High Glucose Affects the Cytotoxic Potential of Rapamycin, Metformin and Hydrogen Peroxide in Cultured Human Mesenchymal Stem Cells

Author(s): Azam Roohi, Mahin Nikougoftar, Hamed Montazeri, Shadisadat Navabi, Fazel Shokri, Seyed Nasser Ostad, Mohammad Hossein Ghahremani*.

Journal Name: Current Molecular Medicine

Volume 19 , Issue 9 , 2019

  Journal Home
Translate in Chinese
Become EABM
Become Reviewer

Abstract:

Background: Oxidative stress and chronic hyperglycemia are two major side effects of type 2 diabetes affecting all cell types including mesenchymal stem cells (MSCs). As a cell therapy choice, understanding the behavior of MSCs will provide crucial information for efficient treatment.

Methods: Placental mesenchymal stem cells were treated with various concentrations of glucose, metformin, rapamycin, and hydrogen peroxide to monitor their viability and cell cycle distribution. Cellular viability was examined via the MTT assay. Cell cycle distribution was studied by propidium iodide staining and apoptosis was determined using Annexin Vpropidium iodide staining and flow cytometry. Involvement of potential signaling pathways was evaluated by Western blotting for activation of Akt, P70S6K, and AMPK.

Results: The results indicated that high glucose augmented cell viability and reduced metformin toxic potential. However, the hydrogen peroxide and rapamycin toxicities were exacerbated.

Conclusion: Our findings suggest that high glucose concentration has a major effect on placental mesenchymal stem cell viability in the presence of rapamycin, metformin and hydrogen peroxide in culture.

Keywords: Glucose, rapamycin, metformin, hydrogen peroxide, mesenchymal stem cell, cytotoxic potential.

[1]
Unnikrishnan R, Pradeepa R, Joshi SR, Mohan V. Type 2 Diabetes: Demystifying the Global Epidemic. Diabetes 2017; 66(6): 1432-42.
[http://dx.doi.org/10.2337/db16-0766] [PMID: 28533294]
[2]
Nishikawa T, Edelstein D, Brownlee M. The missing link: a single unifying mechanism for diabetic complications. Kidney Int Suppl 2000; 77: S26-30.
[http://dx.doi.org/10.1046/j.1523-1755.2000.07705.x] [PMID: 10997687]
[3]
Liemburg-Apers DC, Willems PH, Koopman WJ, Grefte S. Interactions between mitochondrial reactive oxygen species and cellular glucose metabolism. Arch Toxicol 2015; 89(8): 1209-26.
[http://dx.doi.org/10.1007/s00204-015-1520-y] [PMID: 26047665]
[4]
Bashan N, Kovsan J, Kachko I, Ovadia H, Rudich A. Positive and negative regulation of insulin signaling by reactive oxygen and nitrogen species. Physiol Rev 2009; 89(1): 27-71.
[http://dx.doi.org/10.1152/physrev.00014.2008] [PMID: 19126754]
[5]
Rehman K, Akash MSH. Mechanism of generation of oxidative stress and pathophysiology of type 2 diabetes mellitus: How are they interlinked? J Cell Biochem 2017; 118(11): 3577-85.
[http://dx.doi.org/10.1002/jcb.26097] [PMID: 28460155]
[6]
Volpe CMO, Villar-Delfino PH, Dos Anjos PMF, Nogueira-Machado JA. Cellular death, reactive oxygen species (ROS) and diabetic complications. Cell Death Dis 2018; 9(2): 119.
[http://dx.doi.org/10.1038/s41419-017-0135-z] [PMID: 29371661]
[7]
Pernicova I, Korbonits M. Metformin--mode of action and clinical implications for diabetes and cancer. Nat Rev Endocrinol 2014; 10(3): 143-56.
[http://dx.doi.org/10.1038/nrendo.2013.256] [PMID: 24393785]
[8]
Rena G, Hardie DG, Pearson ER. The mechanisms of action of metformin. Diabetologia 2017; 60(9): 1577-85.
[http://dx.doi.org/10.1007/s00125-017-4342-z] [PMID: 28776086]
[9]
Inoki K, Kim J, Guan KL. AMPK and mTOR in cellular energy homeostasis and drug targets. Annu Rev Pharmacol Toxicol 2012; 52: 381-400.
[http://dx.doi.org/10.1146/annurev-pharmtox-010611-134537] [PMID: 22017684]
[10]
Saxton RA, Sabatini DM. mTOR Signaling in Growth, Metabolism, and Disease. Cell 2017; 168(6): 960-76.
[http://dx.doi.org/10.1016/j.cell.2017.02.004] [PMID: 28283069]
[11]
Eid AA, Ford BM, Bhandary B, et al. Mammalian target of rapamycin regulates Nox4-mediated podocyte depletion in diabetic renal injury. Diabetes 2013; 62(8): 2935-47.
[http://dx.doi.org/10.2337/db12-1504] [PMID: 23557706]
[12]
Farmer RE, Ford D, Forbes HJ, et al. Metformin and cancer in type 2 diabetes: a systematic review and comprehensive bias evaluation. Int J Epidemiol 2017; 46(2): 728-44.
[http://dx.doi.org/10.1093/ije/dyx046] [PMID: 28031313]
[13]
Vallianou NG, Evangelopoulos A, Kazazis C. Metformin and cancer. Rev Diabet Stud 2013; 10(4): 228-35.
[http://dx.doi.org/10.1900/RDS.2013.10.228] [PMID: 24841876]
[14]
Jiang Y, Jahagirdar BN, Reinhardt RL, et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 2002; 418(6893): 41-9.
[http://dx.doi.org/10.1038/nature00870] [PMID: 12077603]
[15]
da Silva Meirelles L, Chagastelles PC, Nardi NB. Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci 2006; 119(Pt 11): 2204-13.
[http://dx.doi.org/10.1242/jcs.02932] [PMID: 16684817]
[16]
Isakson M, de Blacam C, Whelan D, McArdle A, Clover AJ. Mesenchymal Stem Cells and Cutaneous Wound Healing: Current Evidence and Future Potential. Stem Cells Int 2015; 2015831095
[http://dx.doi.org/10.1155/2015/831095] [PMID: 26106431]
[17]
Burova E, Borodkina A, Shatrova A, Nikolsky N. Sublethal oxidative stress induces the premature senescence of human mesenchymal stem cells derived from endometrium. Oxid Med Cell Longev 2013; 2013474931
[http://dx.doi.org/10.1155/2013/474931] [PMID: 24062878]
[18]
Brandl A, Meyer M, Bechmann V, Nerlich M, Angele P. Oxidative stress induces senescence in human mesenchymal stem cells. Exp Cell Res 2011; 317(11): 1541-7.
[http://dx.doi.org/10.1016/j.yexcr.2011.02.015] [PMID: 21376036]
[19]
Krishan A. Rapid flow cytofluorometric analysis of mammalian cell cycle by propidium iodide staining. J Cell Biol 1975; 66(1): 188-93.
[http://dx.doi.org/10.1083/jcb.66.1.188] [PMID: 49354]
[20]
Mir Mohammadrezaei F. Mohseni kouchesfehani H, Montazeri H, Gharghabi M, Ostad SN, Ghahremani MH. Signaling crosstalk of FHIT, CHK2 and p38 in etoposide induced growth inhibition in MCF-7 cells. Cell Signal 2013; 25(1): 126-32.
[http://dx.doi.org/10.1016/j.cellsig.2012.09.019] [PMID: 23000346]
[21]
Welinder C, Ekblad L. Coomassie staining as loading control in Western blot analysis. J Proteome Res 2011; 10(3): 1416-9.
[http://dx.doi.org/10.1021/pr1011476] [PMID: 21186791]
[22]
Jumabay M, Moon JH, Yeerna H, Boström KI. Effect of Diabetes Mellitus on Adipocyte-Derived Stem Cells in Rat. J Cell Physiol 2015; 230(11): 2821-8.
[http://dx.doi.org/10.1002/jcp.25012] [PMID: 25854185]
[23]
Deorosan B, Nauman EA. The role of glucose, serum, and three-dimensional cell culture on the metabolism of bone marrow-derived mesenchymal stem cells. Stem Cells Int 2011; 2011429187
[http://dx.doi.org/10.4061/2011/429187] [PMID: 21603146]
[24]
Weil BR, Abarbanell AM, Herrmann JL, Wang Y, Meldrum DR. High glucose concentration in cell culture medium does not acutely affect human mesenchymal stem cell growth factor production or proliferation. Am J Physiol Regul Integr Comp Physiol 2009; 296(6): R1735-43.
[http://dx.doi.org/10.1152/ajpregu.90876.2008] [PMID: 19386985]
[25]
Ryu JM, Lee MY, Yun SP, Han HJ. High glucose regulates cyclin D1/E of human mesenchymal stem cells through TGF-beta1 expression via Ca2+/PKC/MAPKs and PI3K/Akt/mTOR signal pathways. J Cell Physiol 2010; 224(1): 59-70.
[PMID: 20232305]
[26]
Cong LN, Chen H, Li Y, et al. Physiological role of Akt in insulin-stimulated translocation of GLUT4 in transfected rat adipose cells. Mol Endocrinol 1997; 11(13): 1881-90.
[http://dx.doi.org/10.1210/mend.11.13.0027] [PMID: 9415393]
[27]
Hers I, Vincent EE, Tavaré JM. Akt signalling in health and disease. Cell Signal 2011; 23(10): 1515-27.
[http://dx.doi.org/10.1016/j.cellsig.2011.05.004] [PMID: 21620960]
[28]
Grabiec K, Gajewska M, Milewska M, Błaszczyk M, Grzelkowska-Kowalczyk K. The influence of high glucose and high insulin on mechanisms controlling cell cycle progression and arrest in mouse C2C12 myoblasts: the comparison with IGF-I effect. J Endocrinol Invest 2014; 37(3): 233-45.
[http://dx.doi.org/10.1007/s40618-013-0007-z] [PMID: 24615360]
[29]
Wei ML, Duan P, Wang ZM, Ding M, Tu P. High glucose and high insulin conditions promote MCF7 cell proliferation and invasion by upregulating IRS1 and activating the Ras/Raf/ERK pathway. Mol Med Rep 2017; 16(5): 6690-6.
[http://dx.doi.org/10.3892/mmr.2017.7420] [PMID: 28901503]
[30]
Kuruganti PA, Wurster RD, Lucchesi PA. Mitogen activated protein kinase activation and oxidant signaling in astrocytoma cells. J Neurooncol 2002; 56(2): 109-17.
[http://dx.doi.org/10.1023/A:1014530309082] [PMID: 11995811]
[31]
Guo YL, Chakraborty S, Rajan SS, Wang R, Huang F. Effects of oxidative stress on mouse embryonic stem cell proliferation, apoptosis, senescence, and self-renewal. Stem Cells Dev 2010; 19(9): 1321-31.
[http://dx.doi.org/10.1089/scd.2009.0313] [PMID: 20092403]
[32]
Robertson RP. Chronic oxidative stress as a central mechanism for glucose toxicity in pancreatic islet beta cells in diabetes. J Biol Chem 2004; 279(41): 42351-4.
[http://dx.doi.org/10.1074/jbc.R400019200] [PMID: 15258147]
[33]
Hruda J, Sramek V, Leverve X. High glucose increases susceptibility to oxidative-stress-induced apoptosis and DNA damage in K-562 cells. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2010; 154(4): 315-20.
[http://dx.doi.org/10.5507/bp.2010.047] [PMID: 21293542]
[34]
Soares HP, Ni Y, Kisfalvi K, Sinnett-Smith J, Rozengurt E. Different patterns of Akt and ERK feedback activation in response to rapamycin, active-site mTOR inhibitors and metformin in pancreatic cancer cells. PLoS One 2013; 8(2)e57289
[http://dx.doi.org/10.1371/journal.pone.0057289] [PMID: 23437362]
[35]
Morita M, Prudent J, Basu K, Goyon V, Katsumura S, Hulea L, et al. mTOR Controls Mitochondrial Dynamics and Cell Survival via MTFP1. Mol Cell 2017; 67(6): 922-35.e5.
[36]
Keats E, Khan ZA. Unique responses of stem cell-derived vascular endothelial and mesenchymal cells to high levels of glucose. PLoS One 2012; 7(6)e38752
[http://dx.doi.org/10.1371/journal.pone.0038752] [PMID: 22701703]
[37]
Silvestri A, Palumbo F, Rasi I, et al. Metformin induces apoptosis and downregulates pyruvate kinase M2 in breast cancer cells only when grown in nutrient-poor conditions. PLoS One 2015; 10(8)e0136250
[http://dx.doi.org/10.1371/journal.pone.0136250] [PMID: 26291325]
[38]
Habib SL, Kasinath BS, Arya RR, Vexler S, Velagapudi C. Novel mechanism of reducing tumourigenesis: upregulation of the DNA repair enzyme OGG1 by rapamycin-mediated AMPK activation and mTOR inhibition. Eur J Cancer 2010; 46(15): 2806-20.
[http://dx.doi.org/10.1016/j.ejca.2010.06.117] [PMID: 20656472]
[39]
Mukhopadhyay S, Saqcena M, Chatterjee A, Garcia A, Frias MA, Foster DA. Reciprocal regulation of AMP-activated protein kinase and phospholipase D. J Biol Chem 2015; 290(11): 6986-93.
[http://dx.doi.org/10.1074/jbc.M114.622571] [PMID: 25632961]
[40]
Fraenkel M, Ketzinel-Gilad M, Ariav Y, et al. mTOR inhibition by rapamycin prevents beta-cell adaptation to hyperglycemia and exacerbates the metabolic state in type 2 diabetes. Diabetes 2008; 57(4): 945-57.
[http://dx.doi.org/10.2337/db07-0922] [PMID: 18174523]


Rights & PermissionsPrintExport Cite as


Article Details

VOLUME: 19
ISSUE: 9
Year: 2019
Page: [688 - 698]
Pages: 11
DOI: 10.2174/1566524019666190722115842
Price: $65

Article Metrics

PDF: 23
HTML: 4
EPUB: 1
PRC: 1

Special-new-year-discount