http://dx.doi.org/10.1016/S1359-6446(02)02255-9] [PMID: 12047857]
[14]
L.A. Klumb, and T.A. Horbett, "Design of insulin delivery devices based on glucose sensitive membranes", J. Control. Release, vol. 18, pp. 59-80, 1992.
[http://dx.doi.org/10.1016/0168-3659(92)90212-A]
[15]
B. Jeong, and A. Gutowska, "Lessons from nature: stimuli-responsive polymers and their biomedical applications", Trends Biotechnol., vol. 20, no. 7, pp. 305-311, 2002.
[http://dx.doi.org/10.1016/S0167-7799(02)01962-5] [PMID: 12062976]
[16]
J.E. Lasser, Y. Jiang, D. Sprouse, T.M. Reinke, and T.P. Lodge, "pH- and ionic-strength-induced contraction of polybasic micelles in buffered aqueous solutions", Macromolecules, vol. 48, pp. 2677-2685, 2015.
[http://dx.doi.org/10.1021/acs.macromol.5b00360]
[17]
T.C. Zion, H.H. Tsang, and J.Y. Ying, Glucose-sensitive nanoparticles for controlled insulin delivery", 2003. ‘Reference: Available from:, http://hdl.handle.net/1721.1/3783’
[18]
Q. Wu, L. Wang, H. Yu, J. Wang, and Z. Chen, "Organization of glucose-responsive systems and their properties", Chem. Rev., vol. 111, no. 12, pp. 7855-7875, 2011.
[http://dx.doi.org/10.1021/cr200027j] [PMID: 21902252]
[19]
T. Miyata, T. Uragami, and K. Nakamae, "Biomolecule-sensitive hydrogels", Adv. Drug Deliv. Rev., vol. 54, no. 1, pp. 79-98, 2002.
[http://dx.doi.org/10.1016/S0169-409X(01)00241-1] [PMID: 11755707]
[20]
G. Albin, T.A. Horbett, and B.D. Ratner, "Glucose sensitive membranes for controlled delivery of insulin: insulin transport studies", J. Control. Release, vol. 2, pp. 153-164, 1985.
[http://dx.doi.org/10.1016/0168-3659(85)90041-0]
[21]
V. Ravaine, C. Ancla, and B. Catargi, "Chemically controlled closed-loop insulin delivery", J. Control. Release, vol. 132, no. 1, pp. 2-11, 2008.
[http://dx.doi.org/10.1016/j.jconrel.2008.08.009] [PMID: 18782593]
[22]
L.M. Schwarte, and N.A. Peppas, "Novel poly(ethylene glycol)-grafted, cationic hydrogels: preparation, characterization and diffusive properties", Polymer (Guildf.), vol. 39, pp. 6057-6066, 1998.
[http://dx.doi.org/10.1016/S0032-3861(98)00087-1]
[23]
K. Podual, F.J. Doyle, and N.A. Peppas, "Preparation and dynamic response of cationic copolymer hydrogels containing glucose oxidase", Polymer (Guildf.), vol. 41, pp. 3975-3983, 2000.
[http://dx.doi.org/10.1016/S0032-3861(99)00620-5]
[24]
K. Podual, F.J. Doyle III, and N.A. Peppas, "Glucose-sensitivity of glucose oxidase-containing cationic copolymer hydrogels having poly(ethylene glycol) grafts", J. Control. Release, vol. 67, no. 1, pp. 9-17, 2000.
[http://dx.doi.org/10.1016/S0168-3659(00)00195-4] [PMID: 10773324]
[25]
K. Podual, F.J. Doyle III, and N.A. Peppas, "Dynamic behavior of glucose oxidase-containing microparticles of poly(ethylene glycol)-grafted cationic hydrogels in an environment of changing pH", Biomaterials, vol. 21, no. 14, pp. 1439-1450, 2000.
[http://dx.doi.org/10.1016/S0142-9612(00)00020-X] [PMID: 10872773]
[26]
V.L. Alexeev, A.C. Sharma, A.V. Goponenko, S. Das, I.K. Lednev, C.S. Wilcox, D.N. Finegold, S.A. Asher, and S.A. Asher, "High ionic strength glucose-sensing photonic crystal", Anal. Chem., vol. 75, no. 10, pp. 2316-2323, 2003.
[http://dx.doi.org/10.1021/ac030021m] [PMID: 12918972]
[27]
M.Z. Ahmad, S. Akhter, G.K. Jain, M. Rahman, S.A. Pathan, F.J. Ahmad, and R.K. Khar, "Metallic nanoparticles: technology overview & drug delivery applications in oncology", Expert Opin. Drug Deliv., vol. 7, no. 8, pp. 927-942, 2010.
[http://dx.doi.org/10.1517/17425247.2010.498473] [PMID: 20645671]
[28]
H. Park, J. Yang, J. Lee, S. Haam, I.H. Choi, and K.H. Yoo, "Multifunctional nanoparticles for combined doxorubicin and photothermal treatments", ACS Nano, vol. 3, no. 10, pp. 2919-2926, 2009.
[http://dx.doi.org/10.1021/nn900215k] [PMID: 19772302]
[29]
M.S. Yavuz, Y. Cheng, J. Chen, C.M. Cobley, Q. Zhang, M. Rycenga, J. Xie, C. Kim, K.H. Song, A.G. Schwartz, L.V. Wang, and Y. Xia, "Gold nanocages covered by smart polymers for controlled release with near-infrared light", Nat. Mater., vol. 8, no. 12, pp. 935-939, 2009.
[http://dx.doi.org/10.1038/nmat2564] [PMID: 19881498]
[30]
S. Akhter, Z. Ahmad, A. Singh, I. Ahmad, M. Rahman, M. Anwar, G.K. Jain, F.J. Ahmad, and R.K. Khar, "Cancer targeted metallic nanoparticle: Targeting overview, recent advancement and toxicity concern", Curr. Pharm. Des., vol. 17, no. 18, pp. 1834-1850, 2011.
[http://dx.doi.org/10.2174/138161211796391001] [PMID: 21568874]
[31]
M. Rahman, M.Z. Ahmad, I. Kazmi, S. Akhter, M. Afzal, G. Gupta, F. Jalees Ahmed, and F. Anwar, "Advancement in multifunctional nanoparticles for the effective treatment of cancer", Expert Opin. Drug Deliv., vol. 9, no. 4, pp. 367-381, 2012.
[http://dx.doi.org/10.1517/17425247.2012.668522] [PMID: 22400808]
[32]
Z. Zha, S. Zhang, Z. Deng, Y. Li, C. Li, and Z. Dai, "Enzyme-responsive copper sulphide nanoparticles for combined photoacoustic imaging, tumor-selective chemotherapy and photothermal therapy", Chem. Commun. (Camb.), vol. 49, no. 33, pp. 3455-3457, 2013.
[http://dx.doi.org/10.1039/c3cc40608c] [PMID: 23507786]
[33]
M. Rahman, M.Z. Ahmad, I. Kazmi, S. Akhter, M. Afzal, G. Gupta, and V.R. Sinha, "Emergence of nanomedicine as cancer targeted magic bullets: Recent development and need to address the toxicity apprehension", Curr. Drug Discov. Technol., vol. 9, no. 4, pp. 319-329, 2012.
[http://dx.doi.org/10.2174/157016312803305898] [PMID: 22725687]
[34]
M. Rahman, S. Beg, A. Ahmed, and S. Swain, "Emergence of functionalized nanomedicines in cancer chemotherapy: recent advancements, current challenges and toxicity considerations", Nanomedicine (Lond.), vol. 2, pp. 128-139, 2013.
[35]
M. Rahman, M.Z. Ahmed, and I. Kazmi, "Novel approach for the treatment of cancer: Theranosticnanomedicines", Pharmacologia, vol. 3, pp. 371-376, 2012.
[http://dx.doi.org/10.5567/pharmacologia.2012.371.376]
[36]
C. Park, H. Kim, S. Kim, and C. Kim, "Enzyme responsive nanocontainers with cyclodextrin gatekeepers and synergistic effects in release of guests", J. Am. Chem. Soc., vol. 131, no. 46, pp. 16614-16615, 2009.
[http://dx.doi.org/10.1021/ja9061085] [PMID: 19919132]
[37]
N. Singh, A. Karambelkar, L. Gu, K. Lin, J.S. Miller, C.S. Chen, M.J. Sailor, and S.N. Bhatia, "Bioresponsive mesoporous silica nanoparticles for triggered drug release", J. Am. Chem. Soc., vol. 133, no. 49, pp. 19582-19585, 2011.
[http://dx.doi.org/10.1021/ja206998x] [PMID: 21981330]
[38]
W. Guo, C. Yang, L. Cui, H. Lin, and F. Qu, "An enzyme-responsive controlled release system of mesoporous silica coated with Konjac oligosaccharide", Langmuir, vol. 30, no. 1, pp. 243-249, 2014.
[http://dx.doi.org/10.1021/la403494q] [PMID: 24380643]
[39]
G. Zhang, M. Yang, D. Cai, K. Zheng, X. Zhang, L. Wu, and Z. Wu, "Composite of functional mesoporous silica and DNA: An enzyme-responsive controlled release drug carrier system", ACS Appl. Mater. Interfaces, vol. 6, no. 11, pp. 8042-8047, 2014.
[http://dx.doi.org/10.1021/am502154w] [PMID: 24818529]
[40]
M. Han, X. Gao, J.Z. Su, and S. Nie, "Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules", Nat. Biotechnol., vol. 19, no. 7, pp. 631-635, 2001.
[http://dx.doi.org/10.1038/90228] [PMID: 11433273]
[41]
X. Gao, and S. Nie, "Quantum dot-encoded mesoporous beads with high brightness and uniformity: Rapid readout using flow cytometry", Anal. Chem., vol. 76, no. 8, pp. 2406-2410, 2004.
[http://dx.doi.org/10.1021/ac0354600] [PMID: 15080756]
[42]
J. Li, F. Liu, Q. Shao, Y. Min, M. Costa, E.K. Yeow, and B. Xing, "Enzyme-responsive cell-penetrating peptide conjugated mesoporous silica quantum dot nanocarriers for controlled release of nucleus-targeted drug molecules and real-time intracellular fluorescence imaging of tumor cells", Adv. Healthc. Mater., vol. 3, no. 8, pp. 1230-1239, 2014.
[http://dx.doi.org/10.1002/adhm.201300613] [PMID: 24550203]
[43]
Y. Qiu, and K. Park, "Environment-sensitive hydrogels for drug delivery", Adv. Drug Deliv. Rev., vol. 53, no. 3, pp. 321-339, 2001.
[http://dx.doi.org/10.1016/S0169-409X(01)00203-4] [PMID: 11744175]
[44]
P.K. Vemula, G.A. Cruikshank, J.M. Karp, and G. John, "Self-assembled prodrugs: an enzymatically triggered drug-delivery platform", Biomaterials, vol. 30, no. 3, pp. 383-393, 2009.
[http://dx.doi.org/10.1016/j.biomaterials.2008.09.045] [PMID: 18930313]
[45]
J. Ahmad, S. Akhter, M. Rizwanullah, S. Amin, M. Rahman, M.Z. Ahmad, M.A. Rizvi, M.A. Kamal, and F.J. Ahmad, "Nanotechnology-based inhalation treatments for lung cancer: state of the art", Nanotechnol. Sci. Appl., vol. 8, pp. 55-66, 2015.
[PMID: 26640374]
[46]
J. Ahmad, S. Amin, M. Rahman, R.A. Rub, M. Singhal, M.Z. Ahmad, Z. Rahman, R.T. Addo, F.J. Ahmad, G. Mushtaq, M.A. Kamal, and S. Akhter, "Solid matrix based lipidic nanoparticles in oral cancer chemotherapy: Applications and pharmacokinetics", Curr. Drug Metab., vol. 16, no. 8, pp. 633-644, 2015.
[http://dx.doi.org/10.2174/1389200216666150812122128] [PMID: 26264206]
[47]
M. Rahman, S. Akhter, M.Z. Ahmad, J. Ahmad, R.T. Addo, F.J. Ahmad, and C. Pichon, "Emerging advances in cancer nanotheranostics with graphene nanocomposites: opportunities and challenges", Nanomedicine (Lond.), vol. 10, no. 15, pp. 2405-2422, 2015.
[http://dx.doi.org/10.2217/nnm.15.68] [PMID: 26252175]
[48]
P. Vihinen, and V.M. Kähäri, "Matrix metalloproteinases in cancer: prognostic markers and therapeutic targets", Int. J. Cancer, vol. 99, no. 2, pp. 157-166, 2002.
[http://dx.doi.org/10.1002/ijc.10329] [PMID: 11979428]
[49]
C. Wong, T. Stylianopoulos, J. Cui, J. Martin, V.P. Chauhan, W. Jiang, Z. Popovic, R.K. Jain, M.G. Bawendi, and D. Fukumura, "Multistage nanoparticle delivery system for deep penetration into tumor tissue", Proc. Natl. Acad. Sci. USA, vol. 108, no. 6, pp. 2426-2431, 2011.
[http://dx.doi.org/10.1073/pnas.1018382108] [PMID: 21245339]
[50]
Y. Chau, R.F. Padera, N.M. Dang, and R. Langer, "Antitumor efficacy of a novel polymer-peptide-drug conjugate in human tumor xenograft models", Int. J. Cancer, vol. 118, no. 6, pp. 1519-1526, 2006.
[http://dx.doi.org/10.1002/ijc.21495] [PMID: 16187287]
[51]
M. Bae, S. Cho, J. Song, G.Y. Lee, K. Kim, J. Yang, K. Cho, S.Y. Kim, and Y. Byun, "Metalloprotease-specific poly(ethylene glycol) methyl ether-peptide-doxorubicin conjugate for targeting anticancer drug delivery based on angiogenesis", Drugs Exp. Clin. Res., vol. 29, no. 1, pp. 15-23, 2003.
[PMID: 12866360]
[52]
Y. Cui, Q. Xu, P.K. Chow, D. Wang, and C.H. Wang, "Transferrin-conjugated magnetic silica PLGA nanoparticles loaded with doxorubicin and paclitaxel for brain glioma treatment", Biomaterials, vol. 34, no. 33, pp. 8511-8520, 2013.
[http://dx.doi.org/10.1016/j.biomaterials.2013.07.075] [PMID: 23932498]
[53]
Z. Su, L. Xing, Y. Chen, Y. Xu, F. Yang, C. Zhang, Q. Ping, and Y. Xiao, "Lactoferrin-modified poly(ethylene glycol)-grafted BSA nanoparticles as a dual-targeting carrier for treating brain gliomas", Mol. Pharm., vol. 11, no. 6, pp. 1823-1834, 2014.
[http://dx.doi.org/10.1021/mp500238m] [PMID: 24779677]
[54]
V. Kumar, P.C. Bhatt, M. Rahman, G. Kaithwas, H. Choudhry, F.A. Al-Abbasi, F. Anwar, and A. Verma, "Fabrication, optimization, and characterization of umbelliferone β-D-galactopyranoside-loaded PLGA nanoparticles in treatment of hepatocellular carcinoma: in vitro and in vivo studies", Int. J. Nanomedicine, vol. 12, pp. 6747-6758, 2017.
[http://dx.doi.org/10.2147/IJN.S136629] [PMID: 28932118]
[55]
S. Murdan, "Electro-responsive drug delivery from hydrogels", J. Control. Release, vol. 92, no. 1-2, pp. 1-17, 2003.
[http://dx.doi.org/10.1016/S0168-3659(03)00303-1] [PMID: 14499181]
[56]
S.A. Agnihotri, R.V. Kulkarni, N.N. Mallikarjuna, P.V. Kulkarni, and T.M. Aminabhavi, "Electrically modulated transport of diclofenac salts through hydrogels of sodium alginate, carbopol, and their blend polymers", J. Appl. Polym. Sci., vol. 96, pp. 301-311, 2005.
[http://dx.doi.org/10.1002/app.21398]
[57]
T.L. Andresen, S.S. Jensen, and K. Jørgensen, "Advanced strategies in liposomal cancer therapy: problems and prospects of active and tumor specific drug release", Prog. Lipid Res., vol. 44, no. 1, pp. 68-97, 2005.
[http://dx.doi.org/10.1016/j.plipres.2004.12.001] [PMID: 15748655]
[58]
D. Lohmann, and K. Petrak, "Photoactivation and photocontrolled release of bioactive materials", Crit. Rev. Ther. Drug Carrier Syst., vol. 5, no. 4, pp. 263-320, 1989.
[PMID: 2653650]
[59]
J. Jiang, "Toward photocontrolled release using light-dissociable block copolymer micelles", Macromolecules, vol. 39, pp. 4633-4640, 2006.
[http://dx.doi.org/10.1021/ma060142z]
[60]
N. Normand, F. Valamanesh, M. Savoldelli, F. Mascarelli, D. BenEzra, Y. Courtois, and F. Behar-Cohen, "VP22 light controlled delivery of oligonucleotides to ocular cells in vitro and in vivo", Mol. Vis., vol. 11, pp. 184-191, 2005.
[PMID: 15761390]
[61]
R.F. Donnelly, "Drug delivery for topical photodynamic therapy: difficulties and novel solutions", Trends Cancer Res., vol. 2, pp. 1-20, 2006.
[62]
C.P. McCoy, C. Rooney, C.R. Edwards, D.S. Jones, and S.P. Gorman, "Light-triggered molecule-scale drug dosing devices", J. Am. Chem. Soc., vol. 129, no. 31, pp. 9572-9573, 2007.
[http://dx.doi.org/10.1021/ja073053q] [PMID: 17636919]
[63]
P. Juzenas, A. Juzeniene, O. Kaalhus, V. Iani, and J. Moan, "Noninvasive fluorescence excitation spectroscopy during application of 5-aminolevulinic acid in vivo", Photochem. Photobiol. Sci., vol. 1, no. 10, pp. 745-748, 2002.
[http://dx.doi.org/10.1039/b203459j] [PMID: 12656473]
[64]
J. Klohs, A. Wunder, and K. Licha, "Near-infrared fluorescent probes for imaging vascular pathophysiology", Basic Res. Cardiol., vol. 103, no. 2, pp. 144-151, 2008.
[http://dx.doi.org/10.1007/s00395-008-0702-7] [PMID: 18324370]
[65]
J. Chen, L. Keltner, J. Christophersen, F. Zheng, M. Krouse, A. Singhal, and S.S. Wang, "New technology for deep light distribution in tissue for phototherapy", Cancer J., vol. 8, no. 2, pp. 154-163, 2002.
[http://dx.doi.org/10.1097/00130404-200203000-00009] [PMID: 11999949]
[66]
D.E. Dolmans, D. Fukumura, and R.K. Jain, "Photodynamic therapy for cancer", Nat. Rev. Cancer, vol. 3, no. 5, pp. 380-387, 2003.
[http://dx.doi.org/10.1038/nrc1071] [PMID: 12724736]
[67]
B.C. Wilson, "Photodynamic therapy for cancer: principles", Can. J. Gastroenterol., vol. 16, no. 6, pp. 393-396, 2002.
[http://dx.doi.org/10.1155/2002/743109] [PMID: 12096303]
[68]
D.W. Hunt, "Rostaporfin (Miravant Medical Technologies)", IDrugs, vol. 5, no. 2, pp. 180-186, 2002.
[PMID: 12861479]
[69]
Y. Qiu, and K. Park, "Environment-sensitive hydrogels for drug delivery", Adv. Drug Deliv. Rev., vol. 53, no. 3, pp. 321-339, 2001.
[http://dx.doi.org/10.1016/S0169-409X(01)00203-4] [PMID: 11744175]
[70]
C. Park, K. Lee, and C. Kim, "Photoresponsive cyclodextrin-covered nanocontainers and their sol-gel transition induced by molecular recognition", Angew. Chem. Int. Ed. Engl., vol. 48, no. 7, pp. 1275-1278, 2009.
[http://dx.doi.org/10.1002/anie.200803880] [PMID: 19137522]
[71]
S. Son, E. Shin, and B.S. Kim, "Light-responsive micelles of spiropyran initiated hyperbranched polyglycerol for smart drug delivery", Biomacromolecules, vol. 15, no. 2, pp. 628-634, 2014.
[http://dx.doi.org/10.1021/bm401670t] [PMID: 24432713]
[72]
C.G. Morgan, E.W. Thomas, S.S. Sandhu, Y.P. Yianni, and A.C. Mitchell, "Light-induced fusion of liposomes with release of trapped marker dye is sensitised by photochromic phospholipid", Biochim. Biophys. Acta, vol. 903, no. 3, pp. 504-509, 1987.
[http://dx.doi.org/10.1016/0005-2736(87)90057-5] [PMID: 3663656]
[73]
D.H. Thompson, O.V. Gerasimov, J.J. Wheeler, Y. Rui, and V.C. Anderson, "Triggerable plasmalogen liposomes: improvement of system efficiency", Biochim. Biophys. Acta, vol. 1279, no. 1, pp. 25-34, 1996.
[http://dx.doi.org/10.1016/0005-2736(95)00210-3] [PMID: 8624357]
[74]
S.J. Leung, and M. Romanowski, "Light-activated content release from liposomes", Theranostics, vol. 2, no. 10, pp. 1020-1036, 2012.
[http://dx.doi.org/10.7150/thno.4847] [PMID: 23139729]
[75]
N. Fomina, J. Sankaranarayanan, and A. Almutairi, "Photochemical mechanisms of light-triggered release from nanocarriers", Adv. Drug Deliv. Rev., vol. 64, no. 11, pp. 1005-1020, 2012.
[http://dx.doi.org/10.1016/j.addr.2012.02.006] [PMID: 22386560]
[76]
R. Zhang, R. Yao, B. Ding, Y. Shen, S. Shui, L. Wang, Y. Li, X. Yang, and W. Tao, "Fabrication of upconverting hybrid nanoparticles for near-infrared light triggered drug release", Adv. Mater. Sci. Eng., vol. 2014, pp. 1-9, 2014.
[http://dx.doi.org/10.1155/2014/342184]
[77]
I.I. Slowing, B.G. Trewyn, S. Giri, and V.S.Y. Lin, "Mesoporous silica nanoparticles for drug delivery and biosensingapplications", Adv. Funct. Mater., vol. 17, pp. 1225-1236, 2007.
[http://dx.doi.org/10.1002/adfm.200601191]
[78]
Z.G. Forbes, B.B. Yellen, D.S. Halverson, G. Fridman, K.A. Barbee, and G. Friedman, "Validation of high gradient magnetic field based drug delivery to magnetizable implants under flow", IEEE Trans. Biomed. Eng.vol. 55, no. 2 Pt 1, pp. 643-649, 2008,
[http://dx.doi.org/10.1109/TBME.2007.899347] [PMID: 18270000]
[79]
P.K. Gupta, and C.T. Hung, "Magnetically controlled targeted micro-carrier systems", Life Sci., vol. 44, no. 3, pp. 175-186, 1989.
[http://dx.doi.org/10.1016/0024-3205(89)90593-6] [PMID: 2644506]
[80]
P. Lokwani, "Magnetic particles for drug delivery: an overview", Int. J. Res. Pharm. Biomed. Sci., vol. 2, pp. 465-473, 2011.
[81]
J.P. Dailey, J.P. Phillips, C. Li, and J.S. Riffle, "Synthesis of silicone magnetic fluid for use in eye surgery", J. Magn. Magn. Mater., vol. 194, pp. 140-148, 1999.
[http://dx.doi.org/10.1016/S0304-8853(98)00562-9]
[82]
M.O. Avilés, J.O. Mangual, A.D. Ebner, and J.A. Ritter, "Isolated swine heart ventricle perfusion model for implant assisted-magnetic drug targeting", Int. J. Pharm., vol. 361, no. 1-2, pp. 202-208, 2008.
[http://dx.doi.org/10.1016/j.ijpharm.2008.05.027] [PMID: 18573319]
[83]
Y. Liu, K. Yan, G. Jiang, Y. Xiong, Y. Du, and X. Shi, "Electrical signal guided ibuprofen release from electrodeposited chitosan hydrogel", Int. J. Polym. Sci., vol. 2014, pp. 1-8, 2014.
[84]
R. Farra, N.F. Sheppard Jr, L. McCabe, R.M. Neer, J.M. Anderson, J.T. Santini Jr, M.J. Cima, and R. Langer, "First-in-human testing of a wirelessly controlled drug delivery microchip", Sci. Transl. Med.vol. 4, no. 122, 2012.122ra21,
[http://dx.doi.org/10.1126/scitranslmed.3003276] [PMID: 22344516]
[85]
J.H. Prescott, S. Lipka, S. Baldwin, N.F. Sheppard Jr, J.M. Maloney, J. Coppeta, B. Yomtov, M.A. Staples, and J.T. Santini Jr, "Chronic, programmed polypeptide delivery from an implanted, multireservoir microchip device", Nat. Biotechnol., vol. 24, no. 4, pp. 437-438, 2006.
[http://dx.doi.org/10.1038/nbt1199] [PMID: 16531991]
[86]
S. Ramanathan, and L.H. Block, "The use of chitosan gels as matrices for electrically-modulated drug delivery", J. Control. Release, vol. 70, no. 1-2, pp. 109-123, 2001.
[http://dx.doi.org/10.1016/S0168-3659(00)00333-3] [PMID: 11166412]
[87]
M. Jensen, P. Birch Hansen, S. Murdan, S. Frokjaer, and A.T. Florence, "Loading into and electro-stimulated release of peptides and proteins from chondroitin 4-sulphate hydrogels", Eur. J. Pharm. Sci., vol. 15, no. 2, pp. 139-148, 2002.
[http://dx.doi.org/10.1016/S0928-0987(01)00193-2] [PMID: 11849910]
[88]
S.J. Kim, S.J. Park, I.Y. Kim, M.S. Shin, and S.I. Kim, "Electric stimuli responses to Poly (vinyl alcohol)chitosan interpenetrating polymer network hydrogel in NaCl Solution", J. Appl. Polym. Sci., vol. 86, pp. 2285-2289, 2002.
[http://dx.doi.org/10.1002/app.11215]
[89]
A.K. Bajpai, J. Bajpai, and S.N. Soni, "Preparation and characterization of electricallyconducted composites of poly (vinyl alcohol)-g-poly (acrylic acid) hydrogelsimpregnated withpolyaniline (PANI)", ExpPolymLett., vol. 7, pp. 26-29, 2008.
[90]
Y. Kawabata, T. Itaya, Y. Sasaki, H. Ochiai, K. Ueda, and A. Imamura, "Effects of polyelectrolytes on the complexation between pyrenesulfonate and anthraquinonesulfonate ions", Polym. J., vol. 27, pp. 542-546, 1995.
[http://dx.doi.org/10.1295/polymj.27.542]
[91]
H. Brondsted, and J. Kopecek, "pH-sensitive hydrogels in Polyelectrolyte Gels: Characteristic and potential in drug delivery. In: Polyelectrolyte Gels: Properties, Preparations and applications, ACS Symposium Series 480, R. S. Harland, R. K. Prudhomme (Eds), Am Chem. Soc.: Washington DC: .,1992, pp. 285-304",
[92]
S.L. Mulvagh, A.N. DeMaria, S.B. Feinstein, P.N. Burns, S. Kaul, J.G. Miller, M. Monaghan, T.R. Porter, L.J. Shaw, and F.S. Villanueva, "Contrast echocardiography: current and future applications", J. Am. Soc. Echocardiogr., vol. 13, no. 4, pp. 331-342, 2000.
[http://dx.doi.org/10.1067/mje.2000.105462] [PMID: 10756254]
[93]
C. Zhu, S. He, M. Shan, and J. Chen, "Study of a peak in cavitation activity from HIFU exposures using TA fluorescence", Ultrasonics.vol. 44, Suppl. 1, pp. e349-e351, 2006,
[http://dx.doi.org/10.1016/j.ultras.2006.07.016] [PMID: 16945397]
[94]
E.G. Schutt, D.H. Klein, R.M. Mattrey, and J.G. Riess, "Injectable microbubbles as contrast agents for diagnostic ultrasound imaging: the key role of perfluorochemicals", Angew. Chem. Int. Ed. Engl., vol. 42, no. 28, pp. 3218-3235, 2003.
[http://dx.doi.org/10.1002/anie.200200550] [PMID: 12876730]
[95]
A.H. Myrset, H. Nicolaysen, K. Toft, C. Christiansen, and T. Skotland, "Structure and organization of albumin molecules forming the shell of air-filled microspheres: evidence for a monolayer of albumin molecules of multiple orientations stabilizing the enclosed air", Biotechnol. Appl. Biochem., vol. 24, no. 2, pp. 145-153, 1996.
[PMID: 8865606]
[96]
Y. Wang, X. Li, Y. Zhou, P. Huang, and Y. Xu, "Preparation of nanobubbles for ultrasound imaging and intracelluar drug delivery", Int. J. Pharm., vol. 384, no. 1-2, pp. 148-153, 2010.
[http://dx.doi.org/10.1016/j.ijpharm.2009.09.027] [PMID: 19781609]
[97]
L. Du, Y. Jin, W. Zhou, and J. Zhao, "Ultrasound-triggered drug release and enhanced anticancer effect of doxorubicin-loaded poly(D,L-lactide-co-glycolide)-methoxy-poly(ethylene glycol) nanodroplets", Ultrasound Med. Biol., vol. 37, no. 8, pp. 1252-1258, 2011.
[http://dx.doi.org/10.1016/j.ultrasmedbio.2011.05.012] [PMID: 21683513]
[98]
N.Y. Rapoport, A.M. Kennedy, J.E. Shea, C.L. Scaife, and K.H. Nam, "Controlled and targeted tumor chemotherapy by ultrasound-activated nanoemulsions/microbubbles", J. Control. Release, vol. 138, no. 3, pp. 268-276, 2009.
[http://dx.doi.org/10.1016/j.jconrel.2009.05.026] [PMID: 19477208]
[99]
R. Bekeredjian, S. Chen, P.A. Frenkel, P.A. Grayburn, and R.V. Shohet, "Ultrasound-targeted microbubble destruction can repeatedly direct highly specific plasmid expression to the heart", Circulation, vol. 108, no. 8, pp. 1022-1026, 2003.
[http://dx.doi.org/10.1161/01.CIR.0000084535.35435.AE] [PMID: 12912823]
[100]
S. Chen, R.V. Shohet, R. Bekeredjian, P. Frenkel, and P.A. Grayburn, "Optimization of ultrasound parameters for cardiac gene delivery of adenoviral or plasmid deoxyribonucleic acid by ultrasound-targeted microbubble destruction", J. Am. Coll. Cardiol., vol. 42, no. 2, pp. 301-308, 2003.
[http://dx.doi.org/10.1016/S0735-1097(03)00627-2] [PMID: 12875768]
[101]
P.E. Huber, and P. Pfisterer, "In vitro and in vivo transfection of plasmid DNA in the Dunning prostate tumor R3327-AT1 is enhanced by focused ultrasound", Gene Ther., vol. 7, no. 17, pp. 1516-1525, 2000.
[http://dx.doi.org/10.1038/sj.gt.3301242] [PMID: 11001372]
[102]
R.W. Niven, K.L. Whitcomb, L. Shaner, A.Y. Ip, and O.B. Kinstler, "The pulmonary absorption of aerosolized and intratracheally instilled rhG-CSF and mono PEGylated rhG-CSF", Pharm. Res., vol. 12, no. 9, pp. 1343-1349, 1995.
[http://dx.doi.org/10.1023/A:1016281925554] [PMID: 8570533]
[103]
K. Dusek, and D. Patterson, "Transition on swollen polymer networks induced by intramolecular condensation", Polym. Phys., vol. 6, pp. 1209-1216, 1968.
[http://dx.doi.org/10.1002/pol.1968.160060701]
[104]
T. Tanaka, "Collapse of gels and the critical endpoint", Phys. Rev. Lett., vol. 40, pp. 820-903, .
[http://dx.doi.org/10.1103/PhysRevLett.40.820]
[105]
A.K. Bajpai, S.K. Shukla, S. Bhanu, and S. Kankane, "Responsive polymers in controlled drug delivery", Prog. Polym. Sci., vol. 33, pp. 1088-1118, 2008.
[http://dx.doi.org/10.1016/j.progpolymsci.2008.07.005]
[106]
Y. Lua, and M. Ballauff, "Thermosensitive core–shell microgels: From colloidal model systems to nanoreactors", Prog. Polym. Sci., vol. 36, pp. 767-792, 2011.
[http://dx.doi.org/10.1016/j.progpolymsci.2010.12.003]
[107]
M. Prabaharan, and J.F. Mano, "Stimuli-responsive hydrogels based on polysaccharides incorporated with thermo-responsive polymers as novel biomaterials", Macromol. Biosci., vol. 6, no. 12, pp. 991-1008, 2006.
[http://dx.doi.org/10.1002/mabi.200600164] [PMID: 17128423]
[108]
M.R. Aguilar, C. Elvira, A. Gallardo, B. Vázquez, and J.S. Román, "Smart polymers and their applications as biomaterials", Topics Tissue Eng, vol. 3, pp. 1-27, 2007.
[109]
M. Heskins, and J.E. Guillet, "Solution properties of poly (N-isopropyl acrylamide)", J. Macromol. Sci. Chem., vol. 2, pp. 1441-1455, 1968.
[http://dx.doi.org/10.1080/10601326808051910]
[110]
F. Ilmain, T. Tanaka, and E. Kokufuta, "Volume transition in a gel driven by hydrogen bonding", Nature, vol. 349, pp. 400-401, 1991.
[http://dx.doi.org/10.1038/349400a0]
[111]
K. Kono, "Thermosensitive polymer-modified liposomes", Adv. Drug Deliv. Rev., vol. 53, no. 3, pp. 307-319, 2001.
[http://dx.doi.org/10.1016/S0169-409X(01)00204-6] [PMID: 11744174]
[112]
Y.H. Bae, T. Okano, R. Hsu, and S.W. Kim, "Thermo-sensitive polymers as on-off switches for drug release", Die MakromolekulareChemie, Rapid Commun., vol. 8, pp. 481-485, 1987.
[http://dx.doi.org/10.1002/marc.1987.030081002]
[113]
H.A. von Recum, S.W. Kim, A. Kikuchi, M. Okuhara, Y. Sakurai, and T. Okano, "Novel thermally reversible hydrogel as detachable cell culture substrate", J. Biomed. Mater. Res., vol. 40, no. 4, pp. 631-639, 1998.
[http://dx.doi.org/10.1002/(SICI)1097-4636(19980615)40:4] [PMID: 9599040]
[114]
E.S. Ron, and L.E. Bromberg, "Temperature-responsive gels and thermogelling polymer matrices for protein and peptide delivery", Adv. Drug Deliv. Rev., vol. 31, no. 3, pp. 197-221, 1998.
[http://dx.doi.org/10.1016/S0169-409X(97)00121-X] [PMID: 10837626]

© 2024 Bentham Science Publishers | Privacy Policy