Review of Progress in Predicting Protein Methylation Sites

Author(s): Chunyan Ao, Shunshan Jin, Yuan Lin*, Quan Zou*.

Journal Name: Current Organic Chemistry

Volume 23 , Issue 15 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Protein methylation is an important and reversible post-translational modification that regulates many biological processes in cells. It occurs mainly on lysine and arginine residues and involves many important biological processes, including transcriptional activity, signal transduction, and the regulation of gene expression. Protein methylation and its regulatory enzymes are related to a variety of human diseases, so improved identification of methylation sites is useful for designing drugs for a variety of related diseases. In this review, we systematically summarize and analyze the tools used for the prediction of protein methylation sites on arginine and lysine residues over the last decade.

Keywords: Protein methylation, Support Vector Machine (SVM), methyllysine, methylarginine, arginine residue, lysine residue, cysteine residues.

[1]
Paik, W.K.; Paik, D.C.; Kim, S. Historical review: the field of protein methylation. Trends Biochem. Sci., 2007, 32(3), 146-152.
[http://dx.doi.org/10.1016/j.tibs.2007.01.006] [PMID: 17291768]
[2]
Bedford, M.T.; Richard, S. Arginine methylation an emerging regulator of protein function. Mol. Cell, 2005, 18(3), 263-272.
[http://dx.doi.org/10.1016/j.molcel.2005.04.003] [PMID: 15866169]
[3]
Ambler, R.P.; Rees, M.W. Epsilon-N-Methyl-lysine in bacterial flagellar protein. Nature, 1959, 184(4679), 56-57.
[http://dx.doi.org/10.1038/184056b0] [PMID: 13793118]
[4]
Bannister, A.J.; Kouzarides, T. Reversing histone methylation. Nature, 2005, 436(7054), 1103-1106.
[http://dx.doi.org/10.1038/nature04048] [PMID: 16121170]
[5]
Herz, H-M.; Garruss, A.; Shilatifard, A. SET for life: biochemical activities and biological functions of SET domain-containing proteins. Trends Biochem. Sci., 2013, 38(12), 621-639.
[http://dx.doi.org/10.1016/j.tibs.2013.09.004] [PMID: 24148750]
[6]
Li, T.; Chen, H.; Li, W.; Cui, J.; Wang, G.; Hu, X.; Hoffman, A.R.; Hu, J. Promoter histone H3K27 methylation in the control of IGF2 imprinting in human tumor cell lines. Hum. Mol. Genet., 2014, 23(1), 117-128.
[http://dx.doi.org/10.1093/hmg/ddt405] [PMID: 23962719]
[7]
Yu, Y.; Song, C.; Zhang, Q.; DiMaggio, P.A.; Garcia, B.A.; York, A.; Carey, M.F.; Grunstein, M. Histone H3 lysine 56 methylation regulates DNA replication through its interaction with PCNA. Mol. Cell, 2012, 46(1), 7-17.
[http://dx.doi.org/10.1016/j.molcel.2012.01.019] [PMID: 22387026]
[8]
Zhang, C.; Gao, S.; Molascon, A.J.; Liu, Y.; Andrews, P.C. Quantitative proteomics reveals histone modifications in crosstalk with H3 lysine 27 methylation. Mol. Cell. Proteomics, 2014, 13(3), 749-759.
[http://dx.doi.org/10.1074/mcp.M113.029025]
[9]
Brinkmann, S.J.; de Boer, M.C.; Buijs, N.; van Leeuwen, P.A. Asymmetric dimethylarginine and critical illness. Curr. Opin. Clin. Nutr. Metab. Care, 2014, 17(1), 90-97.
[PMID: 24281375]
[10]
Cheng, L.; Yang, H.; Zhao, H.; Pei, X.; Shi, H.; Sun, J.; Zhang, Y.; Wang, Z.; Zhou, M. MetSigDis: a manually curated resource for the metabolic signatures of diseases. Brief. Bioinform., 2019, 20(1), 203-209.
[http://dx.doi.org/10.1093/bib/bbx103] [PMID: 28968812]
[11]
Li, Y.H.; Li, X.X.; Hong, J.J.; Wang, Y.X.; Fu, J.B.; Yang, H.; Yu, C.Y.; Li, F.C.; Hu, J.; Xue, W.W.; Jiang, Y.Y.; Chen, Y.Z.; Zhu, F. Clinical trials, progression-speed differentiating features and swiftness rule of the innovative targets of first-in-class drugs. Brief. Bioinform., 2019.
[http://dx.doi.org/10.1093/bib/bby130] [PMID: 30689717]
[12]
Yu, L.; Huang, J.; Ma, Z.; Zhang, J.; Zou, Y.; Gao, L. Inferring drug-disease associations based on known protein complexes. BMC Med. Genomics, 2015, 8(Suppl. 2), S2.
[http://dx.doi.org/10.1186/1755-8794-8-S2-S2] [PMID: 26044949]
[13]
Sayegh, J.; Webb, K.; Cheng, D.; Bedford, M.T.; Clarke, S.G. Regulation of protein arginine methyltransferase 8 (PRMT8) activity by its N-terminal domain. J. Biol. Chem., 2007, 282(50), 36444-36453.
[http://dx.doi.org/10.1074/jbc.M704650200] [PMID: 17925405]
[14]
Predel, R.; Brandt, W.; Kellner, R.; Rapus, J.; Nachman, R.J.; Gäde, G. Post-translational modifications of the insect sulfakinins: sulfation, pyroglutamate-formation and O-methylation of glutamic acid. Eur. J. Biochem., 1999, 263(2), 552-560.
[http://dx.doi.org/10.1046/j.1432-1327.1999.00532.x] [PMID: 10406966]
[15]
Lapko, V.N.; Cerny, R.L.; Smith, D.L.; Smith, J.B. Modifications of human betaA1/betaA3-crystallins include S-methylation, glutathiolation, and truncation. Protein Sci., 2005, 14(1), 45-54.
[http://dx.doi.org/10.1110/ps.04738505] [PMID: 15576560]
[16]
Aletta, J.M.; Cimato, T.R.; Ettinger, M.J. Protein methylation: a signal event in post-translational modification. Trends Biochem. Sci., 1998, 23(3), 89-91.
[http://dx.doi.org/10.1016/S0968-0004(98)01185-2] [PMID: 9581497]
[17]
Pahlich, S.; Zakaryan, R.P.; Gehring, H. Protein arginine methylation: Cellular functions and methods of analysis. Biochim. Biophys. Acta, 2006, 1764(12), 1890-1903.
[http://dx.doi.org/10.1016/j.bbapap.2006.08.008] [PMID: 17010682]
[18]
Cheng, L.; Sun, J.; Xu, W.; Dong, L.; Hu, Y.; Zhou, M. OAHG: an integrated resource for annotating human genes with multi-level ontologies. Sci. Rep., 2016, 6, 34820.
[http://dx.doi.org/10.1038/srep34820] [PMID: 27703231]
[19]
Cheng, L.; Wang, P.; Tian, R.; Wang, S.; Guo, Q.; Luo, M.; Zhou, W.; Liu, G.; Jiang, H.; Jiang, Q. LncRNA2Target v2.0: a comprehensive database for target genes of lncRNAs in human and mouse. Nucleic Acids Res., 2019, 47(D1), D140-D144.
[http://dx.doi.org/10.1093/nar/gky1051] [PMID: 30380072]
[20]
Mastronardi, F.G.; Wood, D.D.; Mei, J.; Raijmakers, R.; Tseveleki, V.; Dosch, H-M.; Probert, L.; Casaccia-Bonnefil, P.; Moscarello, M.A. Increased citrullination of histone H3 in multiple sclerosis brain and animal models of demyelination: a role for tumor necrosis factor-induced peptidylarginine deiminase 4 translocation. J. Neurosci., 2006, 26(44), 11387-11396.
[http://dx.doi.org/10.1523/JNEUROSCI.3349-06.2006] [PMID: 17079667]
[21]
Chen, X.; Niroomand, F.; Liu, Z.; Zankl, A.; Katus, H.A.; Jahn, L.; Tiefenbacher, C.P. Expression of nitric oxide related enzymes in coronary heart disease. Basic Res. Cardiol., 2006, 101(4), 346-353.
[http://dx.doi.org/10.1007/s00395-006-0592-5] [PMID: 16705470]
[22]
Longo, V.D.; Kennedy, B.K. Sirtuins in aging and age-related disease. Cell, 2006, 126(2), 257-268.
[http://dx.doi.org/10.1016/j.cell.2006.07.002] [PMID: 16873059]
[23]
Suzuki, A.; Yamada, R.; Yamamoto, K. Citrullination by peptidylarginine deiminase in rheumatoid arthritis. Ann. N. Y. Acad. Sci., 2007, 1108(1), 323-339.
[http://dx.doi.org/10.1196/annals.1422.034] [PMID: 17893996]
[24]
Varier, R.A.; Timmers, H.T.M. Histone lysine methylation and demethylation pathways in cancer. Biochimica et Biophysica Acta (BBA) -. Rev. Can., 2011, 1815(1), 75-89.
[25]
Shukla, A.; Chaurasia, P.; Bhaumik, S.R. Histone methylation and ubiquitination with their cross-talk and roles in gene expression and stability. Cell. Mol. Life Sci., 2009, 66(8), 1419-1433.
[http://dx.doi.org/10.1007/s00018-008-8605-1] [PMID: 19370393]
[26]
Tang, J.; Fu, J.; Wang, Y.; Li, B.; Li, Y.; Yang, Q.; Cui, X.; Hong, J.; Li, X.; Chen, Y.; Xue, W.; Zhu, F. ANPELA: analysis and performance assessment of the label-free quantification workflow for metaproteomic studies. Brief. Bioinform., 2019.
[http://dx.doi.org/10.1093/bib/bby127] [PMID: 30649171]
[27]
Yu, L.; Su, R.; Wang, B.; Zhang, L.; Zou, Y.; Zhang, J.; Gao, L. Prediction of novel drugs for hepatocellular carcinoma based on multi-source random walk. IEEE/ACM Trans. Comput. Biol. Bioinformatics, 2017, 14(4), 966-977.
[http://dx.doi.org/10.1109/TCBB.2016.2550453] [PMID: 27076463]
[28]
Qiu, H.; Guo, Y.; Yu, L.; Pu, X.; Li, M.J.C. Systems, IL Predicting protein lysine methylation sites by incorporating single-residue structural features into Chou’s pseudo components. Chemom. Intell. Lab. Syst., 2018, 179, 31-38.
[http://dx.doi.org/10.1016/j.chemolab.2018.05.007]
[29]
Snijders, A.P.L.; Hung, M-L.; Wilson, S.A.; Dickman, M.J. Analysis of arginine and lysine methylation utilizing peptide separations at neutral pH and electron transfer dissociation mass spectrometry. J. Am. Soc. Mass Spectrom., 2010, 21(1), 88-96.
[http://dx.doi.org/10.1016/j.jasms.2009.09.010] [PMID: 19850496]
[30]
Johnson, D.S.; Li, W.; Gordon, D.B.; Bhattacharjee, A.; Curry, B.; Ghosh, J.; Brizuela, L.; Carroll, J.S.; Brown, M.; Flicek, P.; Koch, C.M.; Dunham, I.; Bieda, M.; Xu, X.; Farnham, P.J.; Kapranov, P.; Nix, D.A.; Gingeras, T.R.; Zhang, X.; Holster, H.; Jiang, N.; Green, R.D.; Song, J.S.; McCuine, S.A.; Anton, E.; Nguyen, L.; Trinklein, N.D.; Ye, Z.; Ching, K.; Hawkins, D.; Ren, B.; Scacheri, P.C.; Rozowsky, J.; Karpikov, A.; Euskirchen, G.; Weissman, S.; Gerstein, M.; Snyder, M.; Yang, A.; Moqtaderi, Z.; Hirsch, H.; Shulha, H.P.; Fu, Y.; Weng, Z.; Struhl, K.; Myers, R.M.; Lieb, J.D.; Liu, X.S. Systematic evaluation of variability in ChIP-chip experiments using predefined DNA targets. Genome Res., 2008, 18(3), 393-403.
[http://dx.doi.org/10.1101/gr.7080508] [PMID: 18258921]
[31]
Turner, B.M. Cellular memory and the histone code. Cell, 2002, 111(3), 285-291.
[http://dx.doi.org/10.1016/S0092-8674(02)01080-2] [PMID: 12419240]
[32]
Hornbeck, P.V.; Kornhauser, J.M.; Tkachev, S.; Zhang, B.; Skrzypek, E.; Murray, B.; Latham, V.; Sullivan, M. PhosphoSitePlus: a comprehensive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse. Nucleic Acids Res., 2012, 40(Database issue), D261-D270.
[http://dx.doi.org/10.1093/nar/gkr1122] [PMID: 22135298]
[33]
Consortium, U. UniProt: a hub for protein information. Nucleic Acids Res., 2015, 43(Database issue), D204-D212.
[http://dx.doi.org/10.1093/nar/gku989] [PMID: 25348405]
[34]
Huang, K-Y.; Lee, T-Y.; Kao, H-J.; Ma, C-T.; Lee, C-C.; Lin, T-H.; Chang, W-C.; Huang, H-D. dbPTM in 2019: exploring disease association and cross-talk of post-translational modifications. Nucleic Acids Res., 2019, 47(D1), D298-D308.
[http://dx.doi.org/10.1093/nar/gky1074] [PMID: 30418626]
[35]
Peri, S; Navarro, JD; Kristiansen, TZ; Amanchy, R; Surendranath, V; Muthusamy, B; Gandhi, T; Chandrika, K; Deshpande, N; Suresh, S Human protein reference database as a discovery resource for proteomics. Nucleic Acids Res, 2004, 32(suppl_1). , D497-D501.
[http://dx.doi.org/10.1093/nar/gkh070]
[36]
Liu, Z.; Wang, Y.; Gao, T.; Pan, Z.; Cheng, H.; Yang, Q.; Cheng, Z.; Guo, A.; Ren, J.; Xue, Y. CPLM: A database of protein lysine modifications. Nucleic Acids Res., 2014, 42(Database issue), D531-D536.
[http://dx.doi.org/10.1093/nar/gkt1093] [PMID: 24214993]
[37]
Liu, B.; Xu, J.; Lan, X.; Xu, R.; Zhou, J.; Wang, X.; Chou, K-C. iDNA-Prot|dis: identifying DNA-binding proteins by incorporating amino acid distance-pairs and reduced alphabet profile into the general pseudo amino acid composition. PLoS One, 2014, 9(9)e106691
[http://dx.doi.org/10.1371/journal.pone.0106691] [PMID: 25184541]
[38]
Zhu, F.; Li, X.X.; Yang, S.Y.; Chen, Y.Z. Clinical success of drug targets prospectively predicted by in silico study. Trends Pharmacol. Sci., 2018, 39(3), 229-231.
[http://dx.doi.org/10.1016/j.tips.2017.12.002] [PMID: 29295742]
[39]
Hu, Y.; Zhao, T.; Zhang, N.; Zang, T.; Zhang, J.; Cheng, L. Identifying diseases-related metabolites using random walk. BMC Bioinformatics, 2018, 19(5), 116.
[http://dx.doi.org/10.1186/s12859-018-2098-1] [PMID: 29671398]
[40]
Hu, Y.; Zhao, T.; Zang, T.; Zhang, Y.; Cheng, L. Identification of Alzheimer’s disease-related genes based on data integration method. Front. Genet., 2018, 9, 703.
[PMID: 30740125]
[41]
Yu, L.; Ma, X.; Zhang, L.; Zhang, J.; Gao, L. Prediction of new drug indications based on clinical data and network modularity. Sci. Rep., 2016, 6, 32530.
[http://dx.doi.org/10.1038/srep32530] [PMID: 27678071]
[42]
Plewczynski, D.; Tkacz, A.; Wyrwicz, L.S.; Rychlewski, L. AutoMotif server: prediction of single residue post-translational modifications in proteins. Bioinformatics, 2005, 21(10), 2525-2527.
[http://dx.doi.org/10.1093/bioinformatics/bti333] [PMID: 15728119]
[43]
Daily, K.M.; Radivojac, P.; Dunker, A.K. Intrinsic Disorder and Prote in Modifications: Building an SVM Predictor for Methylation. In Computational Intelligence in Bioinformatics and Computational Biology, 2005 CIBCB'05 Proceedings of the 2005 IEEE Symposium on. IEEE, California, 2005, pp. 1-7.
[http://dx.doi.org/10.1109/CIBCB.2005.1594957]
[44]
Chen, H.; Xue, Y.; Huang, N.; Yao, X.; Sun, Z. MeMo: A web tool for prediction of protein methylation modifications. Nucleic Acids Res., 34, W249-W253.2006.
[http://dx.doi.org/10.1093/nar/gkl233]
[45]
Shao, J.; Xu, D.; Tsai, S-N.; Wang, Y.; Ngai, S-M. Computational identification of protein methylation sites through bi-profile Bayes feature extraction. PLoS One, 2009, 4(3)e4920
[http://dx.doi.org/10.1371/journal.pone.0004920] [PMID: 19290060]
[46]
Shien, D-M.; Lee, T-Y.; Chang, W-C.; Hsu, J.B-K.; Horng, J-T.; Hsu, P-C.; Wang, T-Y.; Huang, H-D. Incorporating structural characteristics for identification of protein methylation sites. J. Comput. Chem., 2009, 30(9), 1532-1543.
[http://dx.doi.org/10.1002/jcc.21232]
[47]
Hu, L.L.; Li, Z.; Wang, K.; Niu, S.; Shi, X.H.; Cai, Y.D.; Li, H.P. Prediction and analysis of protein methylarginine and methyllysine based on Multisequence features. Biopolymers, 2011, 95(11), 763-771.
[PMID: 21544797]
[48]
Li, Z-C.; Zhou, X.; Dai, Z.; Zou, X-Y. Identification of protein methylation sites by coupling improved ant colony optimization algorithm and support vector machine. Anal. Chim. Acta, 2011, 703(2), 163-171.
[http://dx.doi.org/10.1016/j.aca.2011.08.008] [PMID: 21889630]
[49]
Shi, S.P.; Qiu, J.D.; Sun, X.Y.; Suo, S.B.; Huang, S.Y.; Liang, R.P. PMeS: prediction of methylation sites based on enhanced feature encoding scheme. PLoS One, 2012, 7(6)e38772
[http://dx.doi.org/10.1371/journal.pone.0038772] [PMID: 22719939]
[50]
Shi, S-P.; Qiu, J-D.; Sun, X-Y.; Suo, S-B.; Huang, S-Y.; Liang, R-P. PLMLA: prediction of lysine methylation and lysine acetylation by combining multiple features. Mol. Biosyst., 2012, 8(5), 1520-1527.
[http://dx.doi.org/10.1039/c2mb05502c] [PMID: 22402705]
[51]
Shi, S-P.; Qiu, J-D.; Sun, X-Y.; Suo, S-B.; Huang, S-Y.; Liang, R-P. A method to distinguish between lysine acetylation and lysine methylation from protein sequences. J. Theor. Biol., 2012, 310, 223-230.
[http://dx.doi.org/10.1016/j.jtbi.2012.06.030] [PMID: 22796329]
[52]
Xu, Y.; Ding, J.; Huang, Q.; Deng, N-Y. Prediction of protein methylation sites using conditional random field. Protein Pept. Lett., 2013, 20(1), 71-77.
[http://dx.doi.org/10.2174/092986613804096865] [PMID: 22789108]
[53]
Zhang, W.; Xu, X.; Yin, M.; Luo, N.; Zhang, J.; Wang, J. Prediction of methylation sites using the composition of K-spaced amino acid pairs. Protein Pept. Lett., 2013, 20(8), 911-917.
[http://dx.doi.org/10.2174/0929866511320080008] [PMID: 23276225]
[54]
Lee, T-Y.; Chang, C-W.; Lu, C-T.; Cheng, T-H.; Chang, T-H. Identification and characterization of lysine-methylated sites on histones and non-histone proteins. Comput. Biol. Chem., 2014, 50, 11-18.
[http://dx.doi.org/10.1016/j.compbiolchem.2014.01.009] [PMID: 24560580]
[55]
Qiu, W-R.; Xiao, X.; Lin, W-Z.; Chou, K-C. iMethyl-PseAAC: identification of protein methylation sites via a pseudo amino acid composition approach. BioMed Res. Int., 2014, 2014947416
[56]
Ju, Z.; Cao, J-Z.; Gu, H. iLM-2L: A two-level predictor for identifying protein lysine methylation sites and their methylation degrees by incorporating K-gap amino acid pairs into Chou׳s general PseAAC. J. Theor. Biol., 2015, 385, 50-57.
[http://dx.doi.org/10.1016/j.jtbi.2015.07.030] [PMID: 26254214]
[57]
Shi, Y.; Guo, Y.; Hu, Y.; Li, M. Position-specific prediction of methylation sites from sequence conservation based on information theory. Sci. Rep., 2015, 5, 12403.
[http://dx.doi.org/10.1038/srep12403] [PMID: 26202727]
[58]
Zhang, Y.; Tang, L.; Zou, H.; Yang, Q.; Yu, X.; Jiang, J.; Wu, H.; Yu, R. Identifying protein arginine methylation sites using global features of protein sequence coupled with support vector machine optimized by particle swarm optimization algorithm. Chemom. Intell. Lab. Syst., 2015, 146, 102-107.
[http://dx.doi.org/10.1016/j.chemolab.2015.05.011]
[59]
Qiu, W-R.; Sun, B-Q.; Xiao, X.; Xu, Z-C.; Chou, K-C. iPTM-mLys: identifying multiple lysine PTM sites and their different types. Bioinformatics, 2016, 32(20), 3116-3123.
[http://dx.doi.org/10.1093/bioinformatics/btw380] [PMID: 27334473]
[60]
Wen, P-P.; Shi, S-P.; Xu, H-D.; Wang, L-N.; Qiu, J-D. Accurate in silico prediction of species-specific methylation sites based on information gain feature optimization. Bioinformatics, 2016, 32(20), 3107-3115.
[http://dx.doi.org/10.1093/bioinformatics/btw377] [PMID: 27354692]
[61]
Deng, W.; Wang, Y.; Ma, L.; Zhang, Y.; Ullah, S.; Xue, Y. Computational prediction of methylation types of covalently modified lysine and arginine residues in proteins. Brief. Bioinform., 2017, 18(4), 647-658.
[PMID: 27241573]
[62]
Kumar, P.; Joy, J.; Pandey, A.; Gupta, D. PRmePRed: A protein arginine methylation prediction tool. PLoS One, 2017, 12(8)e0183318
[http://dx.doi.org/10.1371/journal.pone.0183318] [PMID: 28813517]
[63]
Wei, L.; Xing, P.; Shi, G.; Ji, Z-L.; Zou, Q. Fast prediction of protein methylation sites using a sequence-based feature selection technique. IEEE/ACM Trans. Comput. Biol. Bioinformatics, 2019, 16(4), 1264-1273.
[64]
Liu, Y.; Wang, M.; Xi, J.; Luo, F.; Li, A. PTM-ssMP: A web server for predicting different types of post-translational modification sites using novel site-specific modification profile. Int. J. Biol. Sci., 2018, 14(8), 946-956.
[http://dx.doi.org/10.7150/ijbs.24121] [PMID: 29989096]
[65]
Qiu, H.; Guo, Y.; Yu, L.; Pu, X.; Li, M. Predicting protein lysine methylation sites by incorporating single-residue structural features into Chou’s pseudo components. Chemom. Intell. Lab. Syst., 2018, 179, 31-38.
[http://dx.doi.org/10.1016/j.chemolab.2018.05.007]
[66]
Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn., 1995, 20(3), 273-297.
[http://dx.doi.org/10.1007/BF00994018]
[67]
Breiman, L. Random forests. Mach. Learn., 2001, 45(1), 5-32.
[http://dx.doi.org/10.1023/A:1010933404324]
[68]
Lafferty, J.; McCallum, A.; Pereira, F.C. In: Conditional random fields: Probabilistic models for segmenting and labeling sequence dataProceedings of the 18th International Conference on Machine Learning 2001 (ICML 2001); , 2001, pp. 282-289.
[69]
Xue, Y.; Liu, Z.; Gao, X.; Jin, C.; Wen, L.; Yao, X.; Ren, J. GPS-SNO: computational prediction of protein S-nitrosylation sites with a modified GPS algorithm. PLoS One, 2010, 5(6)e11290
[http://dx.doi.org/10.1371/journal.pone.0011290] [PMID: 20585580]
[70]
Zhang, C.S.; Liu, C.C.; Zhang, X.L.; Almpanidis, G. An up-to-date comparison of state-of-the-art classification algorithms. Expert Syst. Appl., 2017, 82, 128-150.
[http://dx.doi.org/10.1016/j.eswa.2017.04.003]
[71]
Liu, B.; Chen, J.; Guo, M.; Wang, X. Protein remote homology detection and fold recognition based on sequence-order frequency matrix. IEEE/ACM Trans. Comput. Biol. Bioinformatics, 2019, 16(1), 292-300.
[http://dx.doi.org/10.1109/TCBB.2017.2765331] [PMID: 29990004]
[72]
Liu, B. BioSeq-Analysis: a platform for DNA, RNA and protein sequence analysis based on machine learning approaches. Brief. Bioinform., 2017.
[http://dx.doi.org/10.1093/bib/bbx165] [PMID: 29272359]
[73]
Wei, L.; Ding, Y.; Su, R.; Tang, J.; Zou, Q. Prediction of human protein subcellular localization using deep learning. J. Parallel Distrib. Comput., 2018, 117, 212-217.
[http://dx.doi.org/10.1016/j.jpdc.2017.08.009]
[74]
Wei, L.; Chen, H.; Su, R. M6APred-EL: A sequence-based predictor for identifying N6-methyladenosine sites using ensemble learning. Mol. Ther. Nucleic Acids, 2018, 12, 635-644.
[http://dx.doi.org/10.1016/j.omtn.2018.07.004] [PMID: 30081234]
[75]
Manavalan, B.; Basith, S.; Shin, T.H.; Wei, L.; Lee, G. mAHTPred: A sequence-based meta-predictor for improving the prediction of anti-hypertensive peptides using effective feature representation. Bioinformatics, 2018.
[http://dx.doi.org/10.1093/bioinformatics/bty1047] [PMID: 30590410]
[76]
Yijie , Ding. J.T.; Guo, F. Identification of drug-target interactions via multiple information integration. Inf. Sci., 2017, 418, 546-560.
[http://dx.doi.org/10.1016/j.ins.2017.08.045]
[77]
Chen, W.; Lv, H.; Nie, F.; Lin, H. i6mA-Pred: Identifying DNA N6-methyladenine sites in the rice genome. Bioinformatics, 2019.
[http://dx.doi.org/10.1093/bioinformatics/btz015] [PMID: 30624619]
[78]
Chen, W; Feng, P-M; Lin, H Chou, K-C iSS-PseDNC: Identifying Splicing Sites Using Pseudo Dinucleotide Composition. Biomed Research International 2014, 2014.
[79]
Chen, W.; Yang, H.; Feng, P.; Ding, H.; Lin, H. iDNA4mC: Identifying DNA N4-methylcytosine sites based on nucleotide chemical properties. Bioinformatics, 2017, 33(22), 3518-3523.
[http://dx.doi.org/10.1093/bioinformatics/btx479] [PMID: 28961687]
[80]
Wang, P.; Zhang, X.; Fu, T.; Li, S.; Li, B.; Xue, W.; Yao, X.; Chen, Y.; Zhu, F. Differentiating physicochemical properties between addictive and nonaddictive ADHD drugs revealed by molecular dynamics simulation studies. ACS Chem. Neurosci., 2017, 8(6), 1416-1428.
[http://dx.doi.org/10.1021/acschemneuro.7b00173] [PMID: 28557437]
[81]
Li, B.; Tang, J.; Yang, Q.; Li, S.; Cui, X.; Li, Y.; Chen, Y.; Xue, W.; Li, X.; Zhu, F. NOREVA: normalization and evaluation of MS-based metabolomics data. Nucleic Acids Res., 2017, 45(W1), W162-W170.
[http://dx.doi.org/10.1093/nar/gkx449] [PMID: 28525573]
[82]
Yang, H.; Lv, H.; Ding, H.; Chen, W.; Lin, H. iRNA-2OM: A sequence-based predictor for identifying 2′-O-methylation sites in homo sapiens. J. Comput. Biol., 2018, 25(11), 1266-1277.
[83]
Feng, C.Q.; Zhang, Z.Y.; Zhu, X.J.; Lin, Y.; Chen, W.; Tang, H.; Lin, H. iTerm-PseKNC: A sequence-based tool for predicting bacterial transcriptional terminators. Bioinformatics, 2018, 35(9), 1469-1477.
[PMID: 30247625]
[84]
Dao, F.Y.; Lv, H.; Wang, F.; Feng, C.Q.; Ding, H.; Chen, W.; Lin, H. Identify origin of replication in Saccharomyces cerevisiae using two-step feature selection technique. Bioinformatics, 2018, 35(12), 2075-2083.
[PMID: 30428009]
[85]
Xue, W.; Yang, F.; Wang, P.; Zheng, G.; Chen, Y.; Yao, X.; Zhu, F. What contributes to serotonin-norepinephrine reuptake inhibitors’ dual-targeting mechanism? The key role of transmembrane domain 6 in human serotonin and norepinephrine transporters revealed by molecular dynamics simulation. ACS Chem. Neurosci., 2018, 9(5), 1128-1140.
[http://dx.doi.org/10.1021/acschemneuro.7b00490] [PMID: 29300091]
[86]
Chang, C-C.; Lin, C-J. LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol . (TIST), 2011, 2(3), 27.
[http://dx.doi.org/10.1145/1961189.1961199]
[87]
Li, Y.; Wang, M.; Wang, H.; Tan, H.; Zhang, Z.; Webb, G.I.; Song, J. Accurate in silico identification of species-specific acetylation sites by integrating protein sequence-derived and functional features. Sci. Rep., 2014, 4, 5765.
[http://dx.doi.org/10.1038/srep05765] [PMID: 25042424]
[88]
Jia, J.; Liu, Z.; Xiao, X.; Liu, B.; Chou, K-C. iSuc-PseOpt: Identifying lysine succinylation sites in proteins by incorporating sequence-coupling effects into pseudo components and optimizing imbalanced training dataset. Anal. Biochem., 2016, 497, 48-56.
[http://dx.doi.org/10.1016/j.ab.2015.12.009] [PMID: 26723495]
[89]
Jia, J.; Liu, Z.; Xiao, X.; Liu, B.; Chou, K-C. pSuc-Lys: Predict lysine succinylation sites in proteins with PseAAC and ensemble random forest approach. J. Theor. Biol., 2016, 394, 223-230.
[http://dx.doi.org/10.1016/j.jtbi.2016.01.020] [PMID: 26807806]
[90]
Hasan, M.M.; Khatun, M.S.; Mollah, M.N.H.; Yong, C.; Guo, D. A systematic identification of species-specific protein succinylation sites using joint element features information. Int. J. Nanomedicine, 2017, 12, 6303-6315.
[http://dx.doi.org/10.2147/IJN.S140875] [PMID: 28894368]
[91]
Liu, B.; Yang, F.; Huang, D.S.; Chou, K-C. iPromoter-2L: a two-layer predictor for identifying promoters and their types by multi-window-based PseKNC. Bioinformatics, 2018, 34(1), 33-40.
[http://dx.doi.org/10.1093/bioinformatics/btx579] [PMID: 28968797]
[92]
Wei, L.; Xing, P.; Zeng, J.; Chen, J.; Su, R.; Guo, F. Improved prediction of protein-protein interactions using novel negative samples, features, and an ensemble classifier. Artif. Intell. Med., 2017, 83, 67-74.
[http://dx.doi.org/10.1016/j.artmed.2017.03.001] [PMID: 28320624]
[93]
Wei, L.; Wan, S.; Guo, J.; Wong, K.K. A novel hierarchical selective ensemble classifier with bioinformatics application. Artif. Intell. Med., 2017, 83, 82-90.
[http://dx.doi.org/10.1016/j.artmed.2017.02.005] [PMID: 28245947]
[94]
Song, J.; Tang, J.; Guo, F. Identification of Inhibitors of MMPS Enzymes via a Novel Computational Approach. Int. J. Biol. Sci., 2018, 14(8), 863-871.
[http://dx.doi.org/10.7150/ijbs.24588] [PMID: 29989088]
[95]
Chen, W.; Feng, P.; Ding, H.; Lin, H. Classifying included and excluded exons in exon skipping event using histone modifications. Front. Genet., 2018, 9, 433.
[http://dx.doi.org/10.3389/fgene.2018.00433] [PMID: 30327665]
[96]
Cheng, L.; Hu, Y.; Sun, J.; Zhou, M.; Jiang, Q. DincRNA: a comprehensive web-based bioinformatics toolkit for exploring disease associations and ncRNA function. Bioinformatics, 2018, 34(11), 1953-1956.
[http://dx.doi.org/10.1093/bioinformatics/bty002] [PMID: 29365045]
[97]
Cheng, L.; Jiang, Y.; Ju, H.; Sun, J.; Peng, J.; Zhou, M.; Hu, Y. InfAcrOnt: calculating cross-ontology term similarities using information flow by a random walk. BMC Genomics, 2018, 19(Suppl. 1), 919.
[http://dx.doi.org/10.1186/s12864-017-4338-6] [PMID: 29363423]
[98]
Hu, Y.; Zhao, T.; Zhang, N.; Zang, T.; Zhang, J.; Cheng, L. Identifying diseases-related metabolites using random walk. BMC Bioinformatics, 2018, 19(Suppl. 5), 116.
[http://dx.doi.org/10.1186/s12859-018-2098-1] [PMID: 29671398]
[99]
Hu, Y.; Zhou, M.; Shi, H.; Ju, H.; Jiang, Q.; Cheng, L. Measuring disease similarity and predicting disease-related ncRNAs by a novel method. BMC Med. Genomics, 2017, 10(5)(Suppl. 5), 71.
[http://dx.doi.org/10.1186/s12920-017-0315-9] [PMID: 29297338]
[100]
Zhu, P.F.; Hu, Q.; Hu, Q.H.; Zhang, C.Q.; Feng, Z.Z. Multi-view label embedding. Pattern Recognit., 2018, 84, 126-135.
[http://dx.doi.org/10.1016/j.patcog.2018.07.009]
[101]
Zhu, P.F.; Hu, Q.H.; Han, Y.H.; Zhang, C.Q.; Du, Y. Combining neighborhood separable subspaces for classification via sparsity regularized optimization. Inf. Sci., 2016, 370, 270-287.
[http://dx.doi.org/10.1016/j.ins.2016.08.004]
[102]
Zhu, P.F.; Xu, Q.; Hu, Q.H.; Zhang, C.Q. Co-regularized unsupervised feature selection. Neurocomputing, 2018, 275, 2855-2863.
[http://dx.doi.org/10.1016/j.neucom.2017.11.061]
[103]
Zhu, P.F.; Xu, Q.; Hu, Q.H.; Zhang, C.Q.; Zhao, H. Multi-label feature selection with missing labels. Pattern Recognit., 2018, 74, 488-502.
[http://dx.doi.org/10.1016/j.patcog.2017.09.036]
[104]
Zhu, P.F.; Zhu, W.C.; Hu, Q.H.; Zhang, C.Q.; Zuo, W.M. Subspace clustering guided unsupervised feature selection. Pattern Recognit., 2017, 66, 364-374.
[http://dx.doi.org/10.1016/j.patcog.2017.01.016]
[105]
Liu, Y.; Wang, X.; Liu, B. IDP-CRF: Intrinsically disordered protein/region identification based on conditional random fields. Int. J. Mol. Sci., 2018, 19, 2483.
[http://dx.doi.org/10.3390/ijms19092483]
[106]
Liu, Y.; Wang, X.; Liu, B. A comprehensive review and comparison of existing computational methods for intrinsically disordered protein and region prediction. Brief. Bioinform., 2019, 20(1), 330-346.
[http://dx.doi.org/10.1093/bib/bbx126] [PMID: 30657889]
[107]
Henikoff, S.; Henikoff, J.G. Amino acid substitution matrices from protein blocks. Proc. Natl. Acad. Sci. USA, 1992, 89(22), 10915-10919.
[http://dx.doi.org/10.1073/pnas.89.22.10915] [PMID: 1438297]
[108]
Cabarle, F.G.C.; Adorna, H.N.; Jiang, M.; Zeng, X. Spiking neural p systems with scheduled synapses. IEEE Trans. Nanobioscience, 2017, 16(8), 792-801.
[http://dx.doi.org/10.1109/TNB.2017.2762580] [PMID: 29035221]
[109]
Zhang, X.; Pan, L.; Paun, A. Păun AJIToNN, Systems L: On the universality of axon P systems. IEEE Trans. Neural Netw. Learn. Syst., 2015, 26(11), 2816-2829.
[http://dx.doi.org/10.1109/TNNLS.2015.2396940] [PMID: 25680218]
[110]
Song, T.; Rodríguez-Patón, A.; Zheng, P.; Zeng, X.; Systems, D. Spiking neural P systems with colored spikes. IEEE Trans. Cognitive Develop. Sys, 2018, 10(4), 1106-1115.
[http://dx.doi.org/10.1109/TCDS.2017.2785332]
[111]
Chen, W.; Feng, P.; Liu, T.; Jin, D. Recent advances in machine learning methods for predicting heat shock proteins. Curr. Drug Metab., 2018, 20(3), 224-228.
[PMID: 30378494]
[112]
Feng, P-M.; Chen, W.; Lin, H.; Chou, K-C. iHSP-PseRAAAC: Identifying the heat shock protein families using pseudo reduced amino acid alphabet composition. Anal. Biochem., 2013, 442(1), 118-125.
[http://dx.doi.org/10.1016/j.ab.2013.05.024] [PMID: 23756733]
[113]
Zou, Q.; Xing, P.; Wei, L.; Liu, B. Gene2vec: gene subsequence embedding for prediction of mammalian N6-methyladenosine sites from mRNA. RNA, 2019, 25(2), 205-218.
[http://dx.doi.org/10.1261/rna.069112.118] [PMID: 30425123]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 23
ISSUE: 15
Year: 2019
Page: [1663 - 1670]
Pages: 8
DOI: 10.2174/1385272823666190723141347
Price: $58

Article Metrics

PDF: 13
HTML: 1