Systematic Investigation of Quercetin for Treating Cardiovascular Disease Based on Network Pharmacology

Author(s): Xian-Jun Wu, Xin-Bin Zhou, Chen Chen, Wei Mao*.

Journal Name: Combinatorial Chemistry & High Throughput Screening
Accelerated Technologies for Biotechnology, Bioassays, Medicinal Chemistry and Natural Products Research

Volume 22 , Issue 6 , 2019

Become EABM
Become Reviewer

Abstract:

Aim and Objective: Cardiovascular disease is a serious threat to human health because of its high mortality and morbidity rates. At present, there is no effective treatment. In Southeast Asia, traditional Chinese medicine is widely used in the treatment of cardiovascular diseases. Quercetin is a flavonoid extract of Ginkgo biloba leaves. Basic experiments and clinical studies have shown that quercetin has a significant effect on the treatment of cardiovascular diseases. However, its precise mechanism is still unclear. Therefore, it is necessary to exploit the network pharmacological potential effects of quercetin on cardiovascular disease.

Materials and Methods: In the present study, a novel network pharmacology strategy based on pharmacokinetic filtering, target fishing, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, compound-target-pathway network structured was performed to explore the anti- cardiovascular disease mechanism of quercetin.

Results: The outcomes showed that quercetin possesses favorable pharmacokinetic profiles, which have interactions with 47 cardiovascular disease-related targets and 12 KEGG signaling pathways to provide potential synergistic therapeutic effects. Following the construction of Compound-Target-Pathway (C-T-P) network, and the network topological feature calculation, we obtained top 10 core genes in this network which were AKT1, IL1B, TNF, IL6, JUN, CCL2, FOS, VEGFA, CXCL8, and ICAM1. KEGG pathway enrichment analysis. These indicated that quercetin produced the therapeutic effects against cardiovascular disease by systemically and holistically regulating many signaling pathways, including Fluid shear stress and atherosclerosis, AGE-RAGE signaling pathway in diabetic complications, TNF signaling pathway, MAPK signaling pathway, IL-17 signaling pathway and PI3K-Akt signaling pathway.

Keywords: Network pharmacology, quercetin, cardiovascular disease, pharmacological mechanism, pharmacokinetic, signaling pathway.

[1]
Lloyd-Jones, D.M.; Leip, E.P.; Larson, M.G.; D’Agostino, R.B.; Beiser, A.; Wilson, P.W.; Wolf, P.A.; Levy, D. Prediction of lifetime risk for cardiovascular disease by risk factor burden at 50 years of age. Circulation, 2006, 113(6), 791-798.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.105.548206] [PMID: 16461820]
[2]
Hao, P-P.; Jiang, F.; Chen, Y-G.; Yang, J.; Zhang, K.; Zhang, M-X.; Zhang, C.; Zhao, Y-X.; Zhang, Y. Traditional Chinese medication for cardiovascular disease. Nat. Rev. Cardiol., 2015, 12(2), 115-122.
[http://dx.doi.org/10.1038/nrcardio.2014.177] [PMID: 25384847]
[3]
Sun, Y.; Zhu, R.; Ye, H.; Tang, K.; Zhao, J.; Chen, Y.; Liu, Q.; Cao, Z. Towards a bioinformatics analysis of anti-Alzheimer’s herbal medicines from a target network perspective. Brief. Bioinform., 2013, 14(3), 327-343.
[http://dx.doi.org/10.1093/bib/bbs025] [PMID: 22887889]
[4]
Rusznyák, S.; Szent-Gyorgyi, A. Vitamin, P. Flavonols as vitamins. Nature, 1936, 138, 27.
[5]
Bhagwat, S.; Haytowitz, D.B.; Holden, J.M. USDA database for the flavonoid content of selected foods, Release 3.1. In: ; US Department of Agriculture: Beltsville, MD, USA, 2014.
[6]
Zeng, L.; Yang, K. Exploring the pharmacological mechanism of Yanghe Decoction on HER2-positive breast cancer by a network pharmacology approach. J. Ethnopharmacol., 2017, 199, 68-85.
[http://dx.doi.org/10.1016/j.jep.2017.01.045] [PMID: 28130113]
[7]
Hopkins, A.L. Network pharmacology: the next paradigm in drug discovery. Nat. Chem. Biol., 2008, 4(11), 682-690.
[http://dx.doi.org/10.1038/nchembio.118] [PMID: 18936753]
[8]
Ru, J.; Li, P.; Wang, J.; Zhou, W.; Li, B.; Huang, C.; Li, P.; Guo, Z.; Tao, W.; Yang, Y.; Xu, X.; Li, Y.; Wang, Y.; Yang, L. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform., 2014, 6(1), 13.
[http://dx.doi.org/10.1186/1758-2946-6-13] [PMID: 24735618]
[9]
Lin, J.; Sahakian, D.C.; de Morais, S.M.; Xu, J.J.; Polzer, R.J.; Winter, S.M. The role of absorption, distribution, metabolism, excretion and toxicity in drug discovery. Curr. Top. Med. Chem., 2003, 3(10), 1125-1154.
[http://dx.doi.org/10.2174/1568026033452096] [PMID: 12769713]
[10]
Boobis, A.; Gundert-Remy, U.; Kremers, P.; Macheras, P.; Pelkonen, O. In silico prediction of ADME and pharmacokinetics. Report of an expert meeting organised by COST B15. Eur. J. Pharm. Sci., 2002, 17(4-5), 183-193.
[http://dx.doi.org/10.1016/S0928-0987(02)00185-9] [PMID: 12453607]
[11]
Xu, X.; Zhang, W.; Huang, C.; Li, Y.; Yu, H.; Wang, Y.; Duan, J.; Ling, Y. A novel chemometric method for the prediction of human oral bioavailability. Int. J. Mol. Sci., 2012, 13(6), 6964-6982.
[http://dx.doi.org/10.3390/ijms13066964] [PMID: 22837674]
[12]
Liu, H.; Wang, J.; Zhou, W.; Wang, Y.; Yang, L. Systems approaches and polypharmacology for drug discovery from herbal medicines: an example using licorice. J. Ethnopharmacol., 2013, 146(3), 773-793.
[http://dx.doi.org/10.1016/j.jep.2013.02.004] [PMID: 23415946]
[13]
Wishart, D.S.; Knox, C.; Guo, A.C.; Shrivastava, S.; Hassanali, M.; Stothard, P.; Chang, Z.; Woolsey, J. DrugBank: A comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res.,, 2006, 34(Suppl_1), D668-D672.
[http://dx.doi.org/10.1093/nar/gkj067]
[14]
Pang, K.S. Modeling of intestinal drug absorption: roles of transporters and metabolic enzymes (for the Gillette Review Series). Drug Metab. Dispos., 2003, 31(12), 1507-1519.
[http://dx.doi.org/10.1124/dmd.31.12.1507] [PMID: 14625347]
[15]
Li, L.; Li, Y.; Wang, Y.; Zhang, S.; Yang, L. Prediction of human intestinal absorption based on molecular indices. J. Mol. Sci., 2007, 23(4), 286-291.
[16]
van de Waterbeemd, H.; Gifford, E. ADMET in silico modelling: Towards prediction paradise? Nat. Rev. Drug Discov., 2003, 2(3), 192-204.
[http://dx.doi.org/10.1038/nrd1032] [PMID: 12612645]
[17]
Rix, U.; Superti-Furga, G. Target profiling of small molecules by chemical proteomics. Nat. Chem. Biol., 2009, 5(9), 616-624.
[http://dx.doi.org/10.1038/nchembio.216] [PMID: 19690537]
[18]
Yu, H.; Chen, J.; Xu, X.; Li, Y.; Zhao, H.; Fang, Y.; Li, X.; Zhou, W.; Wang, W.; Wang, Y. A systematic prediction of multiple drug-target interactions from chemical, genomic, and pharmacological data. PLoS One, 2012, 7(5)e37608
[http://dx.doi.org/10.1371/journal.pone.0037608] [PMID: 22666371]
[19]
Keiser, M.J.; Roth, B.L.; Armbruster, B.N.; Ernsberger, P.; Irwin, J.J.; Shoichet, B.K. Relating protein pharmacology by ligand chemistry. Nat. Biotechnol., 2007, 25(2), 197-206.
[http://dx.doi.org/10.1038/nbt1284] [PMID: 17287757]
[20]
Yu, G.; Wang, L.G.; Han, Y.; He, Q.Y. ClusterProfiler: An R package for comparing biological themes among gene clusters. OMICS, 2012, 16(5), 284-287.
[http://dx.doi.org/10.1089/omi.2011.0118] [PMID: 22455463]
[21]
Reiner-Benaim, A. FDR control by the BH procedure for two-sided correlated tests with implications to gene expression data analysis. Biom. J., 2007, 49(1), 107-126.
[http://dx.doi.org/10.1002/bimj.200510313] [PMID: 17342953]
[22]
Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. B, 1995, 57, 289-300.
[http://dx.doi.org/10.1111/j.2517-6161.1995.tb02031.x]
[23]
Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res., 2003, 13(11), 2498-2504.
[http://dx.doi.org/10.1101/gr.1239303]] [PMID: 14597658]
[24]
Crespy, V.; Morand, C.; Besson, C.; Manach, C.; Démigné, C.; Rémésy, C. Comparison of the intestinal absorption of quercetin, phloretin and their glucosides in rats. J. Nutr., 2001, 131(8), 2109-2114.
[http://dx.doi.org/10.1093/jn/131.8.2109] [PMID: 11481403]
[25]
Vissiennon, C.; Nieber, K.; Kelber, O.; Butterweck, V. Route of administration determines the anxiolytic activity of the flavonols kaempferol, quercetin and myricetin--are they prodrugs? J. Nutr. Biochem., 2012, 23(7), 733-740.
[http://dx.doi.org/10.1016/j.jnutbio.2011.03.017] [PMID: 21840194]
[26]
Bischoff, S.C. Quercetin: Potentials in the prevention and therapy of disease. Curr. Opin. Clin. Nutr. Metab. Care, 2008, 11(6), 733-740.
[http://dx.doi.org/10.1097/MCO.0b013e32831394b8] [PMID: 18827577]
[27]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26.
[http://dx.doi.org/10.1016/S0169-409X(00)00129-0] [PMID: 11259830]
[28]
Leo, A.J. Calculating log Poct from structures. Chem. Rev., 1993, 93(4), 1281-1306.
[http://dx.doi.org/10.1021/cr00020a001]
[29]
Moriguchi, I.; Hirono, S.; Liu, Q.; Nakagome, I.; Matsushita, Y. Simple method of calculating octanol/water partition coefficient. Chem. Pharm. Bull. (Tokyo), 1992, 40(1), 127-130.
[http://dx.doi.org/10.1248/cpb.40.127]
[30]
Leeson, P.D. Molecular inflation, attrition and the rule of five. Adv. Drug Deliv. Rev., 2016, 101, 22-33.
[http://dx.doi.org/10.1016/j.addr.2016.01.018] [PMID: 26836397]
[31]
Lomenick, B.; Olsen, R.W.; Huang, J. Identification of direct protein targets of small molecules. ACS Chem. Biol., 2011, 6(1), 34-46.
[http://dx.doi.org/10.1021/cb100294v] [PMID: 21077692]
[32]
Clerk, A.; Fuller, S.J.; Michael, A.; Sugden, P.H. Stimulation of “stress-regulated” mitogen-activated protein kinases (stress-activated protein kinases/c-Jun N-terminal kinases and p38-mitogen-activated protein kinases) in perfused rat hearts by oxidative and other stresses. J. Biol. Chem., 1998, 273(13), 7228-7234.
[http://dx.doi.org/10.1074/jbc.273.13.7228] [PMID: 9516415]
[33]
Glennon, P.E.; Kaddoura, S.; Sale, E.M.; Sale, G.J.; Fuller, S.J.; Sugden, P.H. Depletion of mitogen-activated protein kinase using an antisense oligodeoxynucleotide approach downregulates the phenylephrine-induced hypertrophic response in rat cardiac myocytes. Circ. Res., 1996, 78(6), 954-961.
[http://dx.doi.org/10.1161/01.RES.78.6.954] [PMID: 8635245]
[34]
Bueno, O.F.; De Windt, L.J.; Lim, H.W.; Tymitz, K.M.; Witt, S.A.; Kimball, T.R.; Molkentin, J.D. The dual-specificity phosphatase MKP-1 limits the cardiac hypertrophic response in vitro and in vivo. Circ. Res., 2001, 88(1), 88-96.
[http://dx.doi.org/10.1161/01.RES.88.1.88] [PMID: 11139479]
[35]
Takeishi, Y.; Huang, Q.; Abe, J.; Glassman, M.; Che, W.; Lee, J-D.; Kawakatsu, H.; Lawrence, E.G.; Hoit, B.D.; Berk, B.C.; Walsh, R.A. Src and multiple MAP kinase activation in cardiac hypertrophy and congestive heart failure under chronic pressure-overload: comparison with acute mechanical stretch. J. Mol. Cell. Cardiol., 2001, 33(9), 1637-1648.
[http://dx.doi.org/10.1006/jmcc.2001.1427] [PMID: 11549343]
[36]
Flesch, M.; Margulies, K.B.; Mochmann, H-C.; Engel, D.; Sivasubramanian, N.; Mann, D.L. Differential regulation of mitogen-activated protein kinases in the failing human heart in response to mechanical unloading. Circulation, 2001, 104(19), 2273-2276.
[http://dx.doi.org/10.1161/hc4401.099449] [PMID: 11696464]
[37]
Nakano, A.; Baines, C.P.; Kim, S.O.; Pelech, S.L.; Downey, J.M.; Cohen, M.V.; Critz, S.D. Ischemic preconditioning activates MAPKAPK2 in the isolated rabbit heart: Evidence for involvement of p38 MAPK. Circ. Res., 2000, 86(2), 144-151.
[http://dx.doi.org/10.1161/01.RES.86.2.144] [PMID: 10666409]
[38]
Yue, T-L.; Wang, C.; Gu, J-L.; Ma, X-L.; Kumar, S.; Lee, J.C.; Feuerstein, G.Z.; Thomas, H.; Maleeff, B.; Ohlstein, E.H. Inhibition of extracellular signal-regulated kinase enhances Ischemia/Reoxygenation-induced apoptosis in cultured cardiac myocytes and exaggerates reperfusion injury in isolated perfused heart. Circ. Res., 2000, 86(6), 692-699.
[http://dx.doi.org/10.1161/01.RES.86.6.692] [PMID: 10747006]
[39]
Hayashida, T.; Decaestecker, M.; Schnaper, H.W. Cross-talk between ERK MAP kinase and Smad signaling pathways enhances TGF-β-dependent responses in human mesangial cells. FASEB J., 2003, 17(11), 1576-1578.
[http://dx.doi.org/10.1096/fj.03-0037fje] [PMID: 12824291]
[40]
Suárez-Fueyo, A.; Rojas, J.M.; Cariaga, A.E.; García, E.; Steiner, B.H.; Barber, D.F.; Puri, K.D.; Carrera, A.C. Inhibition of PI3Kδ reduces kidney infiltration by macrophages and ameliorates systemic lupus in the mouse. J. Immunol., 2014, 193(2), 544-554.
[http://dx.doi.org/10.4049/jimmunol.1400350] [PMID: 24935930]
[41]
Sun, X.; He, S.; Wara, A.K.M.; Icli, B.; Shvartz, E.; Tesmenitsky, Y.; Belkin, N.; Li, D.; Blackwell, T.S.; Sukhova, G.K.; Croce, K.; Feinberg, M.W. Systemic delivery of microRNA-181b inhibits nuclear factor-κB activation, vascular inflammation, and atherosclerosis in apolipoprotein E-deficient mice. Circ. Res., 2014, 114(1), 32-40.
[http://dx.doi.org/10.1161/CIRCRESAHA.113.302089] [PMID: 24084690]
[42]
Xiao, D.; Gu, Z.L.; Qian, Z.N. Effects of quercetin on platelet and reperfusion-induced arrhythmias in rats. Zhongguo Yao Li Xue Bao, 1993, 14(6), 505-508.
[PMID: 8010047]
[43]
Daubney, J.; Bonner, P.L.; Hargreaves, A.J.; Dickenson, J.M. Cardioprotective and cardiotoxic effects of quercetin and two of its in vivo metabolites on differentiated h9c2 cardiomyocytes. Basic Clin. Pharmacol. Toxicol., 2015, 116(2), 96-109.
[http://dx.doi.org/10.1111/bcpt.12319] [PMID: 25203460]
[44]
Wei, X.; Meng, X.; Yuan, Y.; Shen, F.; Li, C.; Yang, J. Quercetin exerts cardiovascular protective effects in LPS-induced dysfunction in vivo by regulating inflammatory cytokine expression, NF-κB phosphorylation, and caspase activity. Mol. Cell. Biochem., 2018, 446(1-2), 43-52.
[http://dx.doi.org/10.1007/s11010-018-3271-6] [PMID: 29322353]
[45]
Egert, S.; Bosy-Westphal, A.; Seiberl, J.; Kürbitz, C.; Settler, U.; Plachta-Danielzik, S.; Wagner, A.E.; Frank, J.; Schrezenmeir, J.; Rimbach, G.; Wolffram, S.; Müller, M.J. Quercetin reduces systolic blood pressure and plasma oxidised low-density lipoprotein concentrations in overweight subjects with a highcardiovascular disease risk phenotype: A double-blinded, placebocontrolled cross-over study. Br. J. Nutr, 2009, 102(7), 1065-1074.
[http://dx.doi.org/10.1017/S0007114509359127] [PMID: 19402938]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 22
ISSUE: 6
Year: 2019
Page: [411 - 420]
Pages: 10
DOI: 10.2174/1386207322666190717124507
Price: $58

Article Metrics

PDF: 47
HTML: 6
EPUB: 1
PRC: 1