Alcohol-mediated Reduction of Biomass-derived Furanic Aldehydes via Catalytic Hydrogen Transfer

Author(s): Yufei Xu, Jingxuan Long, Jian He, Hu Li*.

Journal Name: Current Organic Chemistry

Volume 23 , Issue 20 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

With the depletion of fossil energy, liquid biofuels are becoming one of the effective alternatives to replace fossil fuels. The catalytic transfer and hydrogenation of biomass-based furanic compounds into fuels and value-added chemicals has become a spotlight in this field. Gas hydrogen is often used as the H-donor for the hydrogenation reactions. It is a very straightforward and simple method to implement, but sometimes it comes with the danger of operation and the difficulty of regulation. In recent years, diverse liquid hydrogen donor reagents have been employed in the catalytic transfer hydrogenation (CTH) of biomass. Amongst those H-donors, alcohol is a kind of green and benign reagent that has been used in different biomass conversion reactions. This type of reagent is very convenient to use, and the involved operation process is safe, as compared to that of H2. In this review, the application of alcohols as liquid H-donors in the catalytic transfer hydrogenation of biomass-derived furanic compounds is depicted, and the representative reaction mechanisms are discussed. Emphasis is also laid on the selective control of product distribution in the described catalytic systems.

Keywords: Biomass conversion, furanic compounds, biofuels, liquid H-donor, catalytic transfer hydrogenation (CTH), alcohols.

[1]
Valekar, A.H.; Cho, K.H.; Chitale, S.K.; Hong, D.Y.; Cha, G.Y.; Lee, U.H.; Hwang, D.W.; Serre, C.; Chang, J.S.; Hwang, Y.K. Catalytic transfer hydrogenation of ethyl levulinate to γ-valerolactone over zirconium-based metal-organic frameworks. Green Chem., 2016, 18, 4542-4552.
[http://dx.doi.org/10.1039/C6GC00524A]
[2]
Luque, R. Catalytic biomass processing: Prospects in future biorefineries. Curr. Green Chem., 2015, 2, 90-95.
[http://dx.doi.org/10.2174/2213346101666141017231115]
[3]
Corma, A.; Iborra, S.; Velty, A. Chemical routes for the transformation of biomass into chemicals. Chem. Rev., 2007, 107(6), 2411-2502.
[http://dx.doi.org/10.1021/cr050989d] [PMID: 17535020]
[4]
Chheda, J.N.; Huber, G.W.; Dumesic, J.A. Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals. Angew. Chem. Int. Ed. Engl., 2007, 46(38), 7164-7183.
[http://dx.doi.org/10.1002/anie.200604274] [PMID: 17659519]
[5]
Qian, Y.; Zhu, L. Wang, Yue.; Lu, X. Recent progress in the development of biofuel 2, 5-dimethylfuran. Renew. Sustain. Energy Rev., 2015, 41, 633-646.
[http://dx.doi.org/10.1016/j.rser.2014.08.085]
[6]
Field, C.B.; Campbell, J.E.; Lobell, D.B. Biomass energy: The scale of the potential resource. Trends Ecol. Evol. (Amst.), 2008, 23(2), 65-72.
[http://dx.doi.org/10.1016/j.tree.2007.12.001] [PMID: 18215439]
[7]
Huber, G.W.; Corma, A. Synergies between bio- and oil refineries for the production of fuels from biomass. Angew. Chem. Int. Ed. Engl., 2007, 46(38), 7184-7201.
[http://dx.doi.org/10.1002/anie.200604504] [PMID: 17610226]
[8]
Liu, C.M.; Wu, S.Y. From biomass waste to biofuels and biomaterial building blocks. Renew. Energ, 2016, 96, 1056-1062.
[http://dx.doi.org/10.1016/j.renene.2015.12.059]
[9]
Serrano-Ruiz, J.C.; Luque, R.; Sepúlveda-Escribano, A. Transformations of biomass-derived platform molecules: from high added-value chemicals to fuels via aqueous-phase processing. Chem. Soc. Rev., 2011, 40(11), 5266-5281.
[http://dx.doi.org/10.1039/c1cs15131b] [PMID: 21713268]
[10]
Panwar, N.L.; Kothari, R.; Tyagi, V.V. Thermo chemical conversion of biomass-Eco friendly energy routes. Renew. Sustain. Energy Rev., 2012, 16, 1801-1816.
[http://dx.doi.org/10.1016/j.rser.2012.01.024]
[11]
Nakagawa, Y.; Tamura, M.; Tomishige, K. Catalytic reduction of biomass-derived furanic compounds with hydrogen. ACS Catal., 2013, 3, 2655-2668.
[http://dx.doi.org/10.1021/cs400616p]
[12]
Ras, E-J.; McKay, B.; Rothenberg, G. Understanding catalytic biomass conversion through data mining. Top. Catal., 2010, 53, 1202-1208.
[http://dx.doi.org/10.1007/s11244-010-9563-z]
[13]
Binder, J.B.; Raines, R.T. Simple chemical transformation of lignocellulosic biomass into furans for fuels and chemicals. J. Am. Chem. Soc., 2009, 131(5), 1979-1985.
[http://dx.doi.org/10.1021/ja808537j] [PMID: 19159236]
[14]
Brieger, G.; Nestrick, T.J. Catalytic transfer hydrogenation. Chem. Rev., 1974, 74, 567-580.
[http://dx.doi.org/10.1021/cr60291a003]
[15]
Gilkey, M.J.; Xu, B. Heterogeneous catalytic transfer hydrogenation as an effective pathway in biomass upgrading. ACS Catal., 2016, 6, 1420-1436.
[http://dx.doi.org/10.1021/acscatal.5b02171]
[16]
Besson, M.; Gallezot, P.; Pinel, C. Conversion of biomass into chemicals over metal catalysts. Chem. Rev., 2014, 114(3), 1827-1870.
[http://dx.doi.org/10.1021/cr4002269] [PMID: 24083630]
[17]
Liu, B.; Zhang, Z. One-pot conversion of carbohydrates into furan derivatives via furfural and 5-hydroxylmethylfurfural as intermediates. ChemSusChem, 2016, 9(16), 2015-2036.
[http://dx.doi.org/10.1002/cssc.201600507] [PMID: 27396713]
[18]
Antunes, M.M.; Lima, S.; Neves, P.; Magalhães, A.L.; Fazio, E.; Neri, F.; Pereira, M.T.; Silva, A.F.; Silva, C.M.; Rocha, S.M.; Pillinger, M.; Urakawa, A.; Valente, A.A. Integrated reduction and acid-catalysed conversion of furfural in alcohol medium using Zr, Al-containing ordered micro/mesoporous silicates. Appl. Catal. B, 2016, 182, 485-503.
[http://dx.doi.org/10.1016/j.apcatb.2015.09.053]
[19]
Li, H.; Fang, Z.; Smith, R.L., Jr; Yang, S. Efficient valorization of biomass to biofuels with bifunctional solid catalytic materials. Pror. Energy Combust. Sci., 2016, 55, 98-194.
[http://dx.doi.org/10.1016/j.pecs.2016.04.004]
[20]
Prasertsab, A.; Maihom, T.; Probst, M.; Wattanakit, C.; Limtrakul, J. Maihom, Thana.; Probst, M.; Wattanakit, C.; Limtrakul, J. Furfural to furfuryl alcohol: Computational study of the hydrogen transfer on Lewis acidic BEA zeolites and effects of cation exchange and tetravalent metal substitution. Inorg. Chem., 2018, 57(11), 6599-6605.
[http://dx.doi.org/10.1021/acs.inorgchem.8b00741] [PMID: 29767963]
[21]
Johnstone, R.A.; Wilby, A.H.; Entwistle, I.D. Heterogeneous catalytic transfer hydrogenation and its relation to other methods for reduction of organic compounds. Chem. Rev., 1985, 85, 129-170.
[http://dx.doi.org/10.1021/cr00066a003]
[22]
Song, J.; Zhou, B.; Liu, H.; Xie, C.; Meng, Q.; Zhang, Z.; Han, B. Biomass-derived γ-valerolactone as an efficient solvent and catalyst for the transformation of CO2 to formamides. Green Chem., 2016, 18, 3956-3961.
[http://dx.doi.org/10.1039/C6GC01455K]
[23]
Wang, X.; Qiu, Z.; Liu, Q.; Chen, X.; Tao, S.; Shi, C.; Pang, M.; Liang, C. Heterogeneous catalytic transfer partial-hydrogenation with formic acid as hydrogen source over the schif-base modiied gold nano-catalyst. Catal. Lett., 2017, 147, 517-524.
[http://dx.doi.org/10.1007/s10562-016-1929-9]
[24]
Nagaraja, B.M.; Siva, K.V.; Shasikala, V.; Padmasri, A.H.; Sreedhar, B.; David, R.B.; Rama, R.K.S. A highly efficient Cu/MgO catalyst for vapour phase hydrogenation of furfural to furfuryl alcohol. Catal. Commun., 2003, 4, 287-293.
[http://dx.doi.org/10.1016/S1566-7367(03)00060-8]
[25]
Román-Leshkov, Y.; Chheda, J.N.; Dumesic, J.A. Phase modifiers promote efficient production of hydroxymethylfurfural from fructose. Science, 2006, 312(5782), 1933-1937.
[http://dx.doi.org/10.1126/science.1126337] [PMID: 16809536]
[26]
Li, H.; He, J.; Riisager, A.; Saravanamurugan, S.; Song, B.; Yang, S. Acid-base bifunctional zirconium N-alkyltriphosphate nanohybrid for hydrogen transfer of biomass-derived carboxides. ACS Catal., 2016, 6, 7722-7727.
[http://dx.doi.org/10.1021/acscatal.6b02431]
[27]
Mostafazadeh, A.K.; Solomatnikova, O.; Drogui, P.; Tyagi, R.D. A review of recent research and developments in fast pyrolysis and bio-oil upgrading. Biomass. Conv. Bioref, 2018, 8, 739-773.
[http://dx.doi.org/10.1007/s13399-018-0320-z]
[28]
Brand, S.; Kim, J. Liquefaction of major lignocellulosic biomass constituents in supercritical ethanol. Energy, 2015, 80, 64-74.
[http://dx.doi.org/10.1016/j.energy.2014.11.043]
[29]
Brand, S.; Susanti, R.F.; Kim, S.K.; Lee, H. Kim, Jaehoon.; Sang, B. Supercritical ethanol as an enhanced medium for lignocellulosic biomass liquefaction: Influence of physical process parameters. Energy, 2013, 59, 173-182.
[http://dx.doi.org/10.1016/j.energy.2013.06.049]
[30]
Hu, L.; Lin, Lu.; Liu, S. Chemoselective hydrogenation of biomass-derived 5-hydroxymethylfurfural into the liquid biofuel 2,5-dimethylfuran. Ind. Eng. Chem. Res., 2014, 53, 9969-9978.
[http://dx.doi.org/10.1021/ie5013807]
[31]
Tang, X.; Wei, J.; Ding, N.; Sun, Y.; Zeng, X.; Hu, L.; Liu, S.; Lei, T.; Lin, L. Chemoselective hydrogenation of biomass derived 5-hydroxymethyl-furfural to diols: Key intermediates for sustainable chemicals, materials and fuels. Renew. Sustain. Energy Rev., 2017, 77, 287-296.
[http://dx.doi.org/10.1016/j.rser.2017.04.013]
[32]
Olah, G.A. Beyond oil and gas: The methanol economy. Angew. Chem. Int. Ed. Engl., 2005, 44(18), 2636-2639.
[http://dx.doi.org/10.1002/anie.200462121] [PMID: 15800867]
[33]
Taylor, C.E.; Howard, B.H.; Myers, C.R. Methanol conversion for the production of hydrogen. Ind. Eng. Chem. Res., 2007, 46, 8906-8909.
[http://dx.doi.org/10.1021/ie061307v]
[34]
Phan, X.K.; Bakhtiary, H.D. Myrstad, Rune.; Thormann, Janina.; Pfeifer, Peter.; Venvik, H.J.; Holmen, A. Preparation and performance of a catalyst-coated stacked foil microreactor for the methanol synthesis. Ind. Eng. Chem. Res., 2010, 49, 10934-10941.
[http://dx.doi.org/10.1021/ie1005405]
[35]
Li, W.Y.; Li, Z.; Xie, K.C. The development of methanol industry and methanol fuel in China. Energy Source. Part A, 2009, 31, 1673-1679.
[http://dx.doi.org/10.1080/15567030903021996]
[36]
Wyman, C.E. Economic fundamentals of ethanol production from lignocellulosic biomass. ACS Symposium Series, 1995, 618, pp. 272-290.
[37]
Farrell, A.E.; Plevin, R.J.; Turner, B.T.; Jones, A.D.; O’Hare, M.; Kammen, D.M. Ethanol can contribute to energy and environmental goals. Science, 2006, 311(5760), 506-508.
[http://dx.doi.org/10.1126/science.1121416] [PMID: 16439656]
[38]
Chen, L.; Chen, R.; Fu, S. FeCl3 pretreatment of three lignocellulosic biomass for ethanol production. ACS Sustain. Chem.& Eng., 2015, 3, 1794-1800.
[http://dx.doi.org/10.1021/acssuschemeng.5b00377]
[39]
Kawamura, M.S.; Ronconi, D.P.; Yoshizaki, H. Optimizing transportation and storage of final products in the sugar and ethanol industry: A case study. Int. Trans. Oper. Res., 2006, 13, 425-439.
[http://dx.doi.org/10.1111/j.1475-3995.2006.00556.x]
[40]
Wang, S-J.; Wong, D.S.H. Control of reactive distillation production of high-purity isopropanol. J. Process Contr., 2006, 16, 385-394.
[http://dx.doi.org/10.1016/j.jprocont.2005.06.015]
[41]
Dynamic model for isopropanol production by Cupriavidus necator. IFAC Proceedings., 2014, 47, 4388-4393.
[42]
Kusakabe, T.; Tatsuke, T.; Tsuruno, K.; Hirokawa, Y.; Atsumi, S.; Liao, J.C.; Hanai, T. Engineering a synthetic pathway in cyanobacteria for isopropanol production directly from carbon dioxide and light. Metab. Eng., 2013, 20, 101-108.
[http://dx.doi.org/10.1016/j.ymben.2013.09.007] [PMID: 24076145]
[43]
Alptekin, E. Evaluation of ethanol and isopropanol as additives with diesel fuel in a CRDI diesel engine. Fuel, 2017, 205, 161-172.
[http://dx.doi.org/10.1016/j.fuel.2017.05.076]
[44]
Nikulin, A.; Khliyeva, O.; Lukianov, N.; Zhelezny, V.; Semenyuk, Y. Study of pool boiling process for the refrigerant R11, isopropanol and isopropanol/Al2O3 nanofluid. Int. J. Heat Mass Tran., 2018, 118, 746-757.
[http://dx.doi.org/10.1016/j.biortech.2019.121965]
[45]
Walther, T.; François, J.M. Microbial production of propanol. Biotechnol. Adv., 2016, 34(5), 984-996.
[http://dx.doi.org/10.1016/j.biotechadv.2016.05.011] [PMID: 27262999]
[46]
Han, C.; Yao, Y.; Lv, S.; Wu, Y.; Lu, A.; Yan, C.; Liu, Y.; Luo, X.; Ni, X. Study on the components of isopropanol aqueous solution. Optik (Stuttg.), 2018, 155, 307-314.
[http://dx.doi.org/10.1016/j.ijleo.2017.10.164]
[47]
Jin, C.; Pang, X.; Zhang, X.; Wu, S.; Ma, M.; Xiang, Y.; Ma, J.; Ji, J.; Wang, G.; Liu, H. Effects of C3-C5 alcohols on solubility of alcohols/diesel blends. Fuel, 2019, 236, 65-74.
[http://dx.doi.org/10.1016/j.fuel.2018.08.129]
[48]
Dürre, P. Biobutanol: An attractive biofuel. Biotechnol. J., 2007, 2(12), 1525-1534.
[http://dx.doi.org/10.1002/biot.200700168] [PMID: 17924389]
[49]
Lee, S.Y.; Park, J.H.; Jang, S.H.; Nielsen, L.K.; Kim, J.; Jung, K.S. Fermentative butanol production by Clostridia. Biotechnol. Bioeng., 2008, 101(2), 209-228.
[http://dx.doi.org/10.1002/bit.22003] [PMID: 18727018]
[50]
Fernández-Naveira, Á.; Veiga, M.C.; Kennes, C.H-B-E. (hexanol-butanol-ethanol) fermentationfor the production of higher alcohols from syngas/waste gas. J. Chem. Technol. Biotechnol., 2017, 92, 712-731.
[http://dx.doi.org/10.1002/jctb.5194]
[51]
Musser, M.T. Cyclohexanol and Cyclohexanone. In: Ullmann's Encyclopedia of Industrial Chemistry; , 2011.
[52]
Kumar, R.; Katariya, A.; Freund, H.; Sundmacher, K. Development of a novel catalytic distillation process for cyclohexanol production mini plant experiments and complementary process simulations. Org. Process Res. Dev., 2011, 15, 527-539.
[http://dx.doi.org/10.1021/op1001879]
[53]
Sun, D.; Sato, S.; Ueda, W.; Primo, A.; Garcia, H.; Corma, A. Production of C4 and C5 alcohols from biomass-derived materials. Green Chem., 2016, 18, 2579-2597.
[http://dx.doi.org/10.1039/C6GC00377J]
[54]
Li, X.; Jia, P.; Wang, T. Furfural: a promising platform compound for sustainable production of C4 and C5 chemicals. ACS Catal., 2016, 6, 7621-7640.
[http://dx.doi.org/10.1021/acscatal.6b01838]
[55]
Li, H.; Riisager, A.; Saravanamurugan, S.; Pandey, A.; Sangwan, R.S.; Yang, S.; Luque, R. Carbon-increasing catalytic strategies for upgrading biomass into energy-intensive fuels and chemicals. ACS Catal., 2018, 8, 148-187.
[http://dx.doi.org/10.1021/acscatal.7b02577]
[56]
Chang, H.; Motagamwala, A.H.; Huber, G.W.; Dumesic, J.A. Synthesis of biomass-derived feedstocks for the polymers and fuels industries from 5-(hydroxymethyl) furfural (HMF) and acetone. Green Chem., 2019, 21, 5532-5540.
[http://dx.doi.org/10.1039/C9GCO1859J]
[57]
Bozell, J.J.; Petersen, G.R. Technology development for the production of biobased products from biorefinery carbohydrates-the US separtment of Energy’s “Top 10” revisited. Green Chem., 2010, 12, 539-554.
[http://dx.doi.org/10.1039/b922014c]
[58]
Mariscal, R.; Maireles-Torres, P.; Ojeda, M.; Sa’dabaa, I.; Granados, M.L. Furfural: a renewable and versatile platform molecule for the synthesis of chemicals and fuels. Energy Environ. Sci., 2016, 9, 1144-1189.
[http://dx.doi.org/10.1039/C5EE02666K]
[59]
Reyes, P.; Salinas, D.; Campos, C.; Oportus, M.; Murcia, J.; Rojas, H.; Borda, G.; Fierro, J.L.G. Selective hydrogenation of furfural on Ir/TiO2 catalysts. Quim. Nova, 2010, 33(4), 777-780.
[http://dx.doi.org/10.1590/S0100-40422010000400002]
[60]
Merlo, A.B.; Vetere, V.; Ruggera, J.F.; Casella, M.L. Bimetallic PtSn catalyst for the selective hydrogenation of furfural to furfuryl alcohol in liquid-phase. Catal. Commun., 2009, 10, 1665-1669.
[http://dx.doi.org/10.1016/j.catcom.2009.05.005]
[61]
Li, D.; Tamura, M.; Nakagawa, Y.; Tomishige, K. Metal catalysts for steam reforming of tar derived from the gasification of lignocellulosic biomass. Bioresour. Technol., 2015, 178, 53-64.
[http://dx.doi.org/10.1016/j.biortech.2014.10.010] [PMID: 25455089]
[62]
Tamura, M.; Tokonami, K.; Nakagawa, Y.; Tomishige, K. Rapid synthesis of unsaturated alcohols under mild conditions by highly selective hydrogenation. Chem. Commun. (Camb.), 2013, 49(63), 7034-7036.
[http://dx.doi.org/10.1039/c3cc41526k] [PMID: 23689498]
[63]
Yu, W.; Tang, Y.; Mo, L.; Chen, P.; Lou, H.; Zheng, X. One-step hydrogenation-esterification of furfural and acetic acid over bifunctional Pd catalysts for bio-oil upgrading. Bioresour. Technol., 2011, 102(17), 8241-8246.
[http://dx.doi.org/10.1016/j.biortech.2011.06.015] [PMID: 21708459]
[64]
Ordomsky, V.V.; Schouten, J.C.; Schaaf, J.V.; Nijhuis, T.A. Biphasic single-reactor process for dehydration of xylose and hydrogenation of produced furfural. Appl. Catal. A Gen., 2013, 451, 6-13.
[http://dx.doi.org/10.1016/j.apcata.2012.11.013]
[65]
Wei, S.; Cui, H.; Wang, J.; Zhuo, S.; Yi, W.; Wang, L.; Li, Z. Preparation and activity evaluation of NiMoB/γ-Al2O3 catalyst by liquid-phase furfural hydrogenation. Particuology, 2011, 9, 69-74.
[http://dx.doi.org/10.1016/j.partic.2010.05.009]
[66]
Vetere, V.; Merlo, A.B.; Ruggera, J.F.; Casella, M.L. Transition metal-based bimetallic catalysts for the chemoselective hydrogenation of furfuraldehyde. J. Braz. Chem. Soc., 2010, 21, 914-920.
[http://dx.doi.org/10.1590/S0103-50532010000500021]
[67]
Lee, S.P.; Chen, Y.W. Selective hydrogenation of furfural on Ni-P, Ni-B, and Ni-P-B ultrafine materials. Ind. Eng. Chem. Res., 1999, 38, 2548-2556.
[http://dx.doi.org/10.1021/ie990071a]
[68]
Audemar, M.; Ciotonea, C.; De Oliveira Vigier, K.; Royer, S.; Ungureanu, A.; Dragoi, B.; Dumitriu, E.; Jérôme, F. Dragoi, B.; Dumitriu.; Jérôme, F. Selective hydrogenation of furfural to furfuryl alcohol in the presence of a recyclable cobalt/SBA‐15 catalyst. ChemSusChem, 2015, 8(11), 1885-1891.
[http://dx.doi.org/10.1002/cssc.201403398] [PMID: 25891431]
[69]
Srivastava, S.; Mohanty, P.; Parikh, J.K.; Dalai, A.K.; Amritphale, S.S.; Khare, A.K. Cr-free Co-Cu/SBA-15 catalysts for hydrogenation of biomass-derived α-, β-unsaturated aldehyde to alcohol. Chin. J. Catal., 2015, 36, 933-942.
[http://dx.doi.org/10.1016/S1872-2067(15)60870-1]
[70]
Yan, K.; Chen, A. Selective hydrogenation of furfural and levulinic acid to biofuels on the ecofriendly Cu-Fe catalyst. Fuel, 2014, 115, 101-108.
[http://dx.doi.org/10.1016/j.fuel.2013.06.042]
[71]
He, J.; Li, H.; Saravanamurugan, S.; Yang, S. Catalytic upgrading of biomass-derived sugars with acidic nanoporous materials: Structural role in carbon-chain length variation. ChemSusChem, 2019, 12(2), 347-378.
[http://dx.doi.org/10.1002/cssc.201802113] [PMID: 30407741]
[72]
Panagiotopoulou, P.; Martin, N.; Vlachos, D.G. Effect of hydrogen donor on liquid phase catalytic transferhydrogenation of furfural over a Ru/RuO2/C catalyst. J. Mol. Catal. Chem., 2014, 392, 223-228.
[http://dx.doi.org/10.1016/j.molcata.2014.05.016]
[73]
Gong, W.; Chen, C.; Zhang, Y.; Zhou, H.; Wang, H.; Zhang, H.; Zhang, Y.; Wang, G.; Zhao, H. Efficient synthesis of furfuryl alcohol from H2-hydrogenation/transfer hydrogenation of furfural using sulfonate group modified Cu catalyst. ACS Sustain. Chem.& Eng., 2017, 5, 2172-2180.
[http://dx.doi.org/10.1021/acssuschemeng.6b02343]
[74]
Zhang, J.; Dong, K.; Luo, W.; Guan, H. Selective transfer hydrogenation of furfural into furfuryl alcohol on Zr-containing catalysts using lower alcohols as hydrogen donors. ACS Omega, 2018, 3, 6206-6216.
[http://dx.doi.org/10.1021/acsomega.8b00138]
[75]
Li, H.; Li, Y.; Fang, Z.; Smith, R.L., Jr Efficient catalytic transfer hydrogenation of biomass-based furfural to furfuryl alcohol with recycable Hf-phenylphosphonate nanohybrids. Catal. Today, 2019, 319, 84-92.
[http://dx.doi.org/10.1016/j.cattod.2018.04.056]
[76]
Panagiotopoulou, P.; Martin, N.; Vlachos, D.G. Liquid-phase catalytic transfer hydrogenation of furfural over homogeneous lewis acid-Ru/C catalysts. ChemSusChem, 2015, 8(12), 2046-2054.
[http://dx.doi.org/10.1002/cssc.201500212] [PMID: 26013846]
[77]
Villaverde, M.M.; Garetto, T.F.; Marchi, A.J. Liquid-phase transfer hydrogenation of furfural to furfuryl alcohol on Cu-Mg-Al catalysts. Catal. Commun., 2015, 58, 6-10.
[http://dx.doi.org/10.1016/j.catcom.2014.08.021]
[78]
Biradar, N.S.; Hengne, A.M.; Sakate, S.S.; Swami, R.K.; Rode, C.V. Single pot transfer hydrogenation and aldolization of furfural over metal oxide catalysts. Catal. Lett., 2016, 146, 1611-1619.
[http://dx.doi.org/10.1007/s10562-016-1786-6]
[79]
Koppadi, K.S.; Chada, R.R.; Enumula, S.S.; Marella, R.K.; Kamaraju, S.R.R.; Burri, D.R. Metal-free hydrogenation of biomass derived furfural into furfuryl alcohol over carbon-MgO catalysts in continuous mode. Catal. Lett., 2017, 147, 1278-1284.
[http://dx.doi.org/10.1007/s10562-017-2035-3]
[80]
Wang, F.; Zhang, Z. Catalytic transfer hydrogenation of furfural into furfuryl alcohol over magnetic γ-Fe2O3@HAP catalyst. ACS Sustain. Chem. Eng., 2017, 5, 942-947.
[http://dx.doi.org/10.1021/acssuschemeng.6b02272]
[81]
He, J.; Yang, S.; Riisager, A. Magnetic nickel ferrite nanoparticles as highly durable catalysts for catalytic transfer hydrogenation of bio-based aldehydes. Catal. Sci. Technol., 2018, 8, 790-797.
[http://dx.doi.org/10.1039/C7CY02197F]
[82]
He, J.; Li, H.; Riisager, A.; Yang, S. Catalytic transfer hydrogenation of furfural to furfuryl alcohol with recyclable Al-Zr@Fe mixed oxides. ChemCatChem, 2017, 10, 430-438.
[http://dx.doi.org/10.1002/cctc.201701266]
[83]
Li, J.; Liu, J.L.; Zhou, H.J.; Fu, Y. Catalytic transfer hydrogenation of furfural to furfuryl alcohol over nitrogen-doped carbon-supported iron catalysts. ChemSusChem, 2016, 9(11), 1339-1347.
[http://dx.doi.org/10.1002/cssc.201600089] [PMID: 27144965]
[84]
Puthiaraj, P.; Kim, K.; Ahn, W. Catalytic transfer hydrogenation of bio-based furfural by palladium supported on nitrogen-doped porous carbon. Catal. Today, 2019, 324, 49-58.
[http://dx.doi.org/10.1016/j.cattod.2018.07.033]
[85]
Gao, Z.; Yang, L.; Fan, G.; Li, F. Promotional role of surface defects on carbon-supported Ru-based catalysts in transfer hydrogenation of furfural. ChemCatChem, 2016, 8, 3769-3779.
[http://dx.doi.org/10.1002/cctc.201601070]
[86]
Deng, Y.; Gao, R.; Lin, L.; Liu, T.; Wen, X-D.; Wang, S.; Ma, D. Solvent tunes the selectivity of hydrogenation reaction over α-MoC catalyst. J. Am. Chem. Soc., 2018, 140(43), 14481-14489.
[http://dx.doi.org/10.1021/jacs.8b09310] [PMID: 30350955]
[87]
Wang, Z.; Li, H.; Fang, C.; Zhao, W.; Yang, T.; Yang, S. Simply assembly of acidic nanospheres for efficient production of 5iethoxymethylfurfural from 5-hydromethylfurfural and fructose. Energy Technol. (Weinheim), 2017, 5, 2046-2054.
[http://dx.doi.org/10.1002/ente.201700153]
[88]
Li, J.; Song, Z.; Hou, Y.; Li, Z.; Xu, C.; Liu, C.L.; Dong, W.S. Direct production of 2, 5-dimethylfuran with high yield from fructose over a carbon-based solid acid-coated CuCo bimetallic catalyst. ACS Appl. Mater. Interfaces, 2019, 11(13), 12481-12491.
[http://dx.doi.org/10.1021/acsami.8b22183] [PMID: 30868873]
[89]
Gupta, K.; Rai, R.K.; Singh, S.K. Metal catalysts for efficient transformation of biomass-derived HMF and furfural to value added chemicals: Recent progress. ChemCatChem, 2018, 10, 2326-2349.
[http://dx.doi.org/10.1002/cctc.201701754]
[90]
Zhao, W.; Wu, W.; Li, H.; Fang, C.; Yang, T.; Wang, Z.; He, C.; Yang, S. Quantitative synthesis of 2, 5-bis(hydroxymethyl)furan from biomass-derived 5-hydroxymethylfurfural and sugars over reusable solid catalysts at low temperatures. Fuel, 2018, 217, 365-369.
[http://dx.doi.org/10.1016/j.fuel.2017.12.069]
[91]
Chatterjee, M.; Ishizaka, T.; Kawanami, H. Hydrogenation of 5-hydroxymethylfurfural in supercritical carbon dioxide-water: A tunable approach to dimethylfuran selectivity. Green Chem., 2014, 16, 1543-1551.
[http://dx.doi.org/10.1039/c3gc42145g]
[92]
Yang, W.; Sen, A. One-step catalytic transformation of carbohydrates and cellulosic biomass to 2,5-dimethyltetrahydrofuran for liquid fuels. ChemSusChem, 2010, 3(5), 597-603.
[http://dx.doi.org/10.1002/cssc.200900285] [PMID: 20437452]
[93]
Zhu, Y.; Kong, X.; Zheng, H.; Ding, G.; Zhu, Y.; Li, Y.W. Efficient synthesis of 2, 5-dihydroxymethylfuran and 2, 5-dimethylfuran from 5-hydroxymethylfurfural using mineral-derived Cu catalysts as versatile catalysts. Catal. Sci. Technol., 2015, 5, 4208-4217.
[http://dx.doi.org/10.1039/C5CY00700C]
[94]
Mascal, M.; Nikitin, E.B. High-yield conversion of plant biomass into the key value-added feedstocks 5-(hydroxymethyl) furfural, levulinic acid, and levulinic esters via 5-(chloromethyl) furfural. Green Chem., 2010, 12, 370-373.
[http://dx.doi.org/10.1039/B918922J]
[95]
Feng, X.; Cui, Z.; Ji, K.; Shen, C.; Tan, T. Ultra-selective p-xylene production through cycloaddition and dehydration of 2,5-dimethylfuran and ethylene over tin phosphate. Appl. Catal. B Environ, 2019, 259 118108
[http://dx.doi.org/10.10.16/j.apcatb.2019.118108]
[96]
Scholz, D.; Aellig, C.; Hermans, I. Catalytic transfer hydrogenation/hydrogenolysis for reductive upgrading of furfural and 5-(hydroxymethyl)furfural. ChemSusChem, 2014, 7(1), 268-275.
[http://dx.doi.org/10.1002/cssc.201300774] [PMID: 24227625]
[97]
Wang, C.; Xu, H.; Daniel, R.; Ghafourian, A.; Herreros, J.M.; Shuai, S.; Ma, X. Combustion characteristics and emissions of 2-methylfuran compared to 2,5-dimethylfuran, gasoline and ethanol in a DISI engine. Fuel, 2013, 103, 200-211.
[http://dx.doi.org/10.1016/j.fuel.2012.05.043]
[98]
Li, D.; Liu, Q.; Zhu, C.; Wang, H.; Cui, C.; Wang, C.; Ma, L. Selective hydrogenolysis of 5-hydroxymethylfurfural to 2, 5-dimethylfuran over Co3O4 catalyst by controlled reduction. J. Energy Chem., 2019, 30, 34-41.
[http://dx.doi.org/10.1016/j.jechem.2018.03.008]
[99]
Zhong, S.; Daniel, R.; Xu, H.; Zhang, J.; Turner, D.; Wyszynski, M.L.; Richards, P. Combustion and emissions of 2,5-dimethylfuran in a direct-injection spark-ignition engine. Energy Fuels, 2010, 24, 2891-2899.
[http://dx.doi.org/10.1021/ef901575a]
[100]
Williams, C.L.; Chang, C-C.; Do, P.; Nikbin, N.; Caratzoulas, S.; Vlachos, D.G.; Lobo, R.F.; Fan, W.; Dauenhauer, P.J. Cycloaddition of biomass-derived furans for catalytic production of renewable p-xylene. ACS Catal., 2012, 2, 935-939.
[http://dx.doi.org/10.1021/cs300011a]
[101]
Tang, X.; Zeng, X.; Li, Z.; Hu, L.; Sun, Y.; Liu, S.; Lei, T.; Lin, L. Production of γ-valerolactone from lignocellulosic biomass for sustainable fuels and chemicals supply. Renew. Sustain. Energy Rev., 2014, 40, 608-620.
[http://dx.doi.org/10.1016/j.rser.2014.07.209]
[102]
Saha, B.; Bohn, C.M.; Abu-Omar, M.M. Zinc-assisted hydrodeoxygenation of biomass-derived 5-hydroxymethylfurfural to 2,5-dimethylfuran. ChemSusChem, 2014, 7(11), 3095-3101.
[http://dx.doi.org/10.1002/cssc.201402530] [PMID: 25187223]
[103]
Panagiotopoulou, P.; Martin, N.; Vlachos, D.G. Effect of hydrogen donor on liquid phase catalytic transfer hydrogenation of furfural over a Ru/RuO2/C catalyst. J. Mol. Catal. Chem., 2014, 392, 223-228.
[http://dx.doi.org/10.1016/j.molcata.2014.05.016]
[104]
Li, H.; Zhang, Q.; Bhadury, P.S.; Yang, S. Furan-type compounds from carbohydrates via heterogeneous catalysis. Curr. Org. Chem., 2014, 18, 547-597.
[http://dx.doi.org/10.2174/13852728113176660138]
[105]
Alonso, D.M.; Wettstein, S.G.; Dumesic, J.A. Bimetallic catalysts for upgrading of biomass to fuels and chemicals. Chem. Soc. Rev., 2012, 41(24), 8075-8098.
[http://dx.doi.org/10.1039/c2cs35188a] [PMID: 22872312]
[106]
Kong, X.; Zhu, Y.; Zheng, H.; Zhu, Y.; Fang, Z. Inclusion of Zn into metallic Ni enables selective and effective synthesis of 2, 5-dimethylfuran from bioderived 5-hydroxymethylfurfural. ACS Sustain. Chem.& Eng., 2017, 5, 11280-11289.
[http://dx.doi.org/10.1021/acssuschemeng.7b01813]
[107]
Gao, Z.; Li, C.; Fan, G.; Yang, L.; Li, F. Nitrogen-doped carbon-decorated copper catalyst for highly efficient transfer hydrogenolysis of 5-hydroxymethylfurfural to convertibly produce 2, 5-dimethylfuran or 2, 5-dimethyltetrahydrofuran. Appl. Catal. B, 2018, 226, 523-533.
[http://dx.doi.org/10.1016/j.apcatb.2018.01.006]
[108]
Peña, G.D.G.; Hammid, Y.A.; Raj, A.; Stephen, S.; Anjana, T.; Balasubramanian, V. On the characteristics and reactivity of soot particles from ethanol-gasoline and 2, 5-dimethylfuran-gasoline blends. Fuel, 2018, 222, 42-55.
[http://dx.doi.org/10.1016/j.fuel.2018.02.147]
[109]
Cheng, Z.; Saha, B.; Vlachos, D.G. Catalytic hydrotreatment of humins to bio-oil in methanol over supported metal catalysts. ChemSusChem, 2018, 11(20), 3609-3617.
[http://dx.doi.org/10.1002/cssc.201801535] [PMID: 30151873]
[110]
Hansen, T.S.; Barta, K.; Anastas, P.T.; Ford, P.C.; Riisager, A. One-pot reduction of 5-hydroxymethylfurfural via hydrogen transfer from supercritical methanol. Green Chem., 2012, 14, 2457-2461.
[http://dx.doi.org/10.1039/c2gc35667h]
[111]
Jae, J.; Zheng, W.; Lobo, R.F.; Vlachos, D.G. Production of dimethylfuran from hydroxymethylfurfural through catalytic transfer hydrogenation with ruthenium supported on carbon. ChemSusChem, 2013, 6(7), 1158-1162.
[http://dx.doi.org/10.1002/cssc.201300288] [PMID: 23754805]
[112]
Zhang, Z.; Wang, C.; Gou, X.; Chen, H.; Chen, K.; Lu, X.; Ouyang, P.; Fu, J. Catalytic in-situ hydrogenation of 5-hydroxymethylfurfural to 2,5-dimethylfuran over Cu-based catalysts with methanol as a hydrogen donor. Appl. Catal. A Gen., 2019, 570, 245-250.
[http://dx.doi.org/10.1016/j.apcata.2018.11.029]
[113]
Li, W.; Fan, G.; Yang, L.; Li, F. Highly efficient synchronized production of phenol and 2, 5-dimethylfuran through a bimetallic Ni-Cu catalyzed dehydrogenation-hydrogenation coupling process without any external hydrogen and oxygen supply. Green Chem., 2017, 19, 4353-4363.
[http://dx.doi.org/10.1039/C7GC01387F]
[114]
Grasemann, M.; Laurenczy, G. Formic acid as a hydrogen source-recent developments and future trends. Energy Environ. Sci., 2012, 5, 8171-8181.
[http://dx.doi.org/10.1039/c2ee21928j]
[115]
Johnson, T.C.; Morris, D.J.; Wills, M. Hydrogen generation from formic acid and alcohols using homogeneous catalysts. Chem. Soc. Rev., 2010, 39(1), 81-88.
[http://dx.doi.org/10.1039/B904495G] [PMID: 20023839]
[116]
Thananatthanachon, T.; Rauchfuss, T.B. Efficient production of the liquid fuel 2,5-dimethylfuran from fructose using formic acid as a reagent. Angew. Chem. Int. Ed. Engl., 2010, 49(37), 6616-6618.
[http://dx.doi.org/10.1002/anie.201002267] [PMID: 20680955]
[117]
De, S.; Dutta, S.; Saha, B. One-pot conversions of lignocellulosic and algal biomass into liquid fuels. ChemSusChem, 2012, 5(9), 1826-1833.
[http://dx.doi.org/10.1002/cssc.201200031] [PMID: 22639414]
[118]
Yang, P.; Xia, Q.; Liu, X.; Wang, Y. Catalytic transfer hydrogenation/hydrogenolysis of 5-hydroxymethylfurfural to 2, 5-dimethylfuran over Ni-Co/C catalyst. Fuel, 2017, 187, 159-166.
[http://dx.doi.org/10.1016/j.fuel.2016.09.026]
[119]
Lawrence, N.J.; Drew, M.D.; Bushell, S.M. Polymethylhydrosiloxane: A versatile reducing agent for organic synthesis. J. Chem. Soc., Perkin Trans. 1, 1999, 1, 3381-3391.
[http://dx.doi.org/10.1039/a903662h]
[120]
Motoyama, Y.; Mitsui, K.; Ishida, T.; Nagashima, H. Self-encapsulation of homogeneous catalyst species into polymer gel leading to a facile and efficient separation system of amine products in the Ru-catalyzed reduction of carboxamides with polymethylhydrosiloxane (PMHS). J. Am. Chem. Soc., 2005, 127(38), 13150-13151.
[http://dx.doi.org/10.1021/ja054453l] [PMID: 16173735]
[121]
Rahaim, R.J., Jr; Maleczka, R.E., Jr C-O hydrogenolysis catalyzed by Pd-PMHS nanoparticles in the company of chloroarenes. Org. Lett., 2011, 13(4), 584-587.
[http://dx.doi.org/10.1021/ol102757v] [PMID: 21247081]
[122]
Li, H.; Zhao, W.; Riisager, A.; Saravanamurugan, S.; Wang, Z.; Fang, Z.; Yang, S. A Pd-Catalyzed in situ domino process for mild and quantitative production of 2, 5-dimethylfuran directly from carbohydrates. Green Chem., 2017, 19, 2101-2106.
[http://dx.doi.org/10.1039/C7GC00580F]
[123]
Long, J.; Zhao, W.; Xu, Y.; Wu, W.; Fang, C.; Li, H.; Yang, S. Low-temperature catalytic hydrogenation of bio-based furfural and relevant aldehydes using cesium carbonate and hydrosiloxane. RSC Adv, 2019, 9, 3063-3071.
[http://dx.doi.org/10.1039/C8RA08616H]
[124]
Zhao, W.; Yang, T.; Li, H.; Wu, W.; Wang, Z.; Fang, C.; Saravanamurugan, S.; Yang, S. Highly recyclable fluoride for enhanced cascade hydrosilylation-cyclization of levulinates to γ-valerolactone at low temperatures. ACS Sustain. Chem.& Eng., 2017, 5, 9640-9644.
[http://dx.doi.org/10.1021/acssuschemeng.7b02756]
[125]
Iglesias, J.; Melero, J.A.; Morales, G.; Moreno, J.; Segura, Y.; Paniagua, M.; Cambra, A.; Hernández, B. Zr-SBA-15 Lewis acid catalyst: Activity in Meerwein-Ponndorf-Verley reduction. Catalysts, 2015, 5, 1911-1927.
[http://dx.doi.org/10.3390/catal5041911]
[126]
López-Asensioa, R.; Ceciliaa, J.A.; Jiménez-Gómeza, C.P.; García-Sanchob, C.; Moreno-Tosta, R.; Maireles-Torres, P. Selective production of furfuryl alcohol from furfural by catalytic transfer hydrogenation over commercial aluminas. Appl. Catal. A Gen., 2018, 556, 1-9.
[http://dx.doi.org/10.1016/j.apcata.2018.02.022]
[127]
Montes, V.; Miñambres, J.F.; Khalilov, A.N.; Boutonnet, M.; Marinas, J.M.; Urbano, F.J.; Maharramov, A.M.; Marinas, A. Chemoselective hydrogenation of furfural to furfuryl alcohol on ZrO2 systems synthesized through the microemulsion method. Catal. Today, 2018, 306, 89-95.
[http://dx.doi.org/10.1016/j.cattod.2017.05.022]
[128]
Panagiotopoulou, P.; Vlachos, D.G. Liquid phase catalytic transfer hydrogenation of furfural over a Ru/C catalyst. Appl. Catal. A Gen., 2014, 480, 17-24.
[http://dx.doi.org/10.1016/j.apcata.2014.04.018]
[129]
Zhao, W.; Wu, W.; Li, H.; Fang, C.; Yang, T.; Wang, Z. He, Chao.; Yang, S. Quantitative synthesis of 2, 5-bis (hydroxymethyl) furan from biomass-derived 5-hydroxymethylfurfural and sugars over reusable solid catalysts at low temperatures. Fuel, 2018, 217, 365-369.
[http://dx.doi.org/10.1016/j.fuel.2017.12.069]
[130]
Wang, X.; Liang, X.; Li, J.; Li, Q. Catalytic hydrogenolysis of biomass-derived 5-hydroxymethylfurfural to biofuel 2, 5-dimethylfuran. Appl. Catal. A Gen., 2019, 576, 85-95.
[http://dx.doi.org/10.1016/j.apcata.2019.03.005]
[131]
Lancefield, C.S.; Panovic, I.; Deuss, P.J.; Barta, K.; Westwood, N.J. Pre-treatment of lignocellulosic feedstocks using biorenewable alcohols: Towards complete biomass valorisation. Green Chem., 2017, 19, 202-214.
[http://dx.doi.org/10.1039/C6GC02739C]
[132]
Yamaguchi, A.; Sato, O.; Mimura, N.; Shirai, M. Catalytic production of sugar alcohols from lignocellulosic biomass. Catal. Today, 2016, 265, 199-202.
[http://dx.doi.org/10.1016/j.cattod.2015.08.026]
[133]
Zhu, S.; Gao, X.; Zhu, Y.; Li, Y. Tailored mesoporous copper/ceria catalysts for the selective hydrogenolysis of biomass-derived glycerol and sugar alcohols. Green Chem., 2016, 18, 782-791.
[http://dx.doi.org/10.1039/C5GC01766A]
[134]
Kim, S.M.; Shin, H.Y.; Kim, D.W.; Yang, J.W. Metal-free chemoselective oxidative dehomologation or direct oxidation of alcohols: Implication for biomass conversion. ChemSusChem, 2016, 9(3), 241-245.
[http://dx.doi.org/10.1002/cssc.201501359] [PMID: 26682633]
[135]
Li, H.; Zhao, W.; Dai, W.; Long, J.; Watanabe, M.; Meier, S.; Saravanamurugan, S.; Yang, S.; Riisager, A. Noble metal-free upgrading of multi-unsaturated biomass derivatives at room temperature: Silyl species enable reactivity. Green Chem., 2018, 20, 5327-5335.
[http://dx.doi.org/10.1039/C8GC02934B]
[136]
Zhang, J.; Chen, J. Selective transfer hydrogenation of biomass-based furfural and 5-hydroxymethylfurfural over hydrotalcite-derived copper catalysts using methanol as a hydrogen donor. ACS Sustain. Chem. Eng., 2017, 5, 5982-5993.
[http://dx.doi.org/10.1021/acssuschemeng.7b00778]
[137]
Kim, M.S.; Simanjuntak, F.S.H.; Lim, S.; Jae, J.; Ha, J.M.; Lee, H. Synthesis of alumina-carbon composite material for the catalytic conversion of furfural to furfuryl alcohol. J. Ind. Eng. Chem., 2017, 52, 59-65.
[http://dx.doi.org/10.1016/j.jiec.2017.03.024]
[138]
Jae, J. Zheng. W.; Karim, A. M.; Guo, W.; Lobo, R.F.; Vlachos, D.G. The role of Ru and RuO2 in the catalytic transfer hydrogenation of 5-hydroxymethylfurfural for the production of 2, 5-formethylfuran. ChemCatChem, 2014, 6, 848-856.
[http://dx.doi.org/10.1002/cctc.201300945]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 23
ISSUE: 20
Year: 2019
Page: [2168 - 2179]
Pages: 12
DOI: 10.2174/1385272823666190723141955
Price: $58

Article Metrics

PDF: 16
HTML: 3
EPUB: 1