An Overview on ATP Dependent and Independent Proteases Including an Anterograde to Retrograde Control on Mitochondrial Function; Focus on Diabetes and Diabetic Complications

Author(s): Anil Kumar Kalvala, Islauddin Khan, Chayanika Gundu, Ashutosh Kumar*.

Journal Name: Current Pharmaceutical Design

Volume 25 , Issue 23 , 2019


Abstract:

Mitochondria are the central power stations of the cell involved with a myriad of cell signalling pathways that contribute for whole health status of the cell. It is a well known fact that not only mitochondrial genome encodes for mitochondrial proteins but there are several other mitochondrial specific proteins encoded by nuclear genome which regulate plethora of cell catabolic and anabolic process. Anterograde pathways include nuclear gene encoded proteins and their specific transport into the mitochondria and regulation of mitochondrial homeostasis. The retrograde pathways include crosstalk between the mitochondria and cytoplasmic proteins. Indeed, ATP dependent and independent proteases are identified to be very critical in balancing anterograde to retrograde signalling and vice versa to maintain the cell viability or cell death. Different experimental studies conducted on silencing the genes of these proteases have shown embryonic lethality, cancer cells death, increased hepatic glucose output, insulin tolerance, increased protein exclusion bodies, mitochondrial dysfunction, and defect in mitochondrial biogenesis, increased inflammation, Apoptosis etc. These experimental studies included from eubacteria to eukaryotes. Hence, many lines of theories proposed these proteases are conservative from eubacteria to eukaryotes. However, the regulation of these proteases at gene level is not clearly understood and still research is warranted. In this review, we articulated the origin and regulation of these proteases and the cross talk between the nucleus and mitochondria vice versa, and highlighted the role of these proteases in diabetes and diabetic complications in human diseases.

Keywords: Diabetes, mitochondrial dysfunction, ATP dependent and independent proteases, mitochondrial genome, anterograde pathways, apoptosis.

[1]
Gregersen N, Bross P, Vang S, Christensen JH. Protein misfolding and human disease. Annu Rev Genomics Hum Genet 2006; 7: 103-24.
[http://dx.doi.org/10.1146/annurev.genom.7.080505.115737] [PMID: 16722804]
[2]
Goldberg AL. Protein degradation and protection against misfolded or damaged proteins. Nature 2003; 426(6968): 895-9.
[http://dx.doi.org/10.1038/nature02263] [PMID: 14685250]
[3]
Ogura T, Wilkinson AJ. AAA+ superfamily ATPases: Common structure--diverse function. Genes Cells 2001; 6(7): 575-97.
[http://dx.doi.org/10.1046/j.1365-2443.2001.00447.x] [PMID: 11473577]
[4]
Lee HJ, Chung K, Lee H, Lee K, Lim JH, Song J. Downregulation of mitochondrial lon protease impairs mitochondrial function and causes hepatic insulin resistance in human liver SK-HEP-1 cells. Diabetologia 2011; 54(6): 1437-46.
[http://dx.doi.org/10.1007/s00125-011-2074-z] [PMID: 21347624]
[5]
Gibellini L, Pinti M, Boraldi F, et al. Silencing of mitochondrial Lon protease deeply impairs mitochondrial proteome and function in colon cancer cells. FASEB J 2014; 28(12): 5122-35.
[http://dx.doi.org/10.1096/fj.14-255869] [PMID: 25154874]
[6]
Gibellini L, Losi L, De Biasi S, et al. LonP1 differently modulates mitochondrial function and bioenergetics of primary versus metastatic colon cancer cells. Front Oncol 2018; 8: 254.
[http://dx.doi.org/10.3389/fonc.2018.00254] [PMID: 30038898]
[7]
Quirós PMEY, Español Y, Acín-Pérez R, et al. ATP-dependent Lon protease controls tumor bioenergetics by reprogramming mitochondrial activity. Cell Rep 2014; 8(2): 542-56.
[http://dx.doi.org/10.1016/j.celrep.2014.06.018] [PMID: 25017063]
[8]
Fischer F, Langer JD, Osiewacz HD. Identification of potential mitochondrial CLPXP protease interactors and substrates suggests its central role in energy metabolism. Sci Rep 2015; 5: 18375.
[http://dx.doi.org/10.1038/srep18375] [PMID: 26679294]
[9]
Jenkinson EM, Rehman AU, Walsh T, et al. Perrault syndrome is caused by recessive mutations in CLPP, encoding a mitochondrial ATP-dependent chambered protease. Am J Hum Genet 2013; 92(4): 605-13.
[http://dx.doi.org/10.1016/j.ajhg.2013.02.013] [PMID: 23541340]
[10]
Gispert S, Parganlija D, Klinkenberg M, et al. Loss of mitochondrial peptidase Clpp leads to infertility, hearing loss plus growth retardation via accumulation of CLPX, mtDNA and inflammatory factors. Hum Mol Genet 2013; 22(24): 4871-87.
[http://dx.doi.org/10.1093/hmg/ddt338] [PMID: 23851121]
[11]
Consolato F, Maltecca F, Tulli S, Sambri I, Casari G. m-AAA and i-AAA complexes work coordinately regulating OMA1, the stressactivated supervisor of mitochondrial dynamics. J Cell Sci 2018; 131(7): Pii: Jcs213546.
[12]
Di Bella D, Lazzaro F, Brusco A, et al. Mutations in the mitochondrial protease gene AFG3L2 cause dominant hereditary ataxia SCA28. Nat Genet 2010; 42(4): 313-21.
[http://dx.doi.org/10.1038/ng.544] [PMID: 20208537]
[13]
Gur E, Vishkautzan M, Sauer RT. Protein unfolding and degradation by the AAA+ Lon protease. Protein Sci 2012; 21(2): 268-78.
[http://dx.doi.org/10.1002/pro.2013] [PMID: 22162032]
[14]
Rowland S. Structure and function of the group III chaperonins, a unique clade of protein folding nanomachines. ed. 2016.
[15]
Kataoka K, Nakamura C, Asahi T, Sawamura N. Mitochondrial cereblon functions as a Lon-type protease. Sci Rep 2016; 6: 29986.
[http://dx.doi.org/10.1038/srep29986] [PMID: 27417535]
[16]
Van Dyck L, Langer T. ATP-dependent proteases controlling mitochondrial function in the yeast Saccharomyces cerevisiae. Cell Mol Life Sci 1999; 56(9-10): 825-42.
[http://dx.doi.org/10.1007/s000180050029] [PMID: 11212342]
[17]
Koppen M, Langer T. Protein degradation within mitochondria: Versatile activities of AAA proteases and other peptidases. Crit Rev Biochem Mol Biol 2007; 42(3): 221-42.
[http://dx.doi.org/10.1080/10409230701380452] [PMID: 17562452]
[18]
Janska H, Piechota J, Kwasniak M. ATP-dependent proteases in biogenesis and maintenance of plant mitochondria. Biochim Biophys Acta 2010; 1797(6-7): 1071-5.
[http://dx.doi.org/10.1016/j.bbabio.2010.02.027] [PMID: 20193658]
[19]
Goldberg AL. The mechanism and functions of ATP-dependent proteases in bacterial and animal cells. EJB Reviews Springer 1993; pp. 1-15.
[http://dx.doi.org/10.1007/978-3-642-78046-2_1]
[20]
Dougan DA, Mogk A, Zeth K, Turgay K, Bukau B. AAA+ proteins and substrate recognition, it all depends on their partner in crime. FEBS Lett 2002; 529(1): 6-10.
[http://dx.doi.org/10.1016/S0014-5793(02)03179-4] [PMID: 12354604]
[21]
Rotanova TV, Botos I, Melnikov EE, et al. Slicing a protease: Structural features of the ATP-dependent Lon proteases gleaned from investigations of isolated domains. Protein Sci 2006; 15(8): 1815-28.
[http://dx.doi.org/10.1110/ps.052069306] [PMID: 16877706]
[22]
Venkatesh S, Lee J, Singh K, Lee I, Suzuki CK. Multitasking in the mitochondrion by the ATP-dependent Lon protease. Biochim Biophys Acta 2012; 1823(1): 56-66.
[http://dx.doi.org/10.1016/j.bbamcr.2011.11.003] [PMID: 22119779]
[23]
Kunová N, Ondrovičová G, Bauer JA, et al. The role of Lon-mediated proteolysis in the dynamics of mitochondrial nucleic acid-protein complexes. Sci Rep 2017; 7(1): 631.
[http://dx.doi.org/10.1038/s41598-017-00632-8] [PMID: 28377575]
[24]
Peltier J-B, Ripoll DR, Friso G, et al. Clp protease complexes from photosynthetic and non-photosynthetic plastids and mitochondria of plants, their predicted three-dimensional structures, and functional implications. J Biol Chem 2004; 279(6): 4768-81.
[http://dx.doi.org/10.1074/jbc.M309212200] [PMID: 14593120]
[25]
Quirós PM, Langer T, López-Otín C. New roles for mitochondrial proteases in health, ageing and disease. Nat Rev Mol Cell Biol 2015; 16(6): 345-59.
[http://dx.doi.org/10.1038/nrm3984] [PMID: 25970558]
[26]
Levchenko I, Luo L, Baker TA. Disassembly of the Mu transposase tetramer by the ClpX chaperone. Genes Dev 1995; 9(19): 2399-408.
[http://dx.doi.org/10.1101/gad.9.19.2399] [PMID: 7557391]
[27]
Wagner R, Aigner H, Funk C. FtsH proteases located in the plant chloroplast. Physiol Plant 2012; 145(1): 203-14.
[http://dx.doi.org/10.1111/j.1399-3054.2011.01548.x] [PMID: 22121866]
[28]
Tanveer A, Allen SM, Jackson KE, Charan M, Ralph SA, Habib S. An FtsH protease is recruited to the mitochondrion of Plasmodium falciparum. PLoS One 2013; 8(9)e74408
[http://dx.doi.org/10.1371/journal.pone.0074408] [PMID: 24058559]
[29]
Piechota J, Kolodziejczak M, Juszczak I, Sakamoto W, Janska H. Identification and characterization of high molecular weight complexes formed by matrix AAA proteases and prohibitins in mitochondria of Arabidopsis thaliana. J Biol Chem 2010; 285(17): 12512-21.
[http://dx.doi.org/10.1074/jbc.M109.063644] [PMID: 20172857]
[30]
Sosna J, Voigt S, Mathieu S, et al. The proteases HtrA2/Omi and UCH-L1 regulate TNF-induced necroptosis. Cell Commun Signal 2013; 11: 76.
[http://dx.doi.org/10.1186/1478-811X-11-76] [PMID: 24090154]
[31]
Cilenti L, Ambivero CT, Ward N, Alnemri ES, Germain D, Zervos AS. Inactivation of Omi/HtrA2 protease leads to the deregulation of mitochondrial Mulan E3 ubiquitin ligase and increased mitophagy. Biochim Biophys Acta 2014; 1843(7): 1295-307.
[http://dx.doi.org/10.1016/j.bbamcr.2014.03.027] [PMID: 24709290]
[32]
Osman C, Wilmes C, Tatsuta T, Langer T. Prohibitins interact genetically with Atp23, a novel processing peptidase and chaperone for the F1Fo-ATP synthase. Mol Biol Cell 2007; 18(2): 627-35.
[http://dx.doi.org/10.1091/mbc.e06-09-0839] [PMID: 17135288]
[33]
Ma ZA, Zhao Z, Turk J. Mitochondrial dysfunction and β-cell failure in type 2 diabetes mellitus. Exp Diabetes Res 2012; 2012703538
[34]
Murphy MP. How mitochondria produce reactive oxygen species. Biochem J 2009; 417(1): 1-13.
[http://dx.doi.org/10.1042/BJ20081386] [PMID: 19061483]
[35]
Sivitz WI, Yorek MA. Mitochondrial dysfunction in diabetes: From molecular mechanisms to functional significance and therapeutic opportunities. Antioxid Redox Signal 2010; 12(4): 537-77.
[http://dx.doi.org/10.1089/ars.2009.2531] [PMID: 19650713]
[36]
Kasznicki J, Sliwinska A, Kosmalski M, Merecz A, Majsterek I, Drzewoski J. Genetic polymorphisms (Pro197Leu of Gpx1, +35A/C of SOD1, -262C/T of CAT), the level of antioxidant proteins (GPx1, SOD1, CAT) and the risk of distal symmetric polyneuropathy in Polish patients with type 2 diabetes mellitus. Adv Med Sci 2016; 61(1): 123-9.
[http://dx.doi.org/10.1016/j.advms.2015.10.006] [PMID: 26674569]
[37]
Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 2007; 39(1): 44-84.
[http://dx.doi.org/10.1016/j.biocel.2006.07.001] [PMID: 16978905]
[38]
Sahu BD, Kalvala AK, Koneru M, et al. Ameliorative effect of fisetin on cisplatin-induced nephrotoxicity in rats via modulation of NF-κB activation and antioxidant defence. PLoS One 2014; 9(9)E105070
[http://dx.doi.org/10.1371/journal.pone.0105070] [PMID: 25184746]
[39]
Nyström T. Role of oxidative carbonylation in protein quality control and senescence. EMBO J 2005; 24(7): 1311-7.
[http://dx.doi.org/10.1038/sj.emboj.7600599] [PMID: 15775985]
[40]
Reddy VS, Raghu G, Reddy SS, Pasupulati AK, Suryanarayana P, Reddy GB. Response of small heat shock proteins in diabetic rat retina. Invest Ophthalmol Vis Sci 2013; 54(12): 7674-82.
[http://dx.doi.org/10.1167/iovs.13-12715] [PMID: 24159092]
[41]
Zilaee M, Shirali S. Heat shock proteins and diabetes. Can J Diabetes 2016; 40(6): 594-602.
[http://dx.doi.org/10.1016/j.jcjd.2016.05.016] [PMID: 27545596]
[42]
Strokov IA, Manukhina EB, Bakhtina LY, et al. The function of endogenous protective systems in patients with insulin-dependent diabetes mellitus and polyneuropathy: Effect of antioxidant therapy. Bull Exp Biol Med 2000; 130(10): 986-90.
[http://dx.doi.org/10.1023/A:1002874125993] [PMID: 11177301]
[43]
Wallace DC. A mitochondrial bioenergetic etiology of disease. J Clin Invest 2013; 123(4): 1405-12.
[http://dx.doi.org/10.1172/JCI61398] [PMID: 23543062]
[44]
Russell JW, Golovoy D, Vincent AM, et al. High glucose-induced oxidative stress and mitochondrial dysfunction in neurons. FASEB J 2002; 16(13): 1738-48.
[http://dx.doi.org/10.1096/fj.01-1027com] [PMID: 12409316]
[45]
Yerra VG, Kalvala AK, Kumar A. Isoliquiritigenin reduces oxidative damage and alleviates mitochondrial impairment by SIRT1 activation in experimental diabetic neuropathy. J Nutr Biochem 2017; 47: 41-52.
[http://dx.doi.org/10.1016/j.jnutbio.2017.05.001] [PMID: 28528294]
[46]
Wang C, Youle RJ. The role of mitochondria in apoptosis. Annu Rev Genet 2009; 43: 95-118.
[http://dx.doi.org/10.1146/annurev-genet-102108-134850] [PMID: 19659442]
[47]
Newsholme P, Haber EP, Hirabara SM, et al. Diabetes associated cell stress and dysfunction: Role of mitochondrial and non-mitochondrial ROS production and activity. J Physiol 2007; 583(Pt 1): 9-24.
[http://dx.doi.org/10.1113/jphysiol.2007.135871] [PMID: 17584843]
[48]
Al-Furoukh N, Ianni A, Nolte H, et al. ClpX stimulates the mitochondrial unfolded protein response (UPRmt) in mammalian cells. Biochim Biophys Acta 2015; 1853(10 Pt A): 2580-91.
[http://dx.doi.org/10.1016/j.bbamcr.2015.06.016] [PMID: 26142927]
[49]
Padrão AICT, Carvalho T, Vitorino R, et al. Impaired protein quality control system underlies mitochondrial dysfunction in skeletal muscle of streptozotocin-induced diabetic rats. Biochim Biophys Acta 2012; 1822(8): 1189-97.
[http://dx.doi.org/10.1016/j.bbadis.2012.04.009] [PMID: 22542900]
[50]
Strauss KA, Jinks RN, Puffenberger EG, et al. CODAS syndrome is associated with mutations of LONP1, encoding mitochondrial AAA+ Lon protease. Am J Hum Genet 2015; 96(1): 121-35.
[http://dx.doi.org/10.1016/j.ajhg.2014.12.003] [PMID: 25574826]
[51]
Thomas RE, Andrews LA, Burman JL, Lin W-Y, Pallanck LJ. PINK1-Parkin pathway activity is regulated by degradation of PINK1 in the mitochondrial matrix. PLoS Genet 2014; 10(5)E1004279
[http://dx.doi.org/10.1371/journal.pgen.1004279] [PMID: 24874806]
[52]
Koeppen AH. Friedreich’s ataxia: Pathology, pathogenesis, and molecular genetics. J Neurol Sci 2011; 303(1-2): 1-12.
[http://dx.doi.org/10.1016/j.jns.2011.01.010] [PMID: 21315377]
[53]
Rotig A dLP, Chretien D, Foury F, Koenig M, Sidi D, Munnich A, Rustin P. Aconitase and mitochondrial iron-sulphur protein deficiency in Friedreich ataxia. Nat Genet 1997; 17: 215.
[http://dx.doi.org/10.1038/ng1097-215]
[54]
Guillon B, Bulteau AL, Wattenhofer-Donzé M, et al. Frataxin deficiency causes upregulation of mitochondrial Lon and ClpP proteases and severe loss of mitochondrial Fe-S proteins. FEBS J 2009; 276(4): 1036-47.
[http://dx.doi.org/10.1111/j.1742-4658.2008.06847.x] [PMID: 19154341]
[55]
Julien J-P. Amyotrophic lateral sclerosis. unfolding the toxicity of the misfolded. Cell 2001; 104(4): 581-91.
[http://dx.doi.org/10.1016/S0092-8674(01)00244-6] [PMID: 11239414]
[56]
Fukada K, Zhang F, Vien A, Cashman NR, Zhu H. Mitochondrial proteomic analysis of a cell line model of familial amyotrophic lateral sclerosis. Mol Cell Proteomics 2004; 3(12): 1211-23.
[http://dx.doi.org/10.1074/mcp.M400094-MCP200] [PMID: 15501831]
[57]
Area-Gomez E, Schon EA. Mitochondrial genetics and disease. J Child Neurol 2014; 29(9): 1208-15.
[http://dx.doi.org/10.1177/0883073814539561] [PMID: 25028417]
[58]
Wallace DC. Diseases of the mitochondrial DNA. Annu Rev Biochem 1992; 61: 1175-212.
[http://dx.doi.org/10.1146/annurev.bi.61.070192.005523] [PMID: 1497308]
[59]
Felk S, Ohrt S, Kussmaul L, Storch A, Gillardon F. Activation of the mitochondrial protein quality control system and actin cytoskeletal alterations in cells harbouring the MELAS mitochondrial DNA mutation. J Neurol Sci 2010; 295(1-2): 46-52.
[http://dx.doi.org/10.1016/j.jns.2010.05.013] [PMID: 20570288]
[60]
Hori O, Ichinoda F, Tamatani T, et al. Transmission of cell stress from endoplasmic reticulum to mitochondria: Enhanced expression of Lon protease. J Cell Biol 2002; 157(7): 1151-60.
[http://dx.doi.org/10.1083/jcb.200108103] [PMID: 12082077]
[61]
Santos CXC, Anilkumar N, Zhang M, Brewer AC, Shah AM. Redox signaling in cardiac myocytes. Free Radic Biol Med 2011; 50(7): 777-93.
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.01.003] [PMID: 21236334]
[62]
Kuo C-Y, Chiu Y-C, Lee AY-L, Hwang T-L. Mitochondrial Lon protease controls ROS-dependent apoptosis in cardiomyocyte under hypoxia. Mitochondrion 2015; 23: 7-16.
[http://dx.doi.org/10.1016/j.mito.2015.04.004] [PMID: 25922169]
[63]
Wagatsuma A, Kotake N, Mabuchi K, Yamada S. Expression of nuclear-encoded genes involved in mitochondrial biogenesis and dynamics in experimentally denervated muscle. J Physiol Biochem 2011; 67(3): 359-70.
[http://dx.doi.org/10.1007/s13105-011-0083-5] [PMID: 21394548]
[64]
Wagatsuma A, Kotake N, Kawachi T, Shiozuka M, Yamada S, Matsuda R. Mitochondrial adaptations in skeletal muscle to hindlimb unloading. Mol Cell Biochem 2011; 350(1-2): 1-11.
[http://dx.doi.org/10.1007/s11010-010-0677-1] [PMID: 21165677]
[65]
Hawke TJ, Garry DJ. Myogenic satellite cells: Physiology to molecular biology. J Appl Physiol 2001; 91(2): 534-51.
[http://dx.doi.org/10.1152/jappl.2001.91.2.534] [PMID: 11457764]
[66]
Wagatsuma A, Kotake N, Yamada S. Muscle regeneration occurs to coincide with mitochondrial biogenesis. Mol Cell Biochem 2011; 349(1-2): 139-47.
[http://dx.doi.org/10.1007/s11010-010-0668-2] [PMID: 21110070]
[67]
Bahat A, Perlberg S, Melamed-Book N, et al. Transcriptional activation of LON Gene by a new form of mitochondrial stress: A role for the nuclear respiratory factor 2 in StAR overload response (SOR). Mol Cell Endocrinol 2015; 408: 62-72.
[http://dx.doi.org/10.1016/j.mce.2015.02.022] [PMID: 25724481]
[68]
Tian Q, Li T, Hou W, Zheng J, Schrum LW, Bonkovsky HL. LONP1-dependent breakdown of mitochondrial 5-aminolevulinic acid synthase protein by heme in human liver cells. J Biol Chem 2011; 286(30): 26424-30.
[69]
Lee HJ, Chung K, Lee H, Lee K, Lim JH, Song J. Downregulation of mitochondrial lon protease impairs mitochondrial function and causes hepatic insulin resistance in human liver SK-HEP-1 cells. Diabetologia 2011; 54(6): 1437-46.
[http://dx.doi.org/10.1007/s00125-011-2074-z] [PMID: 21347624]
[70]
Quirós PM, Langer T, López-Otín C. New roles for mitochondrial proteases in health, ageing and disease. Nat Rev Mol Cell Biol 2015; 16(6): 345-59.
[http://dx.doi.org/10.1038/nrm3984] [PMID: 25970558]
[71]
Bayot A, Gareil M, Chavatte L, et al. Effect of Lon protease knockdown on mitochondrial function in HeLa cells. Biochimie 2014; 100: 38-47.
[http://dx.doi.org/10.1016/j.biochi.2013.12.005] [PMID: 24355201]
[72]
Goto M, Miwa H, Suganuma K, et al. Adaptation of leukemia cells to hypoxic condition through switching the energy metabolism or avoiding the oxidative stress. BMC Cancer 2014; 14: 76.
[http://dx.doi.org/10.1186/1471-2407-14-76] [PMID: 24506813]
[73]
Lebeau J, Rainbolt TK, Wiseman RL. Coordinating Mitochondrial Biology Through the Stress-Responsive Regulation of Mitochondrial Proteases. Int Rev Cell Mol Biol 2018; 340: 79-128.
[http://dx.doi.org/10.1016/bs.ircmb.2018.05.003] [PMID: 30072094]
[74]
Levytskyy RM, Germany EM, Khalimonchuk O. Mitochondrial quality control proteases in neuronal welfare. J Neuroimmune Pharmacol 2016; 11(4): 629-44.
[http://dx.doi.org/10.1007/s11481-016-9683-8] [PMID: 27137937]
[75]
Barcena C, Mayoral P. Physiological and Pathological Functions of Mitochondrial Proteases. In: Proteases in Physiology and Pathology Springer. 2017; pp. 3-25.
[76]
Skorko-Glonek J, Zurawa-Janicka D, Koper T, et al. HtrA protease family as therapeutic targets. Curr Pharm Des 2013; 19(6): 977-1009.
[http://dx.doi.org/10.2174/1381612811319060003] [PMID: 23016688]
[77]
Brunetti D, Torsvik J, Dallabona C, et al. Defective PITRM1 mitochondrial peptidase is associated with AÎ2 amyloidotic neurodegeneration. EMBO Mol Med 2016; 8: 176-90.
[http://dx.doi.org/10.15252/emmm.201505894] [PMID: 26697887]
[78]
Checler F, Ferro ES. Neurolysin: From Initial Detection to Latest Advances. Neurochem Res 2018; 43(11): 2017-24.
[http://dx.doi.org/10.1007/s11064-018-2624-6] [PMID: 30159819]
[79]
Bota DA, Davies KJA. Mitochondrial Lon protease in human disease and aging: Including an etiologic classification of Lon-related diseases and disorders. Free Radic Biol Med 2016; 100: 188-98.
[http://dx.doi.org/10.1016/j.freeradbiomed.2016.06.031] [PMID: 27387767]
[80]
Bayot A, Basse N, Lee I, et al. Towards the control of intracellular protein turnover: Mitochondrial lon protease inhibitors versus proteasome inhibitors. Biochimie 2008; 90(2): 260-9.
[http://dx.doi.org/10.1016/j.biochi.2007.10.010] [PMID: 18021745]
[81]
Cole A, Wang Z, Coyaud E, et al. Inhibition of the mitochondrial protease ClpP as a therapeutic strategy for human acute myeloid leukemia. Cancer Cell 2015; 27(6): 864-76.
[http://dx.doi.org/10.1016/j.ccell.2015.05.004] [PMID: 26058080]
[82]
Gispert S, Parganlija D, Klinkenberg M, et al. Loss of mitochondrial peptidase Clpp leads to infertility, hearing loss plus growth retardation via accumulation of CLPX, mtDNA and inflammatory factors. Hum Mol Genet 2013; 22(24): 4871-87.
[http://dx.doi.org/10.1093/hmg/ddt338] [PMID: 23851121]
[83]
Stiburek L, Cesnekova J, Kostkova O, et al. YME1L controls the accumulation of respiratory chain subunits and is required for apoptotic resistance, cristae morphogenesis, and cell proliferation. Mol Biol Cell 2012; 23(6): 1010-23.
[http://dx.doi.org/10.1091/mbc.e11-08-0674] [PMID: 22262461]
[84]
Maltecca F, Aghaie A, Schroeder DG, et al. The mitochondrial protease AFG3L2 is essential for axonal development. J Neurosci 2008; 28(11): 2827-36.
[http://dx.doi.org/10.1523/JNEUROSCI.4677-07.2008] [PMID: 18337413]
[85]
Ferreirinha F, Quattrini A, Pirozzi M, et al. Axonal degeneration in paraplegin-deficient mice is associated with abnormal mitochondria and impairment of axonal transport. J Clin Invest 2004; 113(2): 231-42.
[http://dx.doi.org/10.1172/JCI200420138] [PMID: 14722615]
[86]
Clausen T, Kaiser M, Huber R, Ehrmann M. HTRA proteases: Regulated proteolysis in protein quality control. Nat Rev Mol Cell Biol 2011; 12(3): 152-62.
[http://dx.doi.org/10.1038/nrm3065] [PMID: 21326199]
[87]
Alikhani N, Berglund A-K, Engmann T, et al. Targeting capacity and conservation of PreP homologues localization in mitochondria of different species. J Mol Biol 2011; 410(3): 400-10.
[http://dx.doi.org/10.1016/j.jmb.2011.05.009] [PMID: 21621546]
[88]
Serizawa A, Dando PM, Barrett AJ. Characterization of a mitochondrial metallopeptidase reveals neurolysin as a homologue of thimet oligopeptidase. J Biol Chem 1995; 270(5): 2092-8.
[http://dx.doi.org/10.1074/jbc.270.5.2092] [PMID: 7836437]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 25
ISSUE: 23
Year: 2019
Page: [2584 - 2594]
Pages: 11
DOI: 10.2174/1381612825666190718153901
Price: $58

Article Metrics

PDF: 17
HTML: 2

Special-new-year-discount