The Discovery and Development of Oxalamide and Pyrrole Small Molecule Inhibitors of gp120 and HIV Entry - A Review

Author(s): Damoder Reddy Motati*, Dilipkumar Uredi, E. Blake Watkins*.

Journal Name: Current Topics in Medicinal Chemistry

Volume 19 , Issue 18 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Human immunodeficiency virus type-1 (HIV-1) is the causative agent responsible for the acquired immunodeficiency syndrome (AIDS) pandemic. More than 60 million infections and 25 million deaths have occurred since AIDS was first identified in the early 1980s. Advances in available therapeutics, in particular combination antiretroviral therapy, have significantly improved the treatment of HIV infection and have facilitated the shift from high mortality and morbidity to that of a manageable chronic disease. Unfortunately, none of the currently available drugs are curative of HIV. To deal with the rapid emergence of drug resistance, off-target effects, and the overall difficulty of eradicating the virus, an urgent need exists to develop new drugs, especially against targets critically important for the HIV-1 life cycle. Viral entry, which involves the interaction of the surface envelope glycoprotein, gp120, with the cellular receptor, CD4, is the first step of HIV-1 infection. Gp120 has been validated as an attractive target for anti-HIV-1 drug design or novel HIV detection tools. Several small molecule gp120 antagonists are currently under investigation as potential entry inhibitors. Pyrrole, piperazine, triazole, pyrazolinone, oxalamide, and piperidine derivatives, among others, have been investigated as gp120 antagonist candidates. Herein, we discuss the current state of research with respect to the design, synthesis and biological evaluation of oxalamide derivatives and five-membered heterocycles, namely, the pyrrole-containing small molecule as inhibitors of gp120 and HIV entry.

Keywords: HIV entry, gp120, CD4, Phe43 cavity, Small molecules, Pyrroles, Oxalamides, Acquired immunodeficiency syndrome, AIDS, Drug design, SAR.

[1]
Barré-Sinoussi, F.; Chermann, J.C.; Rey, F.; Nugeyre, M.T.; Chamaret, S.; Gruest, J.; Dauguet, C.; Axler-Blin, C.; Vézinet-Brun, F.; Rouzioux, C.; Rozenbaum, W.; Montagnier, L. Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). Science, 1983, 220(4599), 868-871.
[http://dx.doi.org/10.1126/science.6189183] [PMID: 6189183]
[2]
Gallo, R.C.; Sarin, P.S.; Gelmann, E.P.; Robert-Guroff, M.; Richardson, E.; Kalyanaraman, V.S.; Mann, D.; Sidhu, G.D.; Stahl, R.E.; Zolla-Pazner, S.; Leibowitch, J.; Popovic, M. Isolation of human T-cell leukemia virus in acquired immune deficiency syndrome (AIDS). Science, 1983, 220(4599), 865-867.
[http://dx.doi.org/10.1126/science.6601823] [PMID: 6601823]
[3]
Lin, P-F.; Blair, W.; Wang, T.; Spicer, T.; Guo, Q.; Zhou, N.; Gong, Y-F.; Wang, H-G.H.; Rose, R.; Yamanaka, G.; Robinson, B.; Li, C-B.; Fridell, R.; Deminie, C.; Demers, G.; Yang, Z.; Zadjura, L.; Meanwell, N.; Colonno, R. A small molecule HIV-1 inhibitor that targets the HIV-1 envelope and inhibits CD4 receptor binding. Proc. Natl. Acad. Sci. USA, 2003, 100(19), 11013-11018.
[http://dx.doi.org/10.1073/pnas.1832214100] [PMID: 12930892]
[4]
Pomerantz, R.J.; Horn, D.L. Twenty years of therapy for HIV-1 infection. Nat. Med., 2003, 9(7), 867-873.
[http://dx.doi.org/10.1038/nm0703-867] [PMID: 12835707]
[5]
Flexner, C. HIV drug development: the next 25 years. Nat. Rev. Drug Discov., 2007, 6(12), 959-966.
[http://dx.doi.org/10.1038/nrd2336] [PMID: 17932493]
[6]
Cai, L.; Jiang, S. Development of peptide and small-molecule HIV-1 fusion inhibitors that target gp41. ChemMedChem, 2010, 5(11), 1813-1824.
[http://dx.doi.org/10.1002/cmdc.201000289] [PMID: 20845360]
[7]
Menéndez-Arias, L. Molecular basis of human immunodeficiency virus drug resistance: An update. Antiviral Res., 2010, 85(1), 210-231.
[http://dx.doi.org/10.1016/j.antiviral.2009.07.006] [PMID: 19616029]
[8]
Kortagere, S. In Silico Models for Drug Discovery In: Methods in Molecular Biology;; (1st Ed.): Humana Press: Totowa, New Jersey; , 2013. Vol. 993, pp. XII, 265..
[http://dx.doi.org/10.1007/978-1-62703-342-8]
[9]
Tandon, R.; Nath, M. Tackling drug-resistant tuberculosis: Current trends and approaches. Mini Rev. Med. Chem., 2017, 17(6), 549-570.
[http://dx.doi.org/10.2174/1389557516666160606204639] [PMID: 27280980]
[10]
Asquith, C.R.M.; Meli, M.L.; Konstantinova, L.S.; Laitinen, T.; Peräkylä, M.; Poso, A.; Rakitin, O.A.; Allenspach, K.; Hofmann-Lehmann, R.; Hilton, S.T. Evaluation of the antiviral efficacy of bis[1,2]dithiolo[1,4]thiazines and bis[1,2]dithiolopyrrole derivatives against the nucelocapsid protein of the Feline Immunodeficiency Virus (FIV) as a model for HIV infection. Bioorg. Med. Chem. Lett., 2014, 24(12), 2640-2644.
[http://dx.doi.org/10.1016/j.bmcl.2014.04.073] [PMID: 24813732]
[11]
Madani, N.; Princiotto, A.M.; Schön, A.; LaLonde, J.; Feng, Y.; Freire, E.; Park, J.; Courter, J.R.; Jones, D.M.; Robinson, J.; Liao, H-X.; Moody, M.A.; Permar, S.; Haynes, B.; Smith, A.B., III; Wyatt, R.; Sodroski, J. CD4-mimetic small molecules sensitize human immunodeficiency virus to vaccine-elicited antibodies. J. Virol., 2014, 88(12), 6542-6555.
[http://dx.doi.org/10.1128/JVI.00540-14] [PMID: 24696475]
[12]
Dang, Z.; Zhu, L.; Lai, W.; Bogerd, H.; Lee, K-H.; Huang, L.; Chen, C-H. Aloperine and its derivatives as a new class of HIV-1 entry inhibitors. ACS Med. Chem. Lett., 2016, 7(3), 240-244.
[http://dx.doi.org/10.1021/acsmedchemlett.5b00339] [PMID: 26985308]
[13]
Liu, D.; Wang, H.; Yamamoto, M.; Song, J.; Zhang, R.; Du, Q.; Kawaguchi, Y.; Inoue, J.I.; Matsuda, Z. Six-helix bundle completion in the distal C-terminal heptad repeat region of gp41 is required for efficient human immunodeficiency virus type 1 infection. Retrovirology, 2018, 15(1), 27.
[http://dx.doi.org/10.1186/s12977-018-0410-9] [PMID: 29609648]
[14]
Schön, A.; Madani, N.; Klein, J.C.; Hubicki, A.; Ng, D.; Yang, X.; Smith, A.B., III; Sodroski, J.; Freire, E. Thermodynamics of binding of a low-molecular-weight CD4 mimetic to HIV-1 gp120. Biochemistry, 2006, 45(36), 10973-10980.
[http://dx.doi.org/10.1021/bi061193r] [PMID: 16953583]
[15]
Parker, C.G.; Domaoal, R.A.; Anderson, K.S.; Spiegel, D.A. An antibody-recruiting small molecule that targets HIV gp120. J. Am. Chem. Soc., 2009, 131(45), 16392-16394.
[http://dx.doi.org/10.1021/ja9057647] [PMID: 19839582]
[16]
De Clercq, E. Highlights in the discovery of antiviral drugs: A personal retrospective. J. Med. Chem., 2010, 53(4), 1438-1450.
[http://dx.doi.org/10.1021/jm900932g] [PMID: 19860424]
[17]
Chen, C.; Zhu, H.; Wang, J.; Yang, J.; Li, X-N.; Wang, J.; Chen, K.; Wang, Y.; Luo, Z.; Yao, G.; Xue, Y.; Zhang, Y.; Armochaetoglobins, K-R. Anti-HIV Pyrrole-Based Cytochalasans from Chaetomium globosum TW1-1. Eur. J. Org. Chem., 2015, 2015(14), 3086-3094.
[http://dx.doi.org/10.1002/ejoc.201403678]
[18]
Joint United Nations Programme on HIV/AIDS (UNAIDS). Global AIDS Monitoring, Indicators for monitoring the 2016 United Nations Political Declaration on Ending AIDS. http://www.who.int/gho/hiv/en (Accessed 2018)
[19]
Volberding, P.A.; Deeks, S.G. Antiretroviral therapy and management of HIV infection. Lancet, 2010, 376(9734), 49-62.
[http://dx.doi.org/10.1016/S0140-6736(10)60676-9] [PMID: 20609987]
[20]
Ma, Y.; Liu, C.; Wang, M.; Wang, L.S. Sensitive electrochemical detection of gp120 based on the combination of NBD-556 and gp120. Talanta, 2019, 196, 486-492.
[http://dx.doi.org/10.1016/j.talanta.2018.12.062] [PMID: 30683395]
[21]
Olofsson, S.; Hansen, J.E. Host cell glycosylation of viral glycoproteins--a battlefield for host defence and viral resistance. Scand. J. Infect. Dis., 1998, 30(5), 435-440.
[http://dx.doi.org/10.1080/00365549850161386] [PMID: 10066039]
[22]
Cormier, E.G.; Persuh, M.; Thompson, D.A.D.; Lin, S.W.; Sakmar, T.P.; Olson, W.C.; Dragic, T. Specific interaction of CCR5 amino-terminal domain peptides containing sulfotyrosines with HIV-1 envelope glycoprotein gp120. Proc. Natl. Acad. Sci. USA, 2000, 97(11), 5762-5767.
[http://dx.doi.org/10.1073/pnas.97.11.5762] [PMID: 10823934]
[23]
Henrich, T.J.; Kuritzkes, D.R. HIV-1 entry inhibitors: Recent development and clinical use. Curr. Opin. Virol., 2013, 3(1), 51-57.
[http://dx.doi.org/10.1016/j.coviro.2012.12.002] [PMID: 23290628]
[24]
Esté, J.A.; Cihlar, T. Current status and challenges of antiretroviral research and therapy. Antiviral Res., 2010, 85(1), 25-33.
[http://dx.doi.org/10.1016/j.antiviral.2009.10.007] [PMID: 20018390]
[25]
Li, W.; Lu, L.; Li, W.; Jiang, S. Small-molecule HIV-1 entry inhibitors targeting gp120 and gp41: A patent review (2010-2015). Expert Opin. Ther. Pat., 2017, 27(6), 707-719.
[http://dx.doi.org/10.1080/13543776.2017.1281249] [PMID: 28076686]
[26]
Eckert, D.M.; Kim, P.S. Mechanisms of viral membrane fusion and its inhibition. Annu. Rev. Biochem., 2001, 70(1), 777-810.
[http://dx.doi.org/10.1146/annurev.biochem.70.1.777] [PMID: 11395423]
[27]
Sweeney, Z.K.; Klumpp, K. Improving non-nucleoside reverse transcriptase inhibitors for first-line treatment of HIV infection: the development pipeline and recent clinical data. Curr. Opin. Drug Discov. Devel., 2008, 11(4), 458-470.
[PMID: 18600563]
[28]
Hawkins, T. Understanding and managing the adverse effects of antiretroviral therapy. Antiviral Res., 2010, 85(1), 201-209.
[http://dx.doi.org/10.1016/j.antiviral.2009.10.016] [PMID: 19857521]
[29]
Si, Z.; Madani, N.; Cox, J.M.; Chruma, J.J.; Klein, J.C.; Schön, A.; Phan, N.; Wang, L.; Biorn, A.C.; Cocklin, S.; Chaiken, I.; Freire, E.; Smith, A.B., III; Sodroski, J.G. Small-molecule inhibitors of HIV-1 entry block receptor-induced conformational changes in the viral envelope glycoproteins. Proc. Natl. Acad. Sci. USA, 2004, 101(14), 5036-5041.
[http://dx.doi.org/10.1073/pnas.0307953101] [PMID: 15051887]
[30]
Balzarini, J. Targeting the glycans of gp120: A novel approach aimed at the Achilles heel of HIV. Lancet Infect. Dis., 2005, 5(11), 726-731.
[http://dx.doi.org/10.1016/S1473-3099(05)70271-1] [PMID: 16253890]
[31]
Yang, Q.E.; Stephen, A.G.; Adelsberger, J.W.; Roberts, P.E.; Zhu, W.; Currens, M.J.; Feng, Y.; Crise, B.J.; Gorelick, R.J.; Rein, A.R.; Fisher, R.J.; Shoemaker, R.H.; Sei, S. Discovery of small-molecule human immunodeficiency virus type 1 entry inhibitors that target the gp120-binding domain of CD4. J. Virol., 2005, 79(10), 6122-6133.
[http://dx.doi.org/10.1128/JVI.79.10.6122-6133.2005] [PMID: 15857997]
[32]
Narumi, T.; Ochiai, C.; Yoshimura, K.; Harada, S.; Tanaka, T.; Nomura, W.; Arai, H.; Ozaki, T.; Ohashi, N.; Matsushita, S.; Tamamura, H. CD4 mimics targeting the HIV entry mechanism and their hybrid molecules with a CXCR4 antagonist. Bioorg. Med. Chem. Lett., 2010, 20(19), 5853-5858.
[http://dx.doi.org/10.1016/j.bmcl.2010.07.106] [PMID: 20728351]
[33]
Khan, M.M.G.; Simizu, S.; Lai, N.S.; Kawatani, M.; Shimizu, T.; Osada, H. Discovery of a small molecule PDI inhibitor that inhibits reduction of HIV-1 envelope glycoprotein gp120. ACS Chem. Biol., 2011, 6(3), 245-251.
[http://dx.doi.org/10.1021/cb100387r] [PMID: 21121641]
[34]
Francesconi, O.; Ienco, A.; Moneti, G.; Nativi, C.; Roelens, S. A self-assembled pyrrolic cage receptor specifically recognizes β-glucopyranosides. Angew. Chem. Int. Ed. Engl., 2006, 45(40), 6693-6696.
[http://dx.doi.org/10.1002/anie.200602412] [PMID: 16986191]
[35]
Xie, H.; Ng, D.; Savinov, S.N.; Dey, B.; Kwong, P.D.; Wyatt, R.; Smith, A.B., III; Hendrickson, W.A. Structure-activity relationships in the binding of chemically derivatized CD4 to gp120 from human immunodeficiency virus. J. Med. Chem., 2007, 50(20), 4898-4908.
[http://dx.doi.org/10.1021/jm070564e] [PMID: 17803292]
[36]
Yamada, Y.; Ochiai, C.; Yoshimura, K.; Tanaka, T.; Ohashi, N.; Narumi, T.; Nomura, W.; Harada, S.; Matsushita, S.; Tamamura, H. CD4 mimics targeting the mechanism of HIV entry. Bioorg. Med. Chem. Lett., 2010, 20(1), 354-358.
[http://dx.doi.org/10.1016/j.bmcl.2009.10.098] [PMID: 19926478]
[37]
Moraca, F.; Acharya, K.; Melillo, B.; Smith, A.B., III; Chaiken, I.; Abrams, C.F. Computational evaluation of HIV-1 gp120 conformations of soluble trimeric gp140 structures as targets for de novo docking of first- and second-generation small-molecule CD4 mimics. J. Chem. Inf. Model., 2016, 56(10), 2069-2079.
[http://dx.doi.org/10.1021/acs.jcim.6b00393] [PMID: 27602436]
[38]
Ray, N.; Doms, R.W. HIV-1 coreceptors and their inhibitors. Curr. Top. Microbiol. Immunol., 2006, 303, 97-120.
[PMID: 16570858]
[39]
Boasso, A.; Herbeuval, J-P.; Hardy, A.W.; Anderson, S.A.; Dolan, M.J.; Fuchs, D.; Shearer, G.M. HIV inhibits CD4+ T-cell proliferation by inducing indoleamine 2,3-dioxygenase in plasmacytoid dendritic cells. Blood, 2007, 109(8), 3351-3359.
[http://dx.doi.org/10.1182/blood-2006-07-034785] [PMID: 17158233]
[40]
Madani, N.; Schön, A.; Princiotto, A.M.; Lalonde, J.M.; Courter, J.R.; Soeta, T.; Ng, D.; Wang, L.; Brower, E.T.; Xiang, S-H.; Kwon, Y.D.; Huang, C.C.; Wyatt, R.; Kwong, P.D.; Freire, E.; Smith, A.B., III; Sodroski, J. Small-molecule CD4 mimics interact with a highly conserved pocket on HIV-1 gp120. Structure, 2008, 16(11), 1689-1701.
[http://dx.doi.org/10.1016/j.str.2008.09.005] [PMID: 19000821]
[41]
Kassa, A.; Madani, N.; Schön, A.; Haim, H.; Finzi, A.; Xiang, S-H.; Wang, L.; Princiotto, A.; Pancera, M.; Courter, J.; Smith, A.B., III; Freire, E.; Kwong, P.D.; Sodroski, J. Transitions to and from the CD4-bound conformation are modulated by a single-residue change in the human immunodeficiency virus type 1 gp120 inner domain. J. Virol., 2009, 83(17), 8364-8378.
[http://dx.doi.org/10.1128/JVI.00594-09] [PMID: 19535453]
[42]
Schön, A.; Lam, S.Y.; Freire, E. Thermodynamics-based drug design: strategies for inhibiting protein-protein interactions. Future Med. Chem., 2011, 3(9), 1129-1137.
[http://dx.doi.org/10.4155/fmc.11.81] [PMID: 21806377]
[43]
Berg, C.; Daugvilaite, V.; Steen, A.; Jørgensen, A.S.; Våbenø, J.; Rosenkilde, M.M. Inhibition of HIV fusion by small molecule agonists through efficacy-engineering of CXCR4. ACS Chem. Biol., 2018, 13(4), 881-886.
[http://dx.doi.org/10.1021/acschembio.8b00061] [PMID: 29461034]
[44]
Hurevich, M.; Swed, A.; Joubran, S.; Cohen, S.; Freeman, N.S.; Britan-Rosich, E.; Briant-Longuet, L.; Bardy, M.; Devaux, C.; Kotler, M.; Hoffman, A.; Gilon, C. Rational conversion of noncontinuous active region in proteins into a small orally bioavailable macrocyclic drug-like molecule: the HIV-1 CD4:gp120 paradigm. Bioorg. Med. Chem., 2010, 18(15), 5754-5761.
[http://dx.doi.org/10.1016/j.bmc.2010.04.053] [PMID: 20619663]
[45]
Zhang, Q.; Collins, J.; Anastasaki, A.; Wallis, R.; Mitchell, D.A.; Becer, C.R.; Haddleton, D.M. Sequence-controlled multi-block glycopolymers to inhibit DC-SIGN-gp120 binding. Angew. Chem. Int. Ed. Engl., 2013, 52(16), 4435-4439.
[http://dx.doi.org/10.1002/anie.201300068] [PMID: 23494988]
[46]
Chen, K.; Risatti, C.; Bultman, M.; Soumeillant, M.; Simpson, J.; Zheng, B.; Fanfair, D.; Mahoney, M.; Mudryk, B.; Fox, R.J.; Hsaio, Y.; Murugesan, S.; Conlon, D.A.; Buono, F.G.; Eastgate, M.D. Synthesis of the 6-azaindole containing HIV-1 attachment inhibitor pro-drug, BMS-663068. J. Org. Chem., 2014, 79(18), 8757-8767.
[http://dx.doi.org/10.1021/jo5016008] [PMID: 25144249]
[47]
Belov, D.S.; Curreli, F.; Kurkin, A.V.; Altieri, A.; Debnath, A.K. Guanidine-containing phenyl-pyrrole compounds as probes for generating HIV entry inhibitors targeted to gp120. ChemistrySelect, 2018, 3(23), 6450-6453.
[http://dx.doi.org/10.1002/slct.201801662]
[48]
Meanwell, N.A.; Krystal, M.R.; Nowicka-Sans, B.; Langley, D.R.; Conlon, D.A.; Eastgate, M.D.; Grasela, D.M.; Timmins, P.; Wang, T.; Kadow, J.F. Inhibitors of HIV-1 Attachment: The discovery and development of temsavir and its prodrug fostemsavir. J. Med. Chem., 2018, 61(1), 62-80.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01337] [PMID: 29271653]
[49]
Nowicka-Sans, B.; Gong, Y-F.; McAuliffe, B.; Dicker, I.; Ho, H-T.; Zhou, N.; Eggers, B.; Lin, P-F.; Ray, N.; Wind-Rotolo, M.; Zhu, L.; Majumdar, A.; Stock, D.; Lataillade, M.; Hanna, G.J.; Matiskella, J.D.; Ueda, Y.; Wang, T.; Kadow, J.F.; Meanwell, N.A.; Krystal, M. In vitro antiviral characteristics of HIV-1 attachment inhibitor BMS-626529, the active component of the prodrug BMS-663068. Antimicrob. Agents Chemother., 2012, 56(7), 3498-3507.
[http://dx.doi.org/10.1128/AAC.00426-12] [PMID: 22547625]
[50]
Lalonde, J.M.; Le-Khac, M.; Jones, D.M.; Courter, J.R.; Park, J.; Schön, A.; Princiotto, A.M.; Wu, X.; Mascola, J.R.; Freire, E.; Sodroski, J.; Madani, N.; Hendrickson, W.A.; Smith, A.B. III Structure-based design and synthesis of an HIV-1 entry inhibitor exploiting X-Ray and thermodynamic characterization. ACS Med. Chem. Lett., 2013, 4(3), 338-343.
[http://dx.doi.org/10.1021/ml300407y] [PMID: 23667716]
[51]
Kwon, Y.D.; LaLonde, J.M.; Yang, Y.; Elban, M.A.; Sugawara, A.; Courter, J.R.; Jones, D.M.; Smith, A.B., III; Debnath, A.K.; Kwong, P.D. Crystal structures of HIV-1 gp120 envelope glycoprotein in complex with NBD analogues that target the CD4-binding site. PLoS One, 2014, 9(1)e85940
[http://dx.doi.org/10.1371/journal.pone.0085940] [PMID: 24489681]
[52]
Princiotto, A.M.; Vrbanac, V.D.; Melillo, B.; Park, J.; Tager, A.M.; Smith, A.B., III; Sodroski, J.; Madani, N. A Small-molecule CD4-mimetic compound protects bone marrow-liver-thymus humanized mice from HIV-1 infection. J. Infect. Dis., 2018, 218(3), 471-475.
[http://dx.doi.org/10.1093/infdis/jiy174] [PMID: 29617845]
[53]
Pancera, M.; Lai, Y-T.; Bylund, T.; Druz, A.; Narpala, S.; O’Dell, S.; Schön, A.; Bailer, R.T.; Chuang, G-Y.; Geng, H.; Louder, M.K.; Rawi, R.; Soumana, D.I.; Finzi, A.; Herschhorn, A.; Madani, N.; Sodroski, J.; Freire, E.; Langley, D.R.; Mascola, J.R.; McDermott, A.B.; Kwong, P.D. Crystal structures of trimeric HIV envelope with entry inhibitors BMS-378806 and BMS-626529. Nat. Chem. Biol., 2017, 13(10), 1115-1122.
[http://dx.doi.org/10.1038/nchembio.2460] [PMID: 28825711]
[54]
Depboylu, C.; Reinhart, T.A.; Takikawa, O.; Imai, Y.; Maeda, H.; Mitsuya, H.; Rausch, D.; Eiden, L.E.; Weihe, E. Brain virus burden and indoleamine-2,3-dioxygenase expression during lentiviral infection of rhesus monkey are concomitantly lowered by 6-chloro-2′,3′-dideoxyguanosine. Eur. J. Neurosci., 2004, 19(11), 2997-3005.
[http://dx.doi.org/10.1111/j.0953-816X.2004.03404.x] [PMID: 15182307]
[55]
Beutner, G.L.; Albrecht, J.; Fan, J.; Fanfair, D.; Lawler, M.J.; Bultman, M.; Chen, K.; Ivy, S.; Schild, R.L.; Tripp, J.C.; Murugesan, S.; Dambalas, K.; McLeod, D.D.; Sweeney, J.T.; Eastgate, M.D.; Conlon, D.A. Preparation of the HIV attachment inhibitor BMS-663068. Part 3. mechanistic studies enable a scale-independent friedel-crafts acylation. Org. Process Res. Dev., 2017, 21(8), 1122-1130.
[http://dx.doi.org/10.1021/acs.oprd.7b00115]
[56]
Chen, K.; Risatti, C.; Simpson, J.; Soumeillant, M.; Soltani, M.; Bultman, M.; Zheng, B.; Mudryk, B.; Tripp, J.C.; La Cruz, T.E.; Hsiao, Y.; Conlon, D.A.; Eastgate, M.D. Preparation of the HIV Attachment inhibitor BMS-663068. Part 2. Strategic selections in the transition from an enabling route to a commercial synthesis. Org. Process Res. Dev., 2017, 21(8), 1110-1121.
[http://dx.doi.org/10.1021/acs.oprd.7b00121]
[57]
A study of the relative bioavailability of BMS-626529 administered as BMS-663068 from 150mg low-dose extended-release tablets compared to 600mg reference extended-release tablets in healthy subjects. https://clinicaltrials.gov/ct2/show/NCT02859259?te (Accessed 2017).
[58]
Lalezari, J.P.; Latiff, G.H.; Brinson, C.; Echevarría, J.; Treviño-Pérez, S.; Bogner, J.R.; Thompson, M.; Fourie, J.; Sussmann Pena, O.A.; Mendo Urbina, F.C.; Martins, M.; Diaconescu, I.G.; Stock, D.A.; Joshi, S.R.; Hanna, G.J.; Lataillade, M. Safety and efficacy of the HIV-1 attachment inhibitor prodrug BMS-663068 in treatment-experienced individuals: 24 week results of AI438011, a phase 2b, randomised controlled trial. Lancet HIV, 2015, 2(10), e427-e437.
[http://dx.doi.org/10.1016/S2352-3018(15)00177-0] [PMID: 26423650]
[59]
Howard, O.M.Z.; Korte, T.; Tarasova, N.I.; Grimm, M.; Turpin, J.A.; Rice, W.G.; Michejda, C.J.; Blumenthal, R.; Oppenheim, J.J. Small molecule inhibitor of HIV-1 cell fusion blocks chemokine receptor-mediated function. J. Leukoc. Biol., 1998, 64(1), 6-13.
[http://dx.doi.org/10.1002/jlb.64.1.6] [PMID: 9665268]
[60]
Cacciarini, M.; Nativi, C.; Norcini, M.; Staderini, S.; Francesconi, O.; Roelens, S. Pyrrolic tripodal receptors for carbohydrates. Role of functional groups and binding geometry on carbohydrate recognition. Org. Biomol. Chem., 2011, 9(4), 1085-1091.
[http://dx.doi.org/10.1039/C0OB00651C] [PMID: 21152642]
[61]
Herschhorn, A.; Gu, C.; Moraca, F.; Ma, X.; Farrell, M.; Smith, A.B., III; Pancera, M.; Kwong, P.D.; Schön, A.; Freire, E.; Abrams, C.; Blanchard, S.C.; Mothes, W.; Sodroski, J.G. The β20-β21 of gp120 is a regulatory switch for HIV-1 Env conformational transitions. Nat. Commun., 2017, 8(1), 1049.
[http://dx.doi.org/10.1038/s41467-017-01119-w] [PMID: 29051495]
[62]
Madani, N.; Princiotto, A.M.; Mach, L.; Ding, S.; Prevost, J.; Richard, J.; Hora, B.; Sutherland, L.; Zhao, C.A.; Conn, B.P.; Bradley, T.; Moody, M.A.; Melillo, B.; Finzi, A.; Haynes, B.F.; Smith Iii, A.B.; Santra, S.; Sodroski, J.A. CD4-mimetic compound enhances vaccine efficacy against stringent immunodeficiency virus challenge. Nat. Commun., 2018, 9(1), 2363.
[http://dx.doi.org/10.1038/s41467-018-04758-9] [PMID: 29915222]
[63]
Aneja, R.; Grigoletto, A.; Nangarlia, A.; Rashad, A.A.; Wrenn, S.; Jacobson, J.M.; Pasut, G.; Chaiken, I. Pharmacokinetic stability of macrocyclic peptide triazole HIV-1 inactivators alone and in liposomes. J. Pept. Sci., 2019, 25(4)e3155
[http://dx.doi.org/10.1002/psc.3155] [PMID: 30809901]
[64]
Trkola, A.; Dragic, T.; Arthos, J.; Binley, J.M.; Olson, W.C.; Allaway, G.P.; Cheng-Mayer, C.; Robinson, J.; Maddon, P.J.; Moore, J.P. CD4-dependent, antibody-sensitive interactions between HIV-1 and its co-receptor CCR-5. Nature, 1996, 384(6605), 184-187.
[http://dx.doi.org/10.1038/384184a0] [PMID: 8906796]
[65]
Kortagere, S.; Madani, N.; Mankowski, M.K.; Schön, A.; Zentner, I.; Swaminathan, G.; Princiotto, A.; Anthony, K.; Oza, A.; Sierra, L-J.; Passic, S.R.; Wang, X.; Jones, D.M.; Stavale, E.; Krebs, F.C.; Martín-García, J.; Freire, E.; Ptak, R.G.; Sodroski, J.; Cocklin, S.; Smith, A.B. III Inhibiting early-stage events in HIV-1 replication by small-molecule targeting of the HIV-1 capsid. J. Virol., 2012, 86(16), 8472-8481.
[http://dx.doi.org/10.1128/JVI.05006-11] [PMID: 22647699]
[66]
Bailey, L.D.; Kalyana Sundaram, R.V.; Li, H.; Duffy, C.; Aneja, R.; Rosemary Bastian, A.; Holmes, A.P.; Kamanna, K.; Rashad, A.A.; Chaiken, I. Disulfide sensitivity in the env protein underlies lytic inactivation of HIV-1 by peptide triazole thiols. ACS Chem. Biol., 2015, 10(12), 2861-2873.
[http://dx.doi.org/10.1021/acschembio.5b00381] [PMID: 26458166]
[67]
Curreli, F.; Kwon, Y.D.; Belov, D.S.; Ramesh, R.R.; Kurkin, A.V.; Altieri, A.; Kwong, P.D.; Debnath, A.K. Synthesis, antiviral potency, in Vitro ADMET, and X-ray structure of potent CD4 mimics as entry inhibitors that target the Phe43 cavity of hiv-1 gp120. J. Med. Chem., 2017, 60(7), 3124-3153.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00179] [PMID: 28266845]
[68]
Haddache, F.; Le Goff, A.; Reuillard, B.; Gorgy, K.; Gondran, C.; Spinelli, N.; Defrancq, E.; Cosnier, S. Label-free photoelectrochemical detection of double-stranded HIV DNA by means of a metallointercalator-functionalized electrogenerated polymer. Chemistry, 2014, 20(47), 15555-15560.
[http://dx.doi.org/10.1002/chem.201404335] [PMID: 25263248]
[69]
Han, D.; Tan, J.; Zhou, Z.; Li, C.; Zhang, X.; Wang, C. Combined topomer CoMFA and hologram QSAR studies of a series of pyrrole derivatives as potential HIV fusion inhibitors. Med. Chem. Res., 2018, 27(7), 1770-1781.
[http://dx.doi.org/10.1007/s00044-018-2190-0]
[70]
Moraca, F.; Rinaldo, D.; Smith, A.B., III; Abrams, C.F. Specific noncovalent interactions determine optimal structure of a buried ligand moiety: QM/MM and pure QM modeling of complexes of the small-molecule CD4 mimetics and HIV-1 gp120. ChemMedChem, 2018, 13(6), 627-633.
[http://dx.doi.org/10.1002/cmdc.201700728] [PMID: 29337418]
[71]
Meuser, M.E.; Rashad, A.A.; Ozorowski, G.; Dick, A.; Ward, A.B.; Cocklin, S. Field-based affinity optimization of a novel azabicyclohexane scaffold HIV-1 entry inhibitor. Molecules, 2019, 24(8), 1581.
[http://dx.doi.org/10.3390/molecules24081581] [PMID: 31013646]
[72]
Lai, Y-T.; Wang, T.; O’Dell, S.; Louder, M.K.; Schön, A.; Cheung, C.S.F.; Chuang, G-Y.; Druz, A.; Lin, B.; McKee, K.; Peng, D.; Yang, Y.; Zhang, B.; Herschhorn, A.; Sodroski, J.; Bailer, R.T.; Doria-Rose, N.A.; Mascola, J.R.; Langley, D.R.; Kwong, P.D. Lattice engineering enables definition of molecular features allowing for potent small-molecule inhibition of HIV-1 entry. Nat. Commun., 2019, 10(1), 47.
[http://dx.doi.org/10.1038/s41467-018-07851-1] [PMID: 30604750]
[73]
Kobayakawa, T.; Konno, K.; Ohashi, N.; Takahashi, K.; Masuda, A.; Yoshimura, K.; Harada, S.; Tamamura, H. Soluble-type small-molecule CD4 mimics as HIV entry inhibitors. Bioorg. Med. Chem. Lett., 2019, 29(5), 719-723.
[http://dx.doi.org/10.1016/j.bmcl.2019.01.011] [PMID: 30665681]
[74]
Heredia, A.; Latinovic, O.S.; Barbault, F.; de Leeuw, E.P.H. A novel small-molecule inhibitor of HIV-1 entry. Drug Des. Devel. Ther., 2015, 9, 5469-5478.
[PMID: 26491257]
[75]
Zhao, Q.; Ma, L.; Jiang, S.; Lu, H.; Liu, S.; He, Y.; Strick, N.; Neamati, N.; Debnath, A.K. Identification of N-phenyl-N′-(2,2,6,6-tetramethyl-piperidin-4-yl)-oxalamides as a new class of HIV-1 entry inhibitors that prevent gp120 binding to CD4. Virology, 2005, 339(2), 213-225.
[http://dx.doi.org/10.1016/j.virol.2005.06.008] [PMID: 15996703]
[76]
Rivero-Buceta, E.; Carrero, P.; Casanova, E.; Doyagüez, E.G.; Madrona, A.; Quesada, E.; Peréz-Pérez, M.J.; Mateos, R.; Bravo, L.; Mathys, L.; Noppen, S.; Kiselev, E.; Marchand, C.; Pommier, Y.; Liekens, S.; Balzarini, J.; Camarasa, M.J.; San-Félix, A. Anti-HIV-1 activity of a tripodal receptor that recognizes mannose oligomers. Eur. J. Med. Chem., 2015, 106, 132-143.
[http://dx.doi.org/10.1016/j.ejmech.2015.10.027] [PMID: 26540494]
[77]
Johnson, J.; Zhai, Y.; Salimi, H.; Espy, N.; Eichelberger, N.; DeLeon, O.; O’Malley, Y.; Courter, J.; Smith, A.B., III; Madani, N.; Sodroski, J.; Haim, H. Induction of a Tier-1-Like phenotype in diverse Tier-2 isolates by agents that guide HIV-1 Env to perturbation-sensitive, nonnative states. J. Virol., 2017, 91(15), e00174-e00117.
[http://dx.doi.org/10.1128/JVI.00174-17] [PMID: 28490588]
[78]
Ogishi, M.; Yotsuyanagi, H. Prediction of HIV-associated neurocognitive disorder (HAND) from three genetic features of envelope gp120 glycoprotein. Retrovirology, 2018, 15(1), 12.
[http://dx.doi.org/10.1186/s12977-018-0401-x] [PMID: 29374475]
[79]
Melillo, B.; Liang, S.; Park, J.; Schön, A.; Courter, J.R.; LaLonde, J.M.; Wendler, D.J.; Princiotto, A.M.; Seaman, M.S.; Freire, E.; Sodroski, J.; Madani, N.; Hendrickson, W.A.; Smith, A.B. III Small-Molecule CD4-Mimics: Structure-based optimization of HIV-1 entry inhibition. ACS Med. Chem. Lett., 2016, 7(3), 330-334.
[http://dx.doi.org/10.1021/acsmedchemlett.5b00471] [PMID: 26985324]
[80]
Richard, J.; Prévost, J.; von Bredow, B.; Ding, S.; Brassard, N.; Medjahed, H.; Coutu, M.; Melillo, B.; Bibollet-Ruche, F.; Hahn, B.H.; Kaufmann, D.E.; Smith, A.B., III; Sodroski, J.; Sauter, D.; Kirchhoff, F.; Gee, K.; Neil, S.J.; Evans, D.T.; Finzi, A. BST-2 Expression modulates small CD4-mimetic sensitization of HIV-1-infected cells to antibody-dependent cellular cytotoxicity. J. Virol., 2017, 91(11), e00219-e00217.
[http://dx.doi.org/10.1128/JVI.00219-17] [PMID: 28331088]
[81]
Asquith, C.R.M.; Laitinen, T.; Konstantinova, L.S.; Tizzard, G.; Poso, A.; Rakitin, O.A.; Hofmann-Lehmann, R.; Hilton, S.T. Investigation of the pentathiepin functionality as an inhibitor of feline immunodeficiency virus (FIV) via a potential zinc ejection mechanism, as a Model for HIV Infection. ChemMedChem, 2019, 14(4), 454-461.
[http://dx.doi.org/10.1002/cmdc.201800718] [PMID: 30609219]
[82]
Huang, C.C.; Tang, M.; Zhang, M-Y.; Majeed, S.; Montabana, E.; Stanfield, R.L.; Dimitrov, D.S.; Korber, B.; Sodroski, J.; Wilson, I.A.; Wyatt, R.; Kwong, P.D. Structure of a V3-containing HIV-1 gp120 core. Science, 2005, 310(5750), 1025-1028.
[http://dx.doi.org/10.1126/science.1118398] [PMID: 16284180]
[83]
Tomašić, T.; Hajšek, D.; Švajger, U.; Luzar, J.; Obermajer, N.; Petit-Haertlein, I.; Fieschi, F.; Anderluh, M. Monovalent mannose-based DC-SIGN antagonists: Targeting the hydrophobic groove of the receptor. Eur. J. Med. Chem., 2014, 75, 308-326.
[http://dx.doi.org/10.1016/j.ejmech.2014.01.047] [PMID: 24556146]
[84]
Kwon, Y.D.; Finzi, A.; Wu, X.; Dogo-Isonagie, C.; Lee, L.K.; Moore, L.R.; Schmidt, S.D.; Stuckey, J.; Yang, Y.; Zhou, T.; Zhu, J.; Vicic, D.A.; Debnath, A.K.; Shapiro, L.; Bewley, C.A.; Mascola, J.R.; Sodroski, J.G.; Kwong, P.D. Unliganded HIV-1 gp120 core structures assume the CD4-bound conformation with regulation by quaternary interactions and variable loops. Proc. Natl. Acad. Sci. USA, 2012, 109(15), 5663-5668.
[http://dx.doi.org/10.1073/pnas.1112391109] [PMID: 22451932]
[85]
Wang, T.; Zhang, Z.; Wallace, O.B.; Deshpande, M.; Fang, H.; Yang, Z.; Zadjura, L.M.; Tweedie, D.L.; Huang, S.; Zhao, F.; Ranadive, S.; Robinson, B.S.; Gong, Y-F.; Ricarrdi, K.; Spicer, T.P.; Deminie, C.; Rose, R.; Wang, H-G.H.; Blair, W.S.; Shi, P-Y.; Lin, P.F.; Colonno, R.J.; Meanwell, N.A. Discovery of 4-benzoyl-1-[(4-methoxy-1H- pyrrolo[2,3-b]pyridin-3-yl)oxoacetyl]-2- (R)-methylpiperazine (BMS-378806): a novel HIV-1 attachment inhibitor that interferes with CD4-gp120 interactions. J. Med. Chem., 2003, 46(20), 4236-4239.
[http://dx.doi.org/10.1021/jm034082o] [PMID: 13678401]
[86]
McFarland, C.; Vicic, D.A.; Debnath, A.K. Rapid microwave-assisted syntheses of derivatives of HIV-1 entry inhibitors. Synthesis, 2006, 2006(05), 807-812.
[http://dx.doi.org/10.1055/s-2006-926339]
[87]
Lalonde, J.M.; Elban, M.A.; Courter, J.R.; Sugawara, A.; Soeta, T.; Madani, N.; Princiotto, A.M.; Kwon, Y.D.; Kwong, P.D.; Schön, A.; Freire, E.; Sodroski, J.; Smith, A.B. III Design, synthesis and biological evaluation of small molecule inhibitors of CD4-gp120 binding based on virtual screening. Bioorg. Med. Chem., 2011, 19(1), 91-101.
[http://dx.doi.org/10.1016/j.bmc.2010.11.049] [PMID: 21169023]
[88]
LaLonde, J.M.; Kwon, Y.D.; Jones, D.M.; Sun, A.W.; Courter, J.R.; Soeta, T.; Kobayashi, T.; Princiotto, A.M.; Wu, X.; Schön, A.; Freire, E.; Kwong, P.D.; Mascola, J.R.; Sodroski, J.; Madani, N.; Smith, A.B. III Structure-based design, synthesis, and characterization of dual hotspot small-molecule HIV-1 entry inhibitors. J. Med. Chem., 2012, 55(9), 4382-4396.
[http://dx.doi.org/10.1021/jm300265j] [PMID: 22497421]
[89]
Courter, J.R.; Madani, N.; Sodroski, J.; Schön, A.; Freire, E.; Kwong, P.D.; Hendrickson, W.A.; Chaiken, I.M.; LaLonde, J.M.; Smith, A.B. III Structure-based design, synthesis and validation of CD4-mimetic small molecule inhibitors of HIV-1 entry: conversion of a viral entry agonist to an antagonist. Acc. Chem. Res., 2014, 47(4), 1228-1237.
[http://dx.doi.org/10.1021/ar4002735] [PMID: 24502450]
[90]
Narumi, T.; Arai, H.; Yoshimura, K.; Harada, S.; Nomura, W.; Matsushita, S.; Tamamura, H. Small molecular CD4 mimics as HIV entry inhibitors. Bioorg. Med. Chem., 2011, 19(22), 6735-6742.
[http://dx.doi.org/10.1016/j.bmc.2011.09.045] [PMID: 22014753]
[91]
Ohashi, N.; Harada, S.; Mizuguchi, T.; Irahara, Y.; Yamada, Y.; Kotani, M.; Nomura, W.; Matsushita, S.; Yoshimura, K.; Tamamura, H. Small-molecule CD4 mimics containing mono-cyclohexyl moieties as HIV entry inhibitors. ChemMedChem, 2016, 11(8), 940-946.
[http://dx.doi.org/10.1002/cmdc.201500590] [PMID: 26891461]
[92]
Kobayakawa, T.; Ohashi, N.; Hirota, Y.; Takahashi, K.; Yamada, Y.; Narumi, T.; Yoshimura, K.; Matsushita, S.; Harada, S.; Tamamura, H. Flexibility of small molecular CD4 mimics as HIV entry inhibitors. Bioorg. Med. Chem., 2018, 26(21), 5664-5671.
[http://dx.doi.org/10.1016/j.bmc.2018.10.011] [PMID: 30366786]
[93]
Francesconi, O.; Nativi, C.; Gabrielli, G.; De Simone, I.; Noppen, S.; Balzarini, J.; Liekens, S.; Roelens, S. Antiviral activity of synthetic aminopyrrolic carbohydrate binding agents: Targeting the glycans of viral gp120 to Inhibit HIV entry. Chemistry, 2015, 21(28), 10089-10093.
[http://dx.doi.org/10.1002/chem.201501030] [PMID: 26033383]
[94]
Francesconi, O.; Gentili, M.; Nativi, C.; Ardá, A.; Cañada, F.J.; Jiménez-Barbero, J.; Roelens, S. Systematic dissection of an aminopyrrolic cage receptor for β-glucopyranosides reveals the essentials for effective recognition. Chemistry, 2014, 20(20), 6081-6091.
[http://dx.doi.org/10.1002/chem.201400365] [PMID: 24700370]
[95]
Francesconi, O.; Gentili, M.; Roelens, S. Synthetic tripodal receptors for carbohydrates. Pyrrole, a hydrogen bonding partner for saccharidic hydroxyls. J. Org. Chem., 2012, 77(17), 7548-7554.
[http://dx.doi.org/10.1021/jo301341c] [PMID: 22900714]
[96]
Nativi, C.; Cacciarini, M.; Francesconi, O.; Vacca, A.; Moneti, G.; Ienco, A.; Roelens, S. Pyrrolic tripodal receptors effectively recognizing monosaccharides. Affinity assessment through a generalized binding descriptor. J. Am. Chem. Soc., 2007, 129(14), 4377-4385.
[http://dx.doi.org/10.1021/ja068754m] [PMID: 17362009]
[97]
Curreli, F.; Choudhury, S.; Pyatkin, I.; Zagorodnikov, V.P.; Bulay, A.K.; Altieri, A.; Kwon, Y.D.; Kwong, P.D.; Debnath, A.K. Design, synthesis, and antiviral activity of entry inhibitors that target the CD4-binding site of HIV-1. J. Med. Chem., 2012, 55(10), 4764-4775.
[http://dx.doi.org/10.1021/jm3002247] [PMID: 22524483]
[98]
Curreli, F.; Kwon, Y.D.; Zhang, H.; Scacalossi, D.; Belov, D.S.; Tikhonov, A.A.; Andreev, I.A.; Altieri, A.; Kurkin, A.V.; Kwong, P.D.; Debnath, A.K. Structure-based design of a small molecule CD4-antagonist with broad spectrum anti-HIV-1 activity. J. Med. Chem., 2015, 58(17), 6909-6927.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00709] [PMID: 26301736]
[99]
Mikhaleva, A.I.; Ivanov, A.V.; Skital’tseva, E.V.; Ushakov, I.A.; Vasil’tsov, A.M.; Trofimov, B.A. An Efficient Route to 1-Vinylpyrrole-2-carbaldehydes. Synthesis, 2009, 2009(04), 587-590.
[http://dx.doi.org/10.1055/s-0028-1083312]
[100]
Wang, H-Y.; Mueller, D.S.; Sachwani, R.M.; Kapadia, R.; Londino, H.N.; Anderson, L.L. Regioselective synthesis of 2,3,4- or 2,3,5-trisubstituted pyrroles via [3,3] or [1,3] rearrangements of O-vinyl oximes. J. Org. Chem., 2011, 76(9), 3203-3221.
[http://dx.doi.org/10.1021/jo200061b] [PMID: 21449572]
[101]
Trofimov, B.A.; Mikhaleva, A.I.; Ivanov, A.V.; Shcherbakova, V.S.; Ushakov, I.A. Expedient one-pot synthesis of pyrroles from ketones, hydroxylamine, and 1,2-dichloroethane. Tetrahedron, 2015, 71(1), 124-128.
[http://dx.doi.org/10.1016/j.tet.2014.11.031]
[102]
Curreli, F.; Belov, D.S.; Ramesh, R.R.; Patel, N.; Altieri, A.; Kurkin, A.V.; Debnath, A.K. Design, synthesis and evaluation of small molecule CD4-mimics as entry inhibitors possessing broad spectrum anti-HIV-1 activity. Bioorg. Med. Chem., 2016, 24(22), 5988-6003.
[http://dx.doi.org/10.1016/j.bmc.2016.09.057] [PMID: 27707628]
[103]
Curreli, F.; Belov, D.S.; Ahmed, S.; Ramesh, R.R.; Kurkin, A.V.; Altieri, A.; Debnath, A.K. Synthesis, antiviral activity, and structure-activity relationship of 1,3-Benzodioxolyl pyrrole-based entry inhibitors targeting the Phe43 cavity in HIV-1 gp120. ChemMedChem, 2018, 13(21), 2332-2348.
[http://dx.doi.org/10.1002/cmdc.201800534] [PMID: 30257071]
[104]
Belov, D.S.; Ivanov, V.N.; Curreli, F.; Kurkin, A.V.; Altieri, A.; Debnath, A.K. Synthesis of 5-Arylpyrrole-2-carboxylic acids as key intermediates for NBD Series HIV-1 entry inhibitors. Synthesis, 2017, 49(16), 3692-3699.
[http://dx.doi.org/10.1055/s-0036-1588780]
[105]
Rawi, R.; Kunji, K.; Haoudi, A.; Bensmail, H. Correction: coevolution analysis of HIV-1 envelope glycoprotein complex. PLoS One, 2015, 10(12), e0145974-e0145974.
[http://dx.doi.org/10.1371/journal.pone.0145974] [PMID: 26699336]
[106]
Curreli, F.; Belov, D.S.; Kwon, Y.D.; Ramesh, R.; Furimsky, A.M.; O’Loughlin, K.; Byrge, P.C.; Iyer, L.V.; Mirsalis, J.C.; Kurkin, A.V.; Altieri, A.; Debnath, A.K. Structure-based lead optimization to improve antiviral potency and ADMET properties of phenyl-1H-pyrrole-carboxamide entry inhibitors targeted to HIV-1 gp120. Eur. J. Med. Chem., 2018, 154, 367-391.
[http://dx.doi.org/10.1016/j.ejmech.2018.04.062] [PMID: 29860061]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 19
ISSUE: 18
Year: 2019
Page: [1650 - 1675]
Pages: 26
DOI: 10.2174/1568026619666190717163959
Price: $58

Article Metrics

PDF: 17
HTML: 2