Macromolecule/Polymer-Iodine Complexes: An Update

Author(s): Saad Moulay*.

Journal Name: Recent Innovations in Chemical Engineering
Formerly: Recent Patents on Chemical Engineering

Volume 12 , Issue 3 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

The great chemical affinity of molecular iodine towards several macromolecules and innumerable polymers allows the formation of macromolecule/polymer-iodine complexes, usually commensurate with the desired uses and applications. In many instances, the formation of such complexes occurs through a charge-transfer mechanism. The strength of the ensued complex is more accentuated by the presence of heteroatoms (nitrogen, oxygen, sulfur) and the π-conjugation induced moieties within the chemical structure of the polymer. A wide range of polymers with high specific surface areas and large total pore volumes are excellent candidates for iodine adsorption, suggesting their use in the removal of radioactive iodine in nuclear power plants. The recent results of iodine uptake by polysaccharides such as starch, chitin, chitosan, alginate, and cellulose are but novelties. Complexing vinyl polymers such as poly(N-vinyl-2-pyrrolidone), poly(vinyl pyridine), poly(vinyl alcohol), poly(vinyl chloride), poly(acrylonitrile), and polyacrylics, with molecular iodine revealed special chemistry, giving rise to polyiodide ions (In -) as the actual complexing agents. Carbon allotropes (graphene, graphene oxide, carbon nanotubes, amorphous carbons) and polyhydrocarbons are prone to interact with molecular iodine. The treatment of a broad set of polymers and macromolecules with molecular iodine is but a doping process that ends up with useful materials of enhanced properties such conductivity (electrical, ionic, thermal); in some cases, the obtained materials were of engineering applications. Complexation and doping materials with iodine are also aimed at ensuring the antimicrobial activity, particularly, for those intended for medical uses. In several cases, the impact of the iodine doping of polymer is the alteration of its morphology, as is the case of the disruption of the graphitic morphology of the graphene or graphene oxide.

Keywords: Charge-transfer complex, conductivity, doping, iodine, macromolecule, polymer.

[1]
Zhdankin VV. Hypervalent iodine chemistry: Preparation, structure and synthetic applications of polyvalent iodine compounds. Wiley 2014.
[2]
Yoshimura A, Zhdankin VV. Advances in synthetic applications of hypervalent iodine compounds. Chem Rev 2016; 116(5): 3328-435.
[http://dx.doi.org/10.1021/acs.chemrev.5b00547] [PMID: 26861673]
[3]
Jereb M, Vražič D, Zupan M. Iodine-catalyzed transformation of molecules containing oxygen functional groups. Tetrahedron Lett 2011; 67(1): 1355-87.
[http://dx.doi.org/10.1016/j.tet.2010.11.086]
[4]
Kaiho T. Iodine Chemistry and Applications. John Wiley & Sons Inc 2015.
[5]
Gottardi W. Iodine and iodiene compounds Disinfection, sterilization, and preservation; Block SS 5th. 2001; 159-84.
[6]
Abelson MB, Capriotti JA, Lilyestrom I. Iodine: An elemental force against infection. Rev Ophthalmol 2009; 16(1): 80-3.
[7]
Iodine. Livestock. Technical Evaluation Report, Pesticide Research Institute for the USDA National Organic Program. Agricultural Marketing Service - USDA 2015.
[8]
Iodine as a drinking water disinfectant, WHO 2018.https://creativecommons.org/licenses/by-nc-sa/3.0/igo
[9]
Medrano-Macías J, Leija-Martínez P, González-Morales S, Juárez-Maldonado A, Benavides-Mendoza A. Use of iodine to biofortify and promote growth and stress tolerance in crops. Front Plant Sci 2016; 7(1): 1146.
[http://dx.doi.org/10.3389/fpls.2016.01146] [PMID: 27602033]
[10]
Tekale SU, Kauthale SS, Dake SA, Sarda SR, Pawar RP. Molecular iodine: An efficient and versatile reagent for organic synthesis. Curr Org Chem 2012; 16(1): 1485-501.
[http://dx.doi.org/10.2174/138527212800672574]
[11]
Yusubov MS, Zhdankin VV. Iodine catalysis: A green alternative to transition metals in organic chemistry and technology. Res Eff Technol 2015; 1(1): 49-67.
[http://dx.doi.org/10.1016/j.reffit.2015.06.001]
[12]
Moulay S. Molecular iodine in monomer and polymer designing. Des Monomers Polym 2014; 17(1): 501-627.
[http://dx.doi.org/10.1080/15685551.2013.867579]
[13]
[14]
He S, Wang B, Lu X, et al. Iodine stimulates estrogen receptor singling and its systemic level is increased in surgical patients due to topical absorption. Oncotarget 2017; 9(1): 375-84.
[PMID: 29416620]
[15]
Banker GS, Rhodes CT. Modern Pharmaceutics. 4th ed. 2002.
[http://dx.doi.org/10.1201/9780824744694]
[16]
Kawano Y, Saeki T, Noma T. Effect of lecithin-bound iodine on the patients with bronchial asthma. Int Immunopharmacol 2005; 5(4): 805-10.
[http://dx.doi.org/10.1016/j.intimp.2004.12.002] [PMID: 15710348]
[17]
Sugimoto M, Kondo M. Lecithin-bound iodine prevents disruption of tight junctions of retinal pigment epithelial cells under hypoxic stress. J Ophthalmol 2016; 2016(1): 1-8.
[PMID: 20169292346] [http://dx.doi.org/10.1155/2016/9292346] [PMID: 27340563]
[18]
Küpper FC, Feiters MC, Olofsson B, et al. Commemorating two centuries of iodine research: An interdisciplinary overview of current research. Angew Chem Int Ed Engl 2011; 50(49): 11598-620.
[http://dx.doi.org/10.1002/anie.201100028] [PMID: 22113847]
[19]
Rogachev AY, Hoffmann R. Iodine (I2) as a Janus-faced ligand in organometallics. J Am Chem Soc 2013; 135(8): 3262-75.
[http://dx.doi.org/10.1021/ja312584u] [PMID: 23384185]
[20]
Yuldasheva GA, Zhidomirov GM, Leszczynski J, Ilin AI. Iodine containing drugs: Complexes of molecular iodine and tri-iodide with bioorganic ligands and lithium halogenides in aqueous solutions. Practical aspects of computational chemistry IV 2016.
[http://dx.doi.org/10.1007/978-1-4899-7699-4_10]
[21]
Moulay S. Molecular iodine/polymers complexes. J Polym Eng 2013; 33: 389-443.
[http://dx.doi.org/10.1515/polyeng-2012-0122]
[22]
Yu X, Houtman C, Atalla RH. The complex of amylose and iodine. Carbohydr Res 1996; 292(1): 29-141.
[http://dx.doi.org/10.1016/0008-6215(96)00159-0]
[23]
Kljubin VV, Kljubina KA, Makovetskaya KN. Determination of free iodine concentration in an x-ray contrast agent. Opt Spectrosc 2016; 120(1): 546-50. Optika i Spektroskopiya 2016; 120(4): 576-80.
[24]
Madhu S, Evans HA, Doan-Nguyen VV, et al. Infinite polyiodide chains in the pyrroloperylene-iodine complex: Insights into the starch-iodine and perylene-iodine complexes. Angew Chem Int Ed Engl 2016; 55(28): 8032-5.
[http://dx.doi.org/10.1002/anie.201601585] [PMID: 27239781]
[25]
Danilovas PP, Navikaite V, Rutkaite R. Preparation and characterization of potentially antimicrobial polymer films containing starch nano- and microparticles. Mater Sci (Medžiagotyra) 2014; 20(1): 283-8.
[http://dx.doi.org/10.5755/j01.ms.20.3.5426]
[26]
Danilovas PP, Rutkaite R, Zemaitaitis A. Thermal degradation and stability of cationic starches and their complexes with iodine. Carbohydr Polym 2014; 112(1): 721-8.
[http://dx.doi.org/10.1016/j.carbpol.2014.06.038] [PMID: 25129801]
[27]
Vamadevan V, Hoover R, Bertoft E, Seetharaman K. Hydrothermal treatment and iodine binding provide insights into the organization of glucan chains within the semi-crystalline lamellae of corn starch granules. Biopolymers 2014; 101(8): 871-85.
[http://dx.doi.org/10.1002/bip.22468] [PMID: 24488699]
[28]
Shen X, Bertoft E, Zhang G, Hamaker BR. Iodine binding to explore the conformational state of internal chains of amylopectin. Carbohydr Polym 2013; 98(1): 778-83.
[http://dx.doi.org/10.1016/j.carbpol.2013.06.050] [PMID: 23987412]
[29]
Nagaraj P, Sasidharan A, David V, Sambandam A. Effect of cross-linking on the performances of starch-based biopolymer as gel electrolyte for dye-sensitized solar cell applications. Polymers (Basel) 2017; 9(12): 667.
[http://dx.doi.org/10.3390/polym9120667] [PMID: 30965965]
[30]
Shlenskaya NN, Goodilin EA, Tarasov AB. Isolation of methylammonium room temperature reactive polyiodide melt into a new starch complex. Mendeleev Commun 2018; 28: 242-4.
[http://dx.doi.org/10.1016/j.mencom.2018.05.004]
[31]
Yan B, Matsushita S, Suzuki S, Kitamura S, Kaiho T, Akagi K. Low-density graphitic films prepared from iodine-doped enzymatically synthesized amylose films as carbonization precursors. Carbohydr Polym 2018; 196(1): 332-8.
[http://dx.doi.org/10.1016/j.carbpol.2018.05.050] [PMID: 29891304]
[32]
Kolodziej A, Fic K, Frackowiak E. Towards sustainable power sources: Chitin-bound carbon electrodes for electrochemical capacitors. J Mater Chem A Mater Energy Sustain 2015; 3(1): 22923-30.
[http://dx.doi.org/10.1039/C5TA06750B]
[33]
Gao R, Lu Y, Xiao S, Li J. Facile fabrication of nanofibrillated chitin/Ag2O heterostructured aerogels with high iodine capture efficiency. Sci Rep 2017; 7(1): 4303.
[http://dx.doi.org/10.3390/polym10030342]
[34]
Martins AF, Facchi SP, Follmann HDM, Pereira AGB, Rubira AF, Muniz EC. Antimicrobial activity of chitosan derivatives containing N-quaternized moieties in its backbone: A review. Int J Mol Sci 2014; 15(11): 20800-32.
[http://dx.doi.org/10.3390/ijms151120800] [PMID: 25402643]
[35]
Jennings JA, Bumgardner JD. Eds Chitosan based biomaterials: Tissue engineering and therapeutics 2017; Woodhead Publishing Vol 1 and 2
[36]
Argüelles-Monal WM, Lizardi-Mendoza J, Fernández-Quiroz D, Recillas-Mota MT, Montiel-Herrera M. Chitosan derivatives: Introducing new functionalities with a controlled molecular architecture for innovative materials. Polymers 2018; 10(342): 33.
[37]
Murzagildina A, Mudarisova R, Kulish E, Kolesov S, Zaikov G. Chitosan films doped with iodine vapors. Chem Chem Technol 2013; 7(1): 101-4.
[http://dx.doi.org/10.23939/chcht07.01.101]
[38]
Sai M, Guo R, Chen L, Xu N, Tang Y, Ding D. Research on the preparation and characterization of chitosan grafted polyvinylpyrrolidone gel membrane with iodine. J Appl Polym Sci 2015; 132(1): 41797.
[http://dx.doi.org/10.1002/app.41797]
[39]
Guo R, Sai M, Zhang M, et al. Preparation and performance of chitosan grafted polyvinyl pyrrolidone film with iodine. Chin J Appl Chem 2015; 32(1): 498-503.
[40]
Xu N, Ding D. Preparation and antibacterial activity of chitosan derivative membrane complexation with iodine. RSC Advances 2015; 5(1): 79820-8.
[http://dx.doi.org/10.1039/C5RA13227D]
[41]
Sai M, Zhong S, Tang Y, Ma W, Sun Y, Ding D. Research on the preparation and antibacterial properties of 2‐N‐thiosemicarbazide‐6‐O‐hydroxypropyl chitosan membranes with iodine. J Appl Polym Sci 2014; 131(1): 40535.
[http://dx.doi.org/10.1002/app.40535]
[42]
Tang Y, Xie L, Sai M, Xu N, Ding D. Preparation and antibacterial activity of quaternized chitosan with iodine. Mater Sci Eng C 2015; 48(1): 1-4.
[http://dx.doi.org/10.1016/j.msec.2014.11.019] [PMID: 25579889]
[43]
Belyakova OA, Shipovskaya AB. Sorption of iodine-containing vapor onto chitosan. Russian J Appl Chem 2016; 89:1632-41. Журн прикл химии 2016; 89(10): 1312-21.
[44]
Gegel NO, Babicheva TS, Belyakova OA, Lugovitskaya TN, Shipovskaya AB. Spectroscopic analysis of the powdery complex chitosan-iodine. 2018 10716, id. 107161Z 5 pp.
[http://dx.doi.org/10.1117/12.2315067]
[45]
Gegel NO, Babicheva TS, Belyakova OA, Lugovitskaya TN, Shipovskaya AB. Structure and biological properties of the complex obtained by the polymer modification in an iodine-containing vapors. Eur J Nat Hist 2018; 3(1): 24-30.
[46]
Limchoowong N, Sricharoen P, Techawongstien S, Chanthai S. An iodine supplementation of tomato fruits coated with an edible film of the iodide-doped chitosan. Food Chem 2016; 200(1): 223-9.
[http://dx.doi.org/10.1016/j.foodchem.2016.01.042] [PMID: 26830582]
[47]
Zakirov AS, Yuldashev SU, Cho HD, Jeon HC, Kang TW, Mamadalimov AT. Electrical and optical properties of air-stable, iodine-doped natural cotton fibers. J Korean Phys Soc 2014; 64(1): 561-6.
[http://dx.doi.org/10.3938/jkps.64.561]
[48]
Mamadalimov AT, Khakimova NK, Khakimova RU. Study of electrophysical properties of cotton fibers doped iodine. J Sci Eng Res 2018; 5: 14-7.
[49]
Bella F, Galliano S, Falco M, et al. Approaching truly sustainable solar cells by the use of water and cellulose derivatives. Green Chem 2017; 19(2): 1043-51.
[http://dx.doi.org/10.1039/C6GC02625G]
[50]
Schreiber M, Vivekanandhan S, Mohanty AK, Misra M. Iodine treatment of lignin-cellulose acetate electrospun fibers: Enhancement of green fiber carbonization. ACS Sustain Chem& Eng 2015; 3(2): 33-41.
[http://dx.doi.org/10.1021/sc500481k]
[51]
Tashiro K, Gakhutishvili M. Crystal structure of cellulose-iodine complex. Polymer (Guildf) 2019; 171(1): 140-8.
[http://dx.doi.org/10.1016/j.polymer.2019.03.034]
[52]
Ahmad SI, Mazumdar N, Kumar S. Functionalization of natural gum: An effective method to prepare iodine complex. Carbohydr Polym 2013; 92(1): 497-502.
[http://dx.doi.org/10.1016/j.carbpol.2012.09.049] [PMID: 23218326]
[53]
Ganie SA, Ali A, Mazumdar N. Iodine derivatives of chemically modified gum Arabic microspheres. Carbohydr Polym 2015; 129(2): 224-31.
[http://dx.doi.org/10.1016/j.carbpol.2015.04.044] [PMID: 26050909]
[54]
Ali A, Ganie SA, Mazumdar N. A new study of iodine complexes of oxidized gum Arabic: An interaction between iodine monochloride and aldehyde groups. Carbohydr Polym 2018; 180(1): 337-47.
[http://dx.doi.org/10.1016/j.carbpol.2017.10.005] [PMID: 29103513]
[55]
Moulay S. Poly (vinyl alcohol): What a material! What a chemistry. Rec Res Dev J Appl Polym Sci 2009; Vol 4(1): 391-496.
[56]
Moulay S. Review: Poly (vinyl alcohol) functionalizations and its applications. Polym Plast Technol Eng 2015; 54(1): 1289-319.
[http://dx.doi.org/10.1080/03602559.2015.1021487]
[57]
Aslam M, Kalyar MA, Raza ZA. Polyvinyl alcohol: A review of research status and use of polyvinyl alcohol based nanocomposites. Polym Eng Sci 2018; 58(1): 2119-32.
[http://dx.doi.org/10.1002/pen.24855]
[58]
Mazumdar N, Ahmad SI, Ganie SA, Ali A. Iodine complexes of acid-functionalized poly (vinyl alcohol) hydrogels: Synthesis, characterization and release studies. J Polym Mater 2016; 33(1): 41-52.
[59]
Çavuș S, Durgun E. Poly (vinyl alcohol) based polymer gel electrolytes: Investigation on their conductivity and characterization. Acta Phys Pol A 2016; 129(1): 621-4.
[http://dx.doi.org/10.12693/APhysPolA.129.621]
[60]
Takamura T, Nozawa K, Sugimoto Y, Shioya M. Extraordinarily large swelling energy of iodine-treated poly (vinyl alcohol) demonstrated by jump of a film. J Polym Sci, B, Polym Phys 2014; 52(20): 1357-65.
[http://dx.doi.org/10.1002/polb.23570] [PMID: 25678738]
[61]
Sashio M, Tanaka M. Thermal reaction of poly (vinyl alcohol)-iodine complex membranes. J Polym Sci Polym Chem 1985; 23(1): 905-9.
[62]
Fatema UK, Okino F, Goto Y. Influence of heat treatment conditions on the structure of hollow carbon fibers prepared from solid PVA fibers using iodine pretreatment. J Mater Sci 2014; 49(1): 1049-57.
[http://dx.doi.org/10.1007/s10853-013-7782-y]
[63]
Saharin SM, Takahama T, Nonogaki S, Saito K, Tashiro K. The effect of counter cation species on the formation of various crystal forms and their phase transition behavior of poly (vinyl alcohol)-iodine complex. Polymer (Guildf) 2016; 89(1): 81-93.
[http://dx.doi.org/10.1016/j.polymer.2016.02.035]
[64]
Tashiro K, Kitai H, Saharin SM, Shimazu A, Itou T. Quantitative crystal structure analysis of poly (vinyl alcohol)-iodine complexes on the basis of 2D x-ray diffraction, raman spectra, and computer simulation techniques. Macromolecules 2015; 48(1): 2138-48.
[http://dx.doi.org/10.1021/acs.macromol.5b00119]
[65]
Saharin SM, Takahama T, Nonogaki S, Saito K, Tashiro K. Effect of OH segmental length on the iodine complex formation of ethylene-vinyl alcohol random copolymers. Macromolecules 2015; 48(1): 8867-76.
[http://dx.doi.org/10.1021/acs.macromol.5b01998]
[66]
Takahama T, Saharin SM, Tashiro K. Details of the intermolecular interactions in poly (vinyl alcohol)-iodine complexes as studied by quantum chemical calculations. Polymer (Guildf) 2016; 99(2): 566-79.
[http://dx.doi.org/10.1016/j.polymer.2016.07.055]
[67]
Ha HO, Kim DS. Stability change of poly (vinyl alcohol)-iodine complexes due to moisture absorption. Polym Korea 2017; 41(1): 507-13.
[http://dx.doi.org/10.7317/pk.2017.41.3.507]
[68]
Ha HO, Kim DS. Color change of an iodinated poly (vinyl alcohol) film by physical deformation. J Appl Polym Sci 2016; 133(1): 43036.
[http://dx.doi.org/10.1002/app.43036]
[69]
El-Ghamaz NA, Ghaly HA. Effect of chemical and physical doping with iodine on the optical and dielectric properties of poly (vinyl chloride). Chem Phys Lett 2016; 648: 66-74.
[http://dx.doi.org/10.1016/j.cplett.2016.01.057]
[70]
Kise H, Sugihara M, He F-F. Electrical conductivity of chemically dehydrochlorinated poly (vinyl chloride) films doped with electron acceptors. J Appl Polym Sci 1985; 30(1): 1133-44.
[http://dx.doi.org/10.1002/app.1985.070300319]
[71]
Owen ED, Shah M, Everall NJ, Twigg MV. Raman spectroscopic study of the interaction of iodine with polyene sequences derived from the phase-transfer-catalyzed dehydrochlorination of poly (vinyl chloride). Macromolecules 1994; 27(1): 3436-8.
[http://dx.doi.org/10.1021/ma00090a046]
[72]
Fleischer W, Reimer K. Povidone-iodine in antisepsis-state of the art. Dermatology 1997; 195(2): 3-9.
[http://dx.doi.org/10.1159/000246022]
[73]
Bigliardi PL, Alsagoff SAL, El-Kafrawi HY, Pyon J-K, Wa CTC, Villa MA. Povidone iodine in wound healing: A review of current concepts and practices. Int J Surg 2017; 44(1): 260-8.
[http://dx.doi.org/10.1016/j.ijsu.2017.06.073] [PMID: 28648795]
[74]
Davydov AB, Belyh SI, Kravets VV. Iodine-containing coating with prolonged antimicrobial activity based on water-insoluble polymer matrix. Biomed Eng (NY) 2013; 46(1): 237-40.
[http://dx.doi.org/10.1007/s10527-013-9314-0]
[75]
Sa A, Sawatdee S, Phadoongsombut N, et al. Quantitative analysis of povidone-iodine thin films by x-ray photoelectron spectroscopy and their physicochemical properties. Acta Pharm 2017; 67(2): 169-86.
[http://dx.doi.org/10.1515/acph-2017-0011] [PMID: 28590912]
[76]
Sebe I, Szabó B, Nagy ZK, et al. Polymer structure and antimicrobial activity of polyvinylpyrrolidone-based iodine nanofibers prepared with high-speed rotary spinning technique. Int J Pharm 2013; 458(1): 99-103.
[http://dx.doi.org/10.1016/j.ijpharm.2013.10.011] [PMID: 24140543]
[77]
Liakos I, Rizzello L, Bayer IS, Pompa PP, Cingolani R, Athanassiou A. Controlled antiseptic release by alginate polymer films and beads. Carbohydr Polym 2013; 92(1): 176-83.
[http://dx.doi.org/10.1016/j.carbpol.2012.09.034] [PMID: 23218280]
[78]
Summa M, Russo D, Penna I, et al. A biocompatible sodium alginate/povidone iodine film enhances wound healing. Eur J Pharm Biopharm 2018; 122(1): 17-24.
[http://dx.doi.org/10.1016/j.ejpb.2017.10.004] [PMID: 29017952]
[79]
Hajimirzababa H, Khajavi R, Mirjalili M, Rahimi MK. Modified cotton gauze with nano-Ag decorated alginate microcapsules and chitosan loaded with PVP-I. J Text Inst 2018; 109(1): 677-85.
[80]
Meng Z, Tan X, Zhang S, et al. Ultra-stable binder-free rechargeable Li/I2 batteries enabled by “Betadine” chemical interaction. Chem Commun (Camb) 2018; 54(87): 12337-40.
[http://dx.doi.org/10.1039/C8CC06848H] [PMID: 30324203]
[81]
Au-Duong AN, Vo DT, Lee CK. Bactericidal magnetic nanoparticles with iodine loaded on surface grafted poly(N-vinylpyrrolidone). J Mater Chem B Mater Biol Med 2015; 3(1): 840.
[http://dx.doi.org/10.1039/C4TB01516A]
[82]
Mhatre AM, Chappa S, Ojha S, Pandey AK. Functionalized glass fiber membrane for extraction of iodine species. Sep Sci Technol 2019; 54(1): 1469-77.
[http://dx.doi.org/10.1080/01496395.2018.1520729]
[83]
Chen Y, Yang Y, Liao Q, et al. Preparation, property of the complex of carboxymethyl chitosan grafted copolymer with iodine and application of it in cervical antibacterial biomembrane. Mater Sci Eng C 2016; 67(1): 247-58.
[http://dx.doi.org/10.1016/j.msec.2016.05.027] [PMID: 27287120]
[84]
Raut PW, Khandwekar AP, Sharma N. Polyurethane-polyvinylpyrrolidone iodine blends as potential urological biomaterials. J Mater Sci 2018; 53(1): 11176-93.
[http://dx.doi.org/10.1007/s10853-018-2445-7]
[85]
Jiang J, Zhu L, Zhu L, Zhang H, Zhu B, Xu Y. Antifouling and antimicrobial polymer membranes based on bioinspired polydopamine and strong hydrogen-bonded poly (N-vinyl pyrrolidone). ACS Appl Mater Interfaces 2013; 5(24): 12895-904.
[http://dx.doi.org/10.1021/am403405c] [PMID: 24313803]
[86]
Lu S, Liu Y, Xiang Y. Preparation of PVP-based iodine-iodide gel-electrolyte and its application in DSSCs. Chem J Chin Univ 2014; 35(1): 1293-9.
[87]
Meng Z, Tian H, Zhang S, et al. Polyiodide-shuttle restricting polymer cathode for rechargeable lithium/iodine battery with ultra-long cycle life. ACS Appl Mater Interfaces 2018; 10(21): 17933-41.
[http://dx.doi.org/10.1021/acsami.8b03212] [PMID: 29738665]
[88]
Valle ASS, Marques MRC, Costa LC, Santa Maria LC, de Aguiar AP, Merçon F. Evaluation of bactericidal action of 2-vinylpyridine copolymers containing quaternary ammonium groups and their charge transfer complexes. Polímeros 2013; 23(1): 152-60.
[89]
Andrews RD, Miyachi K, Doshi RS. Iodine swelling of polyacrylonitrile I. Effect of orientation and evidence for a three-phase structure. J Macromol Sci Part B 1974; 9(1): 281-99.
[http://dx.doi.org/10.1080/00222347408212195]
[90]
Andrews RD, Yen RC, Chang PC. Iodine swelling of polyacrylonitrile, III: Creep yield and conformational transition of swollen polymer. J Macromol Sci Part B 1981; 19(1): 729-42.
[http://dx.doi.org/10.1080/00222348108246319]
[91]
Kim HS, Cho HH. Crystalline structure of polyacrylonitrile-iodine complex. J Appl Polym Sci 1994; 53(1): 1403-13.
[http://dx.doi.org/10.1002/app.1994.070531102]
[92]
Lerner NR. Conducting complexes of vacuum-cyclized polyacrylonitrile and iodine. Polymer (Guildf) 1983; 24(2): 800-4.
[http://dx.doi.org/10.1016/0032-3861(83)90192-1]
[93]
Teoh H, Mac Innes D Jr, Metz P. Electrical conductivity of doped polyacrylonitrile (PAN). J Phys 1983; 44(2): C3-687-91.
[94]
Aronson S, Wilensky S, Jawitz K, Teoh H. Electrochemical properties of complexes of iodine with cyclized poly(acrylonitrile) and 2-poly(vinylpyridine). Polymer (Guildf) 1986; 27(1): 101-4.
[http://dx.doi.org/10.1016/0032-3861(86)90362-9]
[95]
El-Ghamaz NA, Diab MA, Zoromba MSh, El-Sonbati AZ, El-Shahat O. Conducting polymers VI. Effect of doping with iodine on the dielectrical and electrical conduction properties of polyacrylonitrile. Solid State Sci 2013; 24(1): 140-6.
[http://dx.doi.org/10.1016/j.solidstatesciences.2013.07.016]
[96]
Ikramova ME, Mukhamediev MT, Musaev UN. Complexing of iodine with anion-exchange polyacrylonitrile materials Intern Polym Sci Technol 2001; 28(1): T/56-T/57.
[97]
Riley BJ, Pierce DA, Chun J, et al. Polyacrylonitrile-chalcogel hybrid sorbents for radioiodine capture. Environ Sci Technol 2014; 48(10): 5832-9.
[http://dx.doi.org/10.1021/es405807w] [PMID: 24779585]
[98]
Kelkar DS, Gadre AP. Structural and optical properties of iodine‐doped PMMA film. J Appl Polym Sci 1998; 70(1): 1627-31.
[http://dx.doi.org/10.1002/(SICI)1097-4628 (19981121) 70:8<1627:AID-APP21>3.0.CO;2-F]
[99]
Zidan HM, Abdelrazek EM. Structural and optical properties of PMMA films filled with different contents of iodine. Intern J Polym Mater Polym Biomater 2005; 54(1): 1073-85.
[http://dx.doi.org/10.1080/009140390901482]
[100]
Tanwar A, Gupta KK, Singh PJ, Vijay YK. Dielectric parameters and A.C. conductivity of pure and doped poly (methyl methacrylate) films at microwave frequencies. Bull Mater Sci 2006; 29(1): 397-401.
[http://dx.doi.org/10.1007/BF02704142]
[101]
D’souza R, Keller JM, Das K. Optical properties of iodine-PMMA composites. 14th International Symposium on Electrets 2011.
[102]
Mehta S. Das Kl, Keller JM. Abbe’s number and Cauchy’s constant of iodine and selenium doped poly (methyl methacrylate) and polystyrene composites. AIP Conf Proc 2014; 1591(2): 851-3.
[http://dx.doi.org/10.1063/1.4872778]
[103]
Mehta S, Keller JM, Das K. Nano-engineered optical properties of iodine doped poly (methyl methacrylate). AIP Conf Proc 2016; 1731(1): 08000.
[http://dx.doi.org/10.1063/1.4947880]
[104]
Mehta S. Das Kl, Keller JM. Variation in refractive index of iodine doped poly (methyl methacrylate). Intern J Adv Sci Res Manag 2018; 3(1): 61-3.
[105]
Menaka C, Velu KS, Manisankar P, Stalin T. Conductivity, structural and electrochemical behavior of plasticized polymer electrolytes for dye-sensitised solar cell. Indian J Chem 2013; 52A: 467-72.
[106]
Kariper SE, Hepokur C, Kariper İA, Üstündağ İ, Ceylan D. Preparation of iodine and silver coated thin film on poly(methylmethacrylate) substrate and examination of antifungal, antibacterial and mechanistic properties. Indian J Pure Appl Phy 2017; 55(1): 122-8.
[107]
Bae H-S, Haider A, Selim KMK, Kang D-Y, Kim E-J, Kang I-K. Reversible doping of a dithienothiophene-based con-jugated microporous polymer. Chemistry 2015; 21(26): 9306-11.
[108]
Priya GHH, Suganya N, Jaisankar V. Effect of nanofiller on ionic conductivity of polymer nanocomposite electrolyte for solar cell applications. Inter J ChemTech Res 2014-2015; 7(1): 2942-8.
[109]
Dienna JB. Iodine dissolved in an aqueous solution of polyacrylic acid. US Patent 1956; 2: 758-49.
[110]
Haschke H, Morlock G. Iodophors and a process for their preparation. US Patent 1976; 3(1): 984341.
[111]
Morlock G, Stehlik G. Iodophor Solution. US Patent 1978; 4(2): 088597.
[112]
Zoromba MS, El-Ghamaz NA, El-Sonbati AZ, El-Bindary AA, Diab MA, El-Shahat O. Conducting polymers VII. Effect of doping with iodine on the dielectrical and electrical conduction properties of polyaniline. Synth React Inorg Met-Org Nano-Met Chem 2016; 46(1): 1179-88.
[http://dx.doi.org/10.1080/15533174.2015.1004435]
[113]
Lee YW, Do K, Lee TH, et al. Iodine vapor doped polyaniline nanoparticles counter electrodes for dye-sensitized solar cells. Synth Met 2013; 174(2): 6-13.
[http://dx.doi.org/10.1016/j.synthmet.2013.04.009]
[114]
Wang J, Li B, Ni T, Dai T, Lu Y. One-step synthesis of iodine doped polyaniline-reduced graphene oxide composite hydrogel with high capacitive properties. Compos Sci Technol 2015; 109(1): 12-7.
[http://dx.doi.org/10.1016/j.compscitech.2015.01.008]
[115]
Boddula R, Srinivasan P. Use of iodine doped polyaniline salt in the stereo selective synthesis of 2-methyl-4-substituted-1,2,3,4-tetrahydroquinoline derivatives. Catal Commun 2013; 30(2): 56-60.
[http://dx.doi.org/10.1016/j.catcom.2012.11.002]
[116]
Durgaryan AA, Arakelyan RA, Durgaryan NA. Synthesis of polymers containing polyaniline fragments linked by 1,4-benzoquinone groups. Russian J Gen Chem 2017; 87(1):139-44. Zhurnal Obshchei Khimii 2017; 87(2): 145-50.
[117]
Humud HR, Abdullah MM, Khudhair DM. Effect of iodine doping on the characteristics of polyaniline thin films prepared by aerosol assisted plasma jet polymerization at atmospheric pressure. Intern J Curr Eng Technol 2014; 4(1): 3405-10.
[118]
Park CS, Kim DH, Tae HS, Shin BJ. Optical, electrical, and structural studies of atmospheric pressure plasma polymerized and iodine-doped nano size polyaniline. IEEE Int Confer on Plasma Sci 2016.
[http://dx.doi.org/10.1109/PLASMA.2016.7534021]
[119]
Park CS, Kim DY, Kim DH, Lee HK, Shin BJ, Tae HS. Humidity-independent conducting polyaniline films synthesized using advanced atmospheric pressure plasma polymerization with in-situ iodine doping. Appl Phys Lett 2017; 110(1)033502
[http://dx.doi.org/10.1063/1.4974222]
[120]
Park CS, Jung EY, Kim DH, et al. Atmospheric pressure plasma polymerization synthesis and characterization of polyaniline films doped with and without iodine. Materials 2017; 10(1): 1272-6.
[http://dx.doi.org/10.3390/ma10111272]
[121]
Barman T, Pal AR. Contradictory ageing behavior and optical property of iodine doped and H2SO4 doped pulsed DC plasma polymerized aniline thin films. Solid State Sci 2013; 24(1): 71-8.
[http://dx.doi.org/10.1016/j.solidstatesciences.2013.06.014]
[122]
Sreelatha K, Predeep P. Iodine doped, semi-conducting nylon 6 polymers. J Plast Film Sheeting 2013; 29(1): 127-43.
[http://dx.doi.org/10.1177/8756087912464036]
[123]
Fatema UK, Gotoh Y. A new electroless Ni plating procedure of iodine-treated aramid fiber. J Coat Technol Res 2013; 10(1): 415-25.
[http://dx.doi.org/10.1007/s11998-012-9441-7]
[124]
Aviv O, Laout N, Ratner S, Harik O, Kunduru KR, Domb AJ. Controlled iodine release from polyurethane sponges for water decontamination. J Control Release 2013; 172(3): 634-40.
[http://dx.doi.org/10.1016/j.jconrel.2013.09.018] [PMID: 24096017]
[125]
Gadegone SM. Synthesis of iodine doped co-ordination polymer with salicylic acid-biuret-trioxane terpolymer. Int J Eng Res Appl 2014; 4(1): 9-10.
[126]
Lin JX, Liang J, Feng JF, Karadeniz B, Lü J, Cao R. Iodine uptake and enhanced electrical conductivity in a porous coordination polymer based on cucurbit [6] uril. Inorg Chem Front 2016; 3(1): 1393-7.
[http://dx.doi.org/10.1039/C6QI00305B]
[127]
Dineshkumar S, Muthusamy A, Chitra P, Anand S. Synthesis, characterization, optical and electrical properties of thermally stable polyazomethines derived from 4,4′-oxydianiline. J Adhes Sci Technol 2015; 29(1): 2605-21.
[http://dx.doi.org/10.1080/01694243.2015.1079455]
[128]
Dineshkumar S, Muthusamy A. Synthesis and spectral characterization of cross linked rigid structured Schiff base polymers: Effect of substituent position changes on optical, electrical, and thermal properties. Polym Plast Technol Eng 2016; 55(1): 11.
[http://dx.doi.org/10.1080/03602559.2015.1098680]
[129]
Şenol D, Kaya İ. Synthesis and characterization of azomethine polymers containing ether and ester groups. J Saudi Chem Soc 2017; 21(1): 505-16.
[http://dx.doi.org/10.1016/j.jscs.2015.05.006]
[130]
Ma H, Chen JJ, Tan L, et al. Nitrogen-rich triptycene-based porous polymer for gas storage and iodine enrichment. ACS Macro Lett 2016; 5: 1039-43.
[http://dx.doi.org/10.1021/acsmacrolett.6b00567]
[131]
Abdelmoaty YH, Tessema TD, Choudhury FA, El-Kadri OM, El-Kaderi HM. Nitrogen-rich porous polymers for carbon dioxide and iodine sequestration for environmental remediation. ACS Appl Mater Interfaces 2018; 10(18): 16049-58.
[http://dx.doi.org/10.1021/acsami.8b03772] [PMID: 29671571]
[132]
Yao C, Li G, Wang J, Xu Y, Chang L. Template-free synthesis of porous carbon from triazine based polymers and their use in iodine adsorption and CO2 capture. Sci Rep 2018; 8(1867): 9.
[http://dx.doi.org/10.1038/s41598-018-20003-1]
[133]
Qian X, Wang B, Zhu ZQ, et al. Novel N-rich porous organic polymers with extremely high uptake for capture and reversible storage of volatile iodine. J Hazard Mater 2017; 338(1): 224-32.
[http://dx.doi.org/10.1016/j.jhazmat.2017.05.041] [PMID: 28570876]
[134]
Xiong S, Tao J, Wang Y, et al. Uniform poly(phosphazene-triazine) porous microspheres for highly efficient iodine removal. Chem Commun (Camb) 2018; 54(61): 8450-3.
[http://dx.doi.org/10.1039/C8CC04242J] [PMID: 29963659]
[135]
Geng T, Zhang W, Zhu Z, et al. A covalent triazine-based framework from tetraphenylthiophene and 2,4,6-trichloro-1,3,5-triazine motifs for sensing o-nitrophenol and effective I2 uptake. Polym Chem 2018; 9(1): 777-84.
[http://dx.doi.org/10.1039/C7PY01834G]
[136]
Geng T, Zhu Z, Zhang W, Wang Y. A nitrogen-rich fluorescent conjugated microporous polymer with triazine and triphenylamine units for high iodine capture and nitro aromatic compound detection. J Mater Chem A Mater Energy Sustain 2017; 5(1): 7612-7.
[http://dx.doi.org/10.1039/C7TA00590C]
[137]
Geng T, Ye S, Zhu Z, Zhang W. Triazine-based conjugated microporous polymers with N,N,N′,N′-tetraphenyl-1,4-phenylenediamine, 1,3,5-tris(diphenyl-amino)benzene and 1,3,5-tris[(3-methylphenyl)-phenylamino]benzene as the core for high iodine capture and fluorescence sensing of o-nitrophenol. J Mater Chem A Mater Energy Sustain 2018; 6(1): 2808-16.
[http://dx.doi.org/10.1039/C7TA08251G]
[138]
Geng T, Chen G, Xia H, Zhang W, Zhu Z, Cheng B. Polytris[4-(2-thienyl)phenyl]amine and poly[tris(4-carbazoyl-9-yl phenyl)amine] conjugated microporous polymers as absorbents for highly efficient iodine adsorption. J Solid State Chem 2018; 265(1): 85-91.
[http://dx.doi.org/10.1016/j.jssc.2018.05.030]
[139]
Sigen A, Zhang Y, Li Z, et al. Highly efficient and reversible iodine capture using a metalloporphyrin-based conjugated microporous polymer. Chem Commun (Camb) 2014; 50(62): 8495-8.
[http://dx.doi.org/10.1039/C4CC01783H] [PMID: 24946728]
[140]
Park CS, Kim DH, Shin BJ, Kim DY, Lee HK, Tae HS. Conductive polymer synthesis with single-crystallinity via a novel plasma polymerization technique for gas sensor applications. Materials 2016; 9(812): 11.
[http://dx.doi.org/10.3390/ma9100812]
[141]
Dams R, Vangeneugden D, Vanderzande D. Atmospheric pressure plasma polymerization of in situ doped polypyrrole. J Open Plasma Phys 2013; 6(Suppl. 1): 7-13.
[142]
Zou Q, Huang J, Zhang X. One‐step synthesis of iodinated polypyrrole nanoparticles for CT imaging guided photothermal therapy of tumors. Small 2018; 14(45)e1803101
[http://dx.doi.org/10.1002/smll.201803101] [PMID: 30300473]
[143]
Zhu Y, Ji YJ, Wang DG, et al. BODIPY-based conjugated porous polymers for highly efficient volatile iodine capture. J Mater Chem A Mater Energy Sustain 2017; 5(1): 6622-9.
[http://dx.doi.org/10.1039/C7TA00026J]
[144]
Liu M, Yao C, Liu C, Xu Y. Ag+ doped into azo-linked conjugated microporous polymer for volatile iodine capture and detection of heavy metal ions. Sci Rep 2018; 8(1): 14072.
[http://dx.doi.org/10.1038/s41598-018-32383-5] [PMID: 30232370]
[145]
Dang Q, Wang X, Zhan Y, Zhang X. An azo-linked porous triptycene network as an absorbent for CO2 and iodine uptake. Polym Chem 2016; 7(1): 643-7.
[http://dx.doi.org/10.1039/C5PY01671A]
[146]
Li H, Ding X, Han BH. Porous azo‐bridged porphyrin-phthalocyanine network with high iodine capture capability. Chemistry 2016; 22(33): 11863-8.
[http://dx.doi.org/10.1002/chem.201602337] [PMID: 27412919]
[147]
Lin L, Guan H, Zou D, et al. A pharmaceutical hydrogen-bonded covalent organic polymer for enrichment of volatile iodine. RSC Advances 2017; 7(2): 54407-15.
[http://dx.doi.org/10.1039/C7RA09414K]
[148]
Liao Y, Weber J, Mills BM, Ren Z, Faul CFJ. Highly efficient and reversible iodine capture in hexaphenylbenzene-based conjugated microporous polymers. Macromolecules 2016; 49(3): 6322-33.
[http://dx.doi.org/10.1021/acs.macromol.6b00901]
[149]
Lin Y, Jiang X, Kim ST, et al. An elastic hydrogen-bonded cross-linked organic framework for effective iodine capture in water. J Am Chem Soc 2017; 139(21): 7172-5.
[http://dx.doi.org/10.1021/jacs.7b03204] [PMID: 28506061]
[150]
Pei C, Ben T, Xu S, Qiu S. Ultrahigh iodine adsorption in porous organic frameworks. J Mater Chem A Mater Energy Sustain 2014; 2(2): 7179-87.
[http://dx.doi.org/10.1039/C4TA00049H]
[151]
Kim SH, Jin SH, Lim KT, Park JW, Gal YS. Conjugated organic polymer-based materials from the activated polymerization of 2-ethynylpyridine using naphthoyl chlorides. Dyes Pigm 2016; 134(2): 99-105.
[http://dx.doi.org/10.1016/j.dyepig.2016.07.003]
[152]
Guan YS, Zhang Z, Tang Y, Yin J, Ren S. Kirigami‐inspired nanoconfined polymer conducting nanosheets with 2000% stretchability. Adv Mater 2018; 30(20)e1706390
[http://dx.doi.org/10.1002/adma.201706390] [PMID: 29603420]
[153]
He M, Qiu F, Lin Z. Towards high-performance polymer-based thermoelectric materials. Energy Environ Sci 2013; 6(1): 1352-61.
[http://dx.doi.org/10.1039/c3ee24193a]
[154]
Culebras M, Gómez CM, Cantarero A. Review on polymers for thermoelectric applications. Materials (Basel) 2014; 7(9): 6701-32.
[http://dx.doi.org/10.3390/ma7096701] [PMID: 28788208]
[155]
Le TH, Kim Y, Yoon H. Electrical and electrochemical properties of conducting polymers. Polymers (Basel) 2017; 9(4): 150.
[http://dx.doi.org/10.3390/polym9040150] [PMID: 30970829]
[156]
Satulu V, Ion V, Aldica G, Mitu B, Dinescu G. In-situ iodine doped polythiophene-like thin films obtained by post-discharge RF plasma. Rom J Phys 2015; 60(1): 1550-60.
[157]
Zhu H, Liu C, Song H, Xu J, Kong F, Wang J. Thermoelectric performance of poly(3-hexylthiophene) films doped by iodine vapor with promising high Seebeck coefficient. Electron Mater Lett 2014; 10(1): 427-31.
[http://dx.doi.org/10.1007/s13391-013-3150-y]
[158]
Lee HO III, Sun SS. Properties and mechanisms of iodine doped of P3HT and P3HT/PCBM composites. AIMS Mater Sci 2018; 5(1): 479-93.
[http://dx.doi.org/10.3934/matersci.2018.3.479]
[159]
Qian X, Zhu ZQ, Sun HX, et al. Capture and reversible storage of volatile iodine by novel conjugated microporous polymers containing thiophene units. ACS Appl Mater Interfaces 2016; 8(32): 21063-9.
[http://dx.doi.org/10.1021/acsami.6b06569] [PMID: 27458782]
[160]
Liu M, Yao C, Liu C, Xu Y. Thiophene-based porous organic networks for volatile iodine capture and effectively detection of mercury ion 2018.
[http://dx.doi.org/10.1038/s41598-018-32360-y]
[161]
Ren F, Zhu Z, Qian X, et al. Novel thiophene-bearing conjugated microporous polymer honeycomb-like porous spheres with ultrahigh iodine uptake. Chem Commun (Camb) 2016; 52(63): 9797-800.
[http://dx.doi.org/10.1039/C6CC05188J] [PMID: 27417941]
[162]
Bildirir H, Osken I, Ozturk T, Thomas A. Reversible doping of a dithienothiophene-based conjugated microporous polymer. Chemistry 2015; 21(26): 9306-11.
[http://dx.doi.org/10.1002/chem.201501401] [PMID: 26031405]
[163]
Bildirir H, Paraknowitsch JP, Thomas A. A tetrathiafulvalene (TTF)-conjugated microporous polymer network. Chemistry 2014; 20(31): 9543-8.
[http://dx.doi.org/10.1002/chem.201402278] [PMID: 24962986]
[164]
Jain P, Muralidharan R, Sedloff J, Li X, Alcantar NA, Harmon JP. Processing and performance of polymeric transparent conductive composites. 2013.
[http://dx.doi.org/10.1155/2013/845432]
[165]
Olgun U, Gülfen M. Effects of different dopants on the band gap and electrical conductivity of the poly(phenylene-thiazolo[5,4-d]thiazole) copolymer. RSC Advances 2014; 4(1): 25165-71.
[http://dx.doi.org/10.1039/C4RA02425G]
[166]
Hussain S, De S, Iyer PK. Thiazole-containing conjugated polymer as a visual and fluorometric sensor for iodide and mercury. ACS Appl Mater Interfaces 2013; 5(6): 2234-40.
[http://dx.doi.org/10.1021/am400123j] [PMID: 23432188]
[167]
Sangal M, Jaju S, Telang G, Thakur M. Photovoltaic cells involving the nonconjugated conductive polymer, iodine-doped poly(β-pinene). J Macromol Sci Part A 2014; 51(1): 796-8.
[http://dx.doi.org/10.1080/10601325.2014.937127]
[168]
van Cleave J, Thakur M. Photovoltaic cells involving the nonconjugated conductive polymer iodine-doped styrene-butadiene-rubber (SBR). J Macromol Sci Part A 2015; 52(1): 798-800.
[http://dx.doi.org/10.1080/10601325.2015.1067022]
[169]
van Cleave J, Thakur M. Photovoltaic cells involving the nonconjugated conductive polymer iodine-doped cis-poly(isoprene). J Macromol Sci Part A 2017; 54(1): 543-5.
[http://dx.doi.org/10.1080/10601325.2017.1320778]
[170]
Jaju S, Thakur M. The path to conductive polyacetylene. Bull Hist Chem 2014; 39(1): 64-72.
[171]
Palthi A, Narayanan A, Thakur M. Photo-induced charge-transfer and photovoltaic effect in a composite involving a nonconjugated conductive polymer and C60. J Macromol Sci Part A 2010; 47(1): 375-9.
[http://dx.doi.org/10.1080/10601320903539348]
[172]
Tan WL, Abu Bakar M. Morphology, thermal and impedance characteristics of iodine doped metal iodide-epoxidized natural rubber (MI-ENR) polymer electrolytes. Int J Electrochem Sci 2016; 11(1): 8612-32.
[http://dx.doi.org/10.20964/2016.10.33]
[173]
Rasmussen SC. The path to conductive polyacetylene. Bull Hist Chem 2014; 39(1): 64-72.
[174]
Matsushita S, Akagi K. Macroscopically aligned graphite films prepared from iodine-doped stretchable polyacetylene films using morphology-retaining carbonization. J Am Chem Soc 2015; 137(28): 9077-87.
[http://dx.doi.org/10.1021/jacs.5b04012] [PMID: 26102247]
[175]
Sreelatha K, Predeep P. Enhanced electrical and optical properties of iodine doped LDPE films. IOP Conf Ser Mater Sci Eng 2015.
[http://dx.doi.org/10.1088/1757-899X/73/1/012012]
[176]
Chen D, Fu Y, Yu W, Yu G, Pan C. Versatile adamantane-based porous polymers with enhanced microporosity for efficient CO2 capture and iodine removal. Chem Eng J 2018; 334(1): 900-6.
[http://dx.doi.org/10.1016/j.cej.2017.10.133]
[177]
Chen Y, Sun H, Yang R, et al. Synthesis of conjugated microporous polymer nanotubes with large surface areas as absorbents for iodine and CO2 uptake. J Mater Chem A Mater Energy Sustain 2015; 3(1): 87-91.
[http://dx.doi.org/10.1039/C4TA04235B]
[178]
Yan Z, Yuan Y, Tian Y, Zhang D, Zhu G. Highly efficient enrichment of volatile iodine by charged porous aromatic frameworks with three sorption sites. Angew Chem Int Ed Engl 2015; 54(43): 12733-7.
[http://dx.doi.org/10.1002/anie.201503362] [PMID: 26316032]
[179]
Ozaki N, Sakamoto H, Nishihara T, et al. Electrically activated conductivity and white light emission of a hydrocarbon nanoring-iodine assembly. Angew Chem Int Ed Engl 2017; 56(37): 11196-202.
[http://dx.doi.org/10.1002/anie.201703648] [PMID: 28585773]
[180]
Karlický F, Kumara RDK, Otyepka M, Zbořil R. Halogenated graphenes: Rapidly growing family of graphene derivatives. ACS Nano 2013; 7(8): 6434-64.
[http://dx.doi.org/10.1021/nn4024027] [PMID: 23808482]
[181]
Wu Z, Han Y, Huang R, et al. Semimetallic-to-metallic transition and mobility enhancement enabled by reversible iodine doping of graphene. Nanoscale 2014; 6(21): 13196-202.
[http://dx.doi.org/10.1039/C4NR03183K] [PMID: 25255329]
[182]
Wu Z, Chen X, Zhang M, et al. Fluctuation-induced tunneling conduction in iodine-doped bilayer graphene. J Appl Phys 2018; 123(24)244302
[http://dx.doi.org/10.1063/1.5027549]
[183]
Tristant D, Puech P, Gerber IC. Theoretical study of polyiodide formation and stability on monolayer and bilayer graphene. Phys Chem Chem Phys 2015; 17(44): 30045-51.
[http://dx.doi.org/10.1039/C5CP04594K] [PMID: 26497888]
[184]
Tristant D, Puech P, Gerber IC. Theoretical study of graphene doping mechanism by iodine molecules. J Phys Chem C 2015; 119(1): 12071-8.
[http://dx.doi.org/10.1021/acs.jpcc.5b03246]
[185]
Šimek P, Klímová K, Sedmidubský D, Jankovský O, Pumera M, Sofer Z. Towards graphene iodide: Iodination of graphite oxide. Nanoscale 2015; 7(1): 261-70.
[http://dx.doi.org/10.1039/C4NR05219F] [PMID: 25407247]
[186]
Wang Z, Wang W, Wang M, Meng X, Li J. P-type reduced graphene oxide membranes induced by iodine doping. J Mater Sci 2013; 48(1): 2284-9.
[http://dx.doi.org/10.1007/s10853-012-7006-x]
[187]
Kim H, Renault O, Tyurnina A, et al. Doping efficiency of single and randomly stacked bilayer graphene by iodine adsorption. Appl Phys Lett 2014; 105(1)011605
[http://dx.doi.org/10.1063/1.4889747]
[188]
Kim H, Renault O, Tyurnina A, et al. Doping characteristics of iodine on as-grown chemical vapor deposited graphene on Pt. Ultramicroscopy 2015; 15(1): 159.
[http://dx.doi.org/10.1016/j.ultramic.2015.06.012]
[189]
Poh HL, Šimek P, Sofer Z, Pumera M. Halogenation of graphene with chlorine, bromine, or iodine by exfoliation in a halogen atmosphere. Chem 2013; 19(8): 2655-62.
[http://dx.doi.org/10.1002/chem.201202972] [PMID: 23296548]
[190]
D’Arsié L, Esconjauregui S, Weatherup R, et al. Stability of graphene doping with MoO3 and I2. Appl Phys Lett 2014; 105(10): 103103-5.
[http://dx.doi.org/10.1063/1.4895025]
[191]
Marinoiu A, Raceanu M, Carcadea E, Varlam M, Stefanescu I. Iodinated carbon materials for oxygen reduction reaction in proton exchange membrane fuel cell. Scalable synthesis and electrochemical performances. Arab J Chem Press 2019; 6(12): 868-80.
[http://dx.doi.org/10.1016/j.arabjc.2016.12.002]
[192]
Marinoiu A, Carcadea E, Petreanu I, et al. Iodine doped graphene synthesis via a facile electrophilic substitution. High performance as ORR electrocatalyst for PEMFC. Progress of Cryogenics and Isotopes Separation 2016; 19(1): 43-50.
[193]
Marinoiu A, Carcadea E, Petreanu I, Marin E, Sucea B, Soare A. Synthesis and characterization of iodine doped graphene by an uncatalyzed reaction. Progress of Cryogenics and Isotopes Separation 2016; 19(1): 19-26.
[194]
Marinoiu A, Raceanu M, Carcadea E, Varlam M, Stefanescu I. Low cost iodine intercalated graphene for fuel cells electrodes. Appl Surf Sci 2017; 424(1): 93-100.
[http://dx.doi.org/10.1016/j.apsusc.2017.01.295]
[195]
Marinoiu A, Gatto I, Raceanu M, et al. Low cost iodine doped graphene for fuel cell electrodes. Int J Hydrogen Energy 2017; 42(1): 26877-88.
[http://dx.doi.org/10.1016/j.ijhydene.2017.07.036]
[196]
Marinoiu A, Raceanu M, Carcadea E, et al. Iodine-doped graphene for enhanced electrocatalytic oxygen reduction reaction in proton exchange membrane fuel cell applications. J Electrochem En Conv Stor 2017; 14(1): 31001-9.
[197]
Marinoiu A, Raceanu M, Carcadea E, Varlam M, Soare A, Stefanescu I. Doped graphene as non-metallic catalyst for fuel cells. Materials Sci (Medžiagotyra) 2017; 23(1): 108-13.
[http://dx.doi.org/10.5755/j01.ms.23.2.16216]
[198]
Marinoiu A, Raceanu M, Carcadea E, Varlam M. Iodine-doped graphene catalyst layer in PEM fuel cells. Appl Surf Sci 2018; 456(1): 238-45.
[http://dx.doi.org/10.1016/j.apsusc.2018.06.100]
[199]
Marinoiu A, Carcadea E, Raceanu M, Varlam M. Iodine doped graphene for enhanced electrocatalytic oxygen reduction reaction in PEM fuel cell applications. Intech Open 2018; 18(1): 79-97.
[http://dx.doi.org/10.5772/intechopen.76495]
[200]
Lee CH, Kang GS, Lee YK, et al. Synthesis and properties of nitrogen and iodine co-functionalized graphene oxide and its electrochemical applications. Sci Adv Mater 2016; 8(1): 28-33.
[http://dx.doi.org/10.1166/sam.2016.2592]
[201]
Jeon IY, Choi HJ, Choi M, et al. Facile, scalable synthesis of edge-halogenated graphene nanoplatelets as efficient metal-free eletrocatalysts for oxygen reduction reaction Sci Rep 2013; 3(1): 1810: 7.
[http://dx.doi.org/10.1038/srep01810]
[202]
Majee S, Banerjee D, Liu X, Zhang SL, Zhang ZB. Efficient and thermally stable iodine doping of printed graphene nano-platelets. Carbon 2017; 117(1): 240-5.
[http://dx.doi.org/10.1016/j.carbon.2017.02.094]
[203]
Some S, Sohn JS, Kim J, et al. Graphene-iodine nanocomposites: Highly potent bacterial inhibitors that are bio-compatible with human cells 2016; 41(6): 9409-19.
[http://dx.doi.org/10.1038/srep20015]
[204]
Zhang Q, Wu Z, Liu F, et al. Encapsulating a high content of iodine into an active graphene substrate as a cathode material for high-rate lithium-iodine batteries. J Mater Chem A Mater Energy Sustain 2017; 5(1): 15235-42.
[http://dx.doi.org/10.1039/C7TA04246A]
[205]
Li J, Li X, Xiong D, et al. Novel iodine-doped reduced graphene oxide anode for sodium ion batteries. RSC Advances 2017; 7(4): 55060-6.
[http://dx.doi.org/10.1039/C7RA09349G]
[206]
Chen C, Wu M, Wang S, et al. An in situ iodine-doped graphene/silicon composite paper as a highly conductive and self-supporting electrode for lithium-ion batteries. RSC Advances 2017; 7(2): 38639-46.
[http://dx.doi.org/10.1039/C7RA06871A]
[207]
Chen J, Wu C, Tang C, Zhao W, Xu M, Li CM. Iodine-doped graphene with opportune interlayer spacing as superior anode materials for high‐performance lithium-ion batteries. ChemistrySelect 2017; 2(1): 5518-23.
[http://dx.doi.org/10.1002/slct.201701140]
[208]
Zhan Y, Zhang B, Cao L, et al. Iodine doped graphene as anode material for lithium ion battery. Carbon 2015; 94(2): 1-8.
[http://dx.doi.org/10.1016/j.carbon.2015.06.039]
[209]
Zhu Y, Ye X, Jiang H, et al. Iodine-steam doped graphene films for high-performance electrochemical capacitive energy storage. J Power Sources 2018; 400(3): 605-12.
[http://dx.doi.org/10.1016/j.jpowsour.2018.07.075]
[210]
Melnikova EY, Glushko VN, Ivanov VS, Zhila MY. Production methods of iodine-doped carbon nano tubes (A Review). Orient J Chem 2017; 33(1): 2707-12.
[http://dx.doi.org/10.13005/ojc/330603]
[211]
Simmons TJ, Maeda N, Miyauchi M, et al. Effect of a variety of carbon nanotubes on the iodine-iodide redox pair. Carbon 2013; 62(4): 177-81.
[http://dx.doi.org/10.1016/j.carbon.2013.06.009]
[212]
Song H, Ishii Y, Al-Zubaidi A, Sakai T, Kawasaki S. Temperature-dependent water solubility of iodine-doped single-walled carbon nanotubes prepared using an electrochemical method. Phys Chem Chem Phys 2013; 15(16): 5767-70.
[http://dx.doi.org/10.1039/c3cp50506e] [PMID: 23512160]
[213]
Janas D, Herman AP, Boncel S, Koziol KKK. Iodine monochloride as a powerful enhancer of electrical conductivity of carbon nanotube wires. Carbon 2014; 73(1): 225-33.
[http://dx.doi.org/10.1016/j.carbon.2014.02.058]
[214]
Fan LN, Xu XC. A stable iodine-doped multi-walled carbon nanotube-polypyrrole composite with improved electrical property. Compos Sci Technol 2015; 118(1): 264-8.
[http://dx.doi.org/10.1016/j.compscitech.2015.09.014]
[215]
Fan L, Xu X. A simple strategy to enhance electrical conductivity of nanotube-conjugate polymer composites via iodine-doping. RSC Advances 2015; 5(2): 78104-8.
[http://dx.doi.org/10.1039/C5RA15107D]
[216]
Behabtu N, Young CC, Tsentalovich DE, et al. Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity. Sci 2013; 339(6116): 182-6.
[http://dx.doi.org/10.1126/science.1228061] [PMID: 23307737]
[217]
Zubair A, Tristant D, Nie C, et al. Charged iodide in chains behind the highly efficient iodine doping in carbon nanotubes. Phys Rev Mater 2017; 164(2): 7.
[http://dx.doi.org/10.1103/PhysRevMaterials.1.064002]
[218]
Botos A, Biskupek J, Chamberlain TW, et al. Carbon nanotubes as electrically active nanoreactors for multi-step inorganic synthesis: Sequential transformations of molecules to nanoclusters, and nanoclusters to nanoribbons. J Am Chem Soc 2016; 138(26): 8175-83.
[http://dx.doi.org/10.1021/jacs.6b03633] [PMID: 27258384]
[219]
Gallis DFS, Ermanoski I, Greathouse JA, Chapman KW, Nenoff TM. Iodine gas adsorption in nanoporous materials: A combined experiment-modeling study. Ind Eng Chem Res 2017; 56(4): 2331-8.
[http://dx.doi.org/10.1021/acs.iecr.6b04189]
[220]
Zhou J, Hao S, Gao L, Zhang Y. Study on adsorption performance of coal based activated carbon to radioactive iodine and stable iodine. Ann Nucl Energy 2014; 72(1): 237.
[http://dx.doi.org/10.1016/j.anucene.2014.05.028]
[221]
Lu K, Hu Z, Ma J, Ma H, Dai L, Zhang J. A rechargeable iodine-carbon battery that exploits ion intercalation and iodine redox chemistry. Nat Commun 2017; 8(1): 527.
[http://dx.doi.org/10.1038/s41467-017-00649-7]
[222]
Singh KP, Song MY, Yu JS. Iodine-treated heteroatom-doped carbon: Conductivity driven electrocatalytic activity. J Mater Chem A Mater Energy Sustain 2014; 2(1): 18115-24.
[http://dx.doi.org/10.1039/C4TA03706E]
[223]
Dayana K, Fadzilah AN, Ishak A, Rusop M. Properties of iodine doped amorphous carbon thin films grown by thermal CVD. Adv Mat Res 2013; 667(1): 294-9.
[http://dx.doi.org/10.4028/www.scientific.net/AMR.667.294]
[224]
Dayana K, Fadzilah AN, Rusop M. Iodine doping of amorphous carbon thin films deposited by thermal CVD. Adv Mat Res 2013; 626(1): 834-8.
[225]
Dayana K, Fadzilah AN, Ishak A, et al. Influence of iodine doping on the properties of amorphous carbon thin films deposited from camphoric carbon precursors. Adv Mat Res 2014; 832(2): 449-54.
[226]
Dayana K, Fadzilah AN, Ishak A, Rusop M. Properties of iodine doped amorphous carbon thin films grown by thermal CVD. Solid State Sci Technol 2017; 25(2): 126-34.
[227]
Sun H, La P, Yang R, et al. Innovative nanoporous carbons with ultrahigh uptakes for capture and reversible storage of CO2 and volatile iodine. J Hazard Mater 2017; 321(2): 210-7.
[http://dx.doi.org/10.1016/j.jhazmat.2016.09.015] [PMID: 27619967]
[228]
Das I, Pandey AK, Fredrick SD, Mishra AK. Synthesis and antibacterial application of nanosized polyethylene oxide - iodine complex by solid-vapor reaction. Int J Sci Res Sci Eng Technol 2017; 3(1): 242-8.
[229]
Rao BN, Suvarna RP, Susmitha K, Giribabu L, Raghavender M, Kumar VR. PEO based gel polymer electrolyte with acetamide, KI/I2 added composite for dye sensitized solar cell applications. Int J Sci Eng Res 2017; 8(1): 1639-45.
[230]
Chen Y, Qiu H, Dong M, et al. Preparation of hydroxylated lecithin complexed iodine/carboxymethyl chitosan/sodium alginate composite membrane by microwave drying and its applications in infected burn wound treatment. Carbohydr Polym 2019; 206(1): 435-45.
[http://dx.doi.org/10.1016/j.carbpol.2018.10.068] [PMID: 30553343]
[231]
Goreninskii SI, Stankevich KS, Nemoykina AL, Bolbasov EN, Tverdokhlebov SI, Filimono VD. A first method for preparation of biodegradable fibrous scaffolds containing iodine on the fiber surfaces. Bull Mater Sci 2018; 41(1): 100.
[http://dx.doi.org/10.1007/s12034-018-1625-z]
[232]
Goreninskii SI, Stankevich KS, Efimova EV, Danilenko NV, Tverdokhlebov SI, Filimonov VD. New preparation method of PLA-based biomaterials containing molecular iodine layer on their surface Proceedings of the 6th International Conference on Mathematical Models for Engineering Science (MMES ’15) September 20-22, 2015; East Lansing, MI, USA: Michigan State University.
[233]
Hong J, Cho KY, Shin DG, Kim JI, Riu DH. Iodine diffusion during iodine‐vapor curing and its effects on the morphology of polycarbosilane/silicon carbide fibers. J Appl Polym Sci 2015; 132(1): 426-87.
[http://dx.doi.org/10.1002/app.42687]
[234]
Li G, Yao C, Wang J, Xu Y. Synthesis of tunable porosity of fluorine-enriched porous organic polymer materials with excellent CO2, CH4 and iodine adsorption. Sci Rep 2017; 7(1): 13972-8.
[235]
Lin Q, Zhong KP, Zhu JH, et al. Iodine controlled pillar[5]arene-based multiresponsive supramolecular polymer for fluorescence detection of cyanide, mercury, and cysteine. Macromolecules 2017; 50(1): 7863-71.
[http://dx.doi.org/10.1021/acs.macromol.7b01835]
[236]
Guo B, Wu S, Su Q, et al. New acetal-linked porous organic polymer as an efficient absorbent for CO2 and iodine uptake. Mater Lett 2018; 229(1): 240-3.
[http://dx.doi.org/10.1016/j.matlet.2018.07.008]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 12
ISSUE: 3
Year: 2019
Page: [174 - 233]
Pages: 60
DOI: 10.2174/2405520412666190716163611
Price: $65

Article Metrics

PDF: 15
HTML: 2

Special-new-year-discount