Generic placeholder image

Micro and Nanosystems

Editor-in-Chief

ISSN (Print): 1876-4029
ISSN (Online): 1876-4037

Review Article

Superparamagnetic Iron Oxide as Photocatalyst and Adsorbent in Wastewater Treatment – A Review

Author(s): Nur Shazrynda Md. Shahrodin , Juhana Jaafar*, Abdul Razak Rahmat, Norhaniza Yusof, Mohammad Hafiz Dzarfan Othman and Mukhlis A. Rahman

Volume 12, Issue 1, 2020

Page: [4 - 22] Pages: 19

DOI: 10.2174/1876402911666190716155658

Abstract

Superparamagnetic iron oxide has been applied in different fields for various reasons. Its abundant availability, non-toxic properties, environmentally friendly and good chemical stability in aqueous medium are beneficial for water treatment applications. In addition, its low bad gap (2.3 ~ 2.4 eV) has contributed to highly possible electrons-holes activation under the visible light spectrum. On the realization of iron oxide capabilities as a promising alternative to conventional anatase TiO2 photocatalysts, this review is presented to critically discuss the photocatalytic behaviour of organic water pollutants as a function of iron oxide properties. The concluding remarks in terms of the way forward in the opportunities of iron oxide superparamagnetic properties can benefit towards the photocatalytic activities including recycling, retrieving and controlling in wastewater treatment.

Keywords: Superparamagnetic iron oxide, iron oxide photocatalyst, iron oxide adsorbent, Fe2O3, Fe3O4, waste water treatment.

Graphical Abstract
[1]
Saharan, P.; Chaudhary, G.R.; Mehta, S.K.; Umar, A. Removal of water contaminants by iron oxide nanomaterials. J. Nanosci. Nanotechnol., 2014, 14(1), 627-643.
[http://dx.doi.org/10.1166/jnn.2014.9053] [PMID: 24730287]
[2]
Xu, P.; Zeng, G.M.; Huang, D.L.; Feng, C.L.; Hu, S.; Zhao, M.H.; Lai, C.; Wei, Z.; Huang, C.; Xie, G.X.; Liu, Z.F. Use of iron oxide nanomaterials in wastewater treatment: A review. Sci. Total Environ., 2012, 424, 1-10.
[http://dx.doi.org/10.1016/j.scitotenv.2012.02.023] [PMID: 22391097]
[3]
Parkinson, G.S. Iron oxide surfaces. Surf. Sci. Rep., 2016, 71, 272-365.
[http://dx.doi.org/10.1016/j.surfrep.2016.02.001]
[4]
Chirita, M.; Grozescu, I. Fe2O3 - Nanoparticles, physical properties and their photochemical and photoelectrochemical applications. Chem. Bull. Politeh. Univ Timsisoara, 2009, 54, 1-8.
[5]
Liu, D.; Li, Z.; Wang, W.; Wang, G. Hematite doped magnetic TiO2 nanocomposites with improved photocatalytic activity. J. Alloys Compd., 2016, 654, 491-497.
[http://dx.doi.org/10.1016/j.jallcom.2015.09.140]
[6]
Ling, Y.; Lim, S.; Chyuan, H.; Tong, W. Research progress on iron oxide-based magnetic materials: Synthesis techniques and photocatalytic applications. Ceram. Int., 2016, 42, 9-34.
[http://dx.doi.org/10.1016/j.ceramint.2015.08.144]
[7]
Lu, A.H.; Salabas, E.L.; Schüth, F. Magnetic nanoparticles: Synthesis, protection, functionalization, and application. Angew. Chem. Int. Ed. Engl., 2007, 46(8), 1222-1244.
[http://dx.doi.org/10.1002/anie.200602866] [PMID: 17278160]
[8]
Carvalho, M.D.; Henriques, F.; Ferreira, L.P.; Godinho, M.; Cruz, M.M. Iron oxide nanoparticles: The influence of synthesis method and size on composition and magnetic properties. J. Solid State Chem., 2013, 201, 144-152.
[http://dx.doi.org/10.1016/j.jssc.2013.02.024]
[9]
Agiotis, L.; Theodorakos, I.; Samothrakitis, S.; Papazoglou, S.; Zergioti, I.; Raptis, Y.S. Magnetic manipulation of superparamagnetic nanoparticles in a microfluidic system for drug delivery applications. J. Magn. Magn. Mater., 2016, 401, 956-964.
[http://dx.doi.org/10.1016/j.jmmm.2015.10.111]
[10]
Madrakian, T.; Afkhami, A.; Haryani, R.; Ahmadi, M. Synthesis of γ-Fe2O3/TiO2 nanocomposite and its application in removal of dyes from water samples by adsorption and degradation processes. RSC Advances, 2014, 4, 44841-44847.
[http://dx.doi.org/10.1039/C4RA06421F]
[11]
Ergeneman, O.; Peters, C.; Gullo, M.R.; Jacot-Descombes, L.; Gervasoni, S.; Özkale, B.; Fatio, P.; Cadarso, V.J.; Mastrangeli, M.; Pané, S.; Brugger, J.; Hierold, C.; Nelson, B.J. Inkjet printed superparamagnetic polymer composite hemispheres with programmed magnetic anisotropy. Nanoscale, 2014, 6(18), 10495-10499.
[http://dx.doi.org/10.1039/C3NR06442E] [PMID: 24842483]
[12]
Damean, N.; Parviz, B.A.; Lee, J.N.; Odom, T.; Whitesides, G.M. Composite ferromagnetic photoresist for the fabrication of microelectromechanical systems. J. Micromech. Microeng., 2004, 15, 29-34.
[http://dx.doi.org/10.1088/0960-1317/15/1/005]
[13]
Kim, J.; Chung, S.E.; Choi, S.E.; Lee, H.; Kim, J.; Kwon, S. Programming magnetic anisotropy in polymeric micro-actuators. Nat. Mater., 2011, 10(10), 747-752.
[http://dx.doi.org/10.1038/nmat3090] [PMID: 21822261]
[14]
Ye, F.; Ohmori, A.; Li, C. New approach to enhance the photocatalytic activity of plasma sprayed TiO2 coatings using P-N junctions. Surf. Coat. Tech., 2004, 184, 233-238.
[http://dx.doi.org/10.1016/j.surfcoat.2003.11.012]
[15]
Bhatkhande, D.S.; Pangarkar, V.G.; Beenackers, A.A.C.M. Photocatalytic degradation for environmental applications. A review. J. Chem. Technol. Biotechnol., 2002, 77, 102-116.
[http://dx.doi.org/10.1002/jctb.532]
[16]
Mobtaker, H.G.; Ahmadi, S.J.; Ashtari, P. Nano-TiO2/Nd deposited on γ-Fe2O3 as a magnetically separable photocatalyst. J. Sci., 2014, 25, 281-285.
[17]
Lin, Y.; Geng, Z.; Cai, H.; Ma, L.; Chen, J.; Zeng, J.; Pan, N.; Wang, X.c. Eur. J. Inorg. Chem., 2012, 2012(28), 4439-4444.
[http://dx.doi.org/10.1002/ejic.201200454]
[18]
Tan, L.; Zhang, X.; Liu, Q.; Jing, X.; Liu, J.; Song, D.; Hu, S.; Liu, L.; Wang, J. Synthesis of Fe3O4@TiO2 core-shell magnetic composites for highly efficient sorption of Uranium (VI). Colloids Surf. A Physicochem. Eng. Asp., 2015, 469, 279-286.
[http://dx.doi.org/10.1016/j.colsurfa.2015.01.040]
[19]
Mishra, M.F.; Chun, D.M. α-Fe2O3 as a photocatalytic material: A review. Appl. Catal. A Gen., 2015, 498, 126-141.
[http://dx.doi.org/10.1016/j.apcata.2015.03.023]
[20]
Chen, Y.H.; Lin, C.C. Effect of nano-hematite morphology on photocatalytic activity. Phys. Chem. Miner., 2014, 41, 727-736.
[http://dx.doi.org/10.1007/s00269-014-0686-9]
[21]
Li, L.; Wang, M. Advanced nanomatericals for solar photocatalysis. In: Advanced Catalytic Materials - Photocatalysis and Other Current Trends; Norena, L.E.; Wang, J.A., Eds.; In:Tech, 2016; pp. 169-230.
[http://dx.doi.org/10.5772/62206]
[22]
Sajjadi, S.H.; Goharshadi, E.K. Highly monodispersed hematite cubes for removal of ionic dyes. Biochem. Pharmacol., 2017.
[23]
Dafare, S.; Deshpande, P.S.; Bhavsar, R.S. Photocatalytic degradation of Congo Red dye on combustion synthesised Fe2O3. Indian J. Chem. Technol., 2013, 20, 406-410.
[24]
Zhu, Y.; Li, G.; Zhang, Q.; Tang, C. The photocatalytic degradation of methylene blue wastewater with nanoscale ferric oxide as catalyst. Adv. Mat. Res., 2012, 356-360, 1813-1818.
[25]
Iram, M.; Guo, C.; Guan, Y.; Ishfaq, A.; Liu, H. Adsorption and magnetic removal of neutral red dye from aqueous solution using Fe3O4 hollow nanospheres. J. Hazard. Mater., 2010, 181(1-3), 1039-1050.
[http://dx.doi.org/10.1016/j.jhazmat.2010.05.119] [PMID: 20566240]
[26]
Du, W.; Xu, Y.; Wang, Y. Photoinduced degradation of orange II on different iron (hydr)oxides in aqueous suspension: Rate enhancement on addition of hydrogen peroxide, silver nitrate, and sodium fluoride. Langmuir, 2008, 24(1), 175-181.
[http://dx.doi.org/10.1021/la7021165] [PMID: 18052220]
[27]
Joya, M.R.; Baron-Jaimez, J.; Barba-Ortega, J. Preparation and characterization of Fe2O3 nanoparticles. In: Journal of Physics:Conference Series, IOP Publishing,; , 2013; Vol. 466,, . No. 1, p.012004.
[28]
Pawar, M.J.; Khajone, A.D. Photodegradation of malachite green dye over sol-gel synthesized nanocrystalline α-Fe2O3. J. Chem. Pharm. Res., 2012, 4, 1880-1884.
[29]
Tadic, M.; Panjan, M.; Damnjanovic, V.; Milosevic, I. Magnetic properties of hematite (Fe2O3) nanoparticles prepared by hydrothermal synthesis method. Appl. Surf. Sci., 2014, 320, 183-187.
[http://dx.doi.org/10.1016/j.apsusc.2014.08.193]
[30]
Kumar, S.; Navjeet, K.Æ. Photocatalytic degradation of two commercial reactive dyes in aqueous phase using nanophotocatalysts. Nanoscale Res. Lett., 2009, 4, 709-716.
[31]
Wang, D.; Guan, K.; Bai, Z.; Liu, F. Facile preparation of acid-resistant magnetite particles for removal of Sb(III) from strong acidic solution. Sci. Technol. Adv. Mater., 2016, 17(1), 80-88.
[http://dx.doi.org/10.1080/14686996.2016.1145530] [PMID: 27877860]
[32]
Tajabadi, M.; Khosroshahi, M.E. Effect of alkaline media concentration and modification of temperature on magnetite synthesis method using. Int. J. Chem. Eng. Appl., 2012, 3, 3-7.
[http://dx.doi.org/10.7763/IJCEA.2012.V3.187]
[33]
Thiruvenkatachari, R.; Vigneswaran, S.; Moon, I.S. A review on UV/TiO2 photocatalytic oxidation process. Korean J. Chem. Eng., 2008, 25, 64-72.
[http://dx.doi.org/10.1007/s11814-008-0011-8]
[34]
Khedr, M.H.; Halim, K.S.A.; Soliman, N.K. Synthesis and photocatalytic activity of nano-sized iron oxides. Mater. Lett., 2009, 63, 598-601.
[http://dx.doi.org/10.1016/j.matlet.2008.11.050]
[35]
Pinna, N.; Grancharov, S.; Beato, P.; Bonville, P.; Antonietti, M.; Niederberger, M. Magnetite nanocrystals: Nonaqueous synthesis, characterization, and solubility. Chem. Mater., 2005, 17, 3044-3049.
[http://dx.doi.org/10.1021/cm050060+]
[36]
Shahpari, M.; Behjat, A.; Khajaminian, M.; Torabi, N. The influence of morphology of hematite (α-Fe2O3) counter electrodes on the efficiency of dye-sensitized solar cells. Sol. Energy, 2015, 119, 45-53.
[http://dx.doi.org/10.1016/j.solener.2015.06.039]
[37]
He, Y.T.; Wan, J.; Tokunaga, T. Kinetic stability of hematite nanoparticles: The effect of particle sizes. J. Nanopart. Res., 2008, 10, 321-332.
[http://dx.doi.org/10.1007/s11051-007-9255-1]
[38]
Baalousha, M. Aggregation and disaggregation of iron oxide nanoparticles: Influence of particle concentration, pH and natural organic matter. Sci. Total Environ., 2009, 407(6), 2093-2101.
[http://dx.doi.org/10.1016/j.scitotenv.2008.11.022] [PMID: 19059631]
[39]
Liu, G.; Deng, Q.; Yang, Y.; Wang, H.M.; Wang, G.Z. Micro/nanostructured α-Fe2O3 with structural enhanced removal capacity of Cr(VI). Ions. Adv. Mater. Res., 2012, 518, 1753-1756.
[40]
Liu, G.; Deng, Q.; Wang, H.; Ng, D.H.L.; Kong, M.; Cai, W.; Wang, G. Micro/nanostructured α-Fe2O3 spheres: Synthesis, characterization, and structurally enhanced visible-light photocatalytic activity. J. Mater. Chem., 2012, 22, 9704.
[http://dx.doi.org/10.1039/c2jm31586f]
[41]
Zhou, X.; Lan, J.; Liu, G.; Deng, K.; Yang, Y.; Nie, G.; Yu, J.; Zhi, L. Facet-mediated photodegradation of organic dye over hematite architectures by visible light. Angew. Chem. Int. Ed. Engl., 2012, 51(1), 178-182.
[http://dx.doi.org/10.1002/anie.201105028] [PMID: 22086657]
[42]
Liu, Y.; Yu, C.; Dai, W.; Gao, X.; Qian, H.; Hu, Y.; Hu, X. One-pot solvothermal synthesis of multi-shelled α-Fe2O3 hollow spheres with enhanced visible-light photocatalytic activity. J. Alloys Compd., 2013, 551, 440-443.
[http://dx.doi.org/10.1016/j.jallcom.2012.11.047]
[43]
Cha, H.G.; Kim, S.J.; Lee, K.J.; Jung, M.H.; Kang, Y.S. Single-crystalline porous hematite nanorods: Photocatalytic and magnetic properties. J. Phys. Chem. C, 2011, 115, 19129-19135.
[http://dx.doi.org/10.1021/jp206958g]
[44]
Ahmmad, B.; Leonard, K.; Shariful Islam, M.; Kurawaki, J.; Muruganandham, M.; Ohkubo, T.; Kuroda, Y. Green synthesis of mesoporous hematite (α-Fe2O3) nanoparticles and their photocatalytic activity. Adv. Powder Technol., 2012, 24, 160-167.
[http://dx.doi.org/10.1016/j.apt.2012.04.005]
[45]
Mondal, K.; Sharma, A. Photocatalytic oxidation of pollutant dyes in wastewater by TiO2 and ZnO nano-materials-A mini-review; Indian Inst. Tecnol, 2016, pp. 36-72.
[46]
Liu, Y.; Yu, H.; Zhan, S.; Li, Y.; Lv, Z.; Yang, X.; Yu, Y. Fast degradation of methylene blue with electrospun hierarchical α-Fe2O3 nanostructured fibers. J. Sol-Gel Sci. Technol., 2011, 58, 716-723.
[http://dx.doi.org/10.1007/s10971-011-2451-6]
[47]
Dang, S.N.; Lu, S.X.; Xu, W.G.; Sa, J. Dark-degradation of reactive brilliant blue X-BR in aqueous solution using α-Fe2O3. J. Non-Cryst. Solids, 2008, 354, 5018-5021.
[http://dx.doi.org/10.1016/j.jnoncrysol.2008.07.027]
[48]
Al-Anbari, R.; Al-obaidy, A.H.; Abd, E. Photocatalytic activity of Fe3O4 under solar radiation. Mesopotamia Environ. J., 2016, 2, 41-53.
[49]
El-Latif, M.M.A.; Ibrahim, A.M.; Showman, M.S.; Hamide, R.R.A. Alumina/iron oxide nano composite for cadmium ions removal from aqueous solutions. Int. J. Nonferrous Metall., 2013, 2013, 47-62.
[http://dx.doi.org/10.4236/ijnm.2013.22007]
[50]
Fan, F.L.; Qin, Z.; Bai, J.; Rong, W.D.; Fan, F.Y.; Tian, W.; Wu, X.L.; Wang, Y.; Zhao, L. Rapid removal of uranium from aqueous solutions using magnetic Fe3O4@SiO2 composite particles. J. Environ. Radioact., 2012, 106, 40-46.
[http://dx.doi.org/10.1016/j.jenvrad.2011.11.003] [PMID: 22304999]
[51]
Zhang, Y.U.; Yang, M.I.N.; Dou, X. Arsenate Adsorption on an Fe - Ce Bimetal Oxide Adsorbent: Role of Surface Properties. Environ. Sci. Technol., 2005, 39, 7246-7253.
[52]
Konstantinou, I.K.; Albanis, T.A. TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: Kinetic and mechanistic investigations. A review. Appl. Catal. B, 2004, 49, 1-14.
[http://dx.doi.org/10.1016/j.apcatb.2003.11.010]
[53]
Ahmed, S.; Rasul, M.G.; Brown, R.; Hashib, M.A. Influence of parameters on the heterogeneous photocatalytic degradation of pesticides and phenolic contaminants in wastewater: A short review. J. Environ. Manage., 2011, 92(3), 311-330.
[http://dx.doi.org/10.1016/j.jenvman.2010.08.028] [PMID: 20950926]
[54]
Shirivastava, D.S.S.V.S. Adsorptive removal of heavy metals by magnetic nanoadsorbent: An equilibrium and thermodynamic study. Appl. Nanosci., 2015, 5, 927-935.
[http://dx.doi.org/10.1007/s13204-014-0390-6]
[55]
Hashem, S.; Parsafar, G.; Goharshadi, E.K. Kinetics study of removal of reactive black 5 from aqueous solutions using hematite nanoparticles fabricated by hydrothermal method., 2012, 12-14.
[56]
Yoon, S.U.; Mahanty, B.; Ha, H.M.; Kim, C.G. Phenol adsorption on surface-functionalized iron oxide nanoparticles: Modeling of the kinetics, isotherm, and mechanism. J. Nanopart. Res., 2016, 18(6), 170.
[http://dx.doi.org/10.1007/s11051-016-3478-y]
[57]
Lassoued, A.; Saber, M.; Brahim, L.; Salah, D.; Abdellatif, A. Photocatalytic degradation of methylene blue dye by iron oxide (α-Fe2O3) nanoparticles under visible irradiation. J. Mater. Sci. Mater. Electron., 2018, 29(10), 8142-8152.
[http://dx.doi.org/10.1007/s10854-018-8819-4]
[58]
Momeni, M.M. Influence of top morphology of hematite nanotubes on photo degradation of methylene blue and solar water splitting performance influence of top morphology of hematite nanotubes on photo degradation of methylene blue and solar water splitting performance. Mater. Res. Innov., 2016, 20(5), 390-394.
[59]
Gandha, K.; Mohapatra, J.; Hossain, M.K.; Elkins, K.; Poudyal, N.; Rajeshwar, K.; Liu, J.P. Mesoporous iron oxide nanowires: Synthesis, magnetic and photocatalytic properties. RSC Advances, 2016, 6, 90537-90546.
[http://dx.doi.org/10.1039/C6RA18530D]
[60]
Huang, Y.; Ding, D.; Zhu, M.; Meng, W.; Huang, Y.; Geng, F.; Li, J.; Lin, J.; Tang, C.; Lei, Z.; Zhang, Z.; Zhi, C. Facile synthesis of α-Fe2O3 nanodisk with superior photocatalytic performance and mechanism insight. Sci. Technol. Adv. Mater., 2015, 16(1)014801
[http://dx.doi.org/10.1088/1468-6996/16/1/014801] [PMID: 27877744]
[61]
Ayachi, A.A.; Mechakra, H.; Silvan, M.M.; Boudjaadar, S.; Achour, S. Monodisperse α-Fe2O3 nanoplatelets: Synthesis and characterization. Ceram. Int., 2015, 41, 2228-2233.
[http://dx.doi.org/10.1016/j.ceramint.2014.10.024]
[62]
Lin, D.; Deng, B.; Sassman, S.A.; Hu, Y.; Cheng, G.J. Magnetic field assisted growth of highly dense α-Fe2O3 single crystal nanosheets and their application in water treatment. RSC Advances, 2014, 4, 18621-18626.
[http://dx.doi.org/10.1039/C3RA47726F]
[63]
Xia, J.; Liu, H.; Cheng, X.; Yin, S.; Li, H.; Xu, H.; Xu, L.; Qiu, Y. Reactable ionic liquid synthesis and visible-light photocatalytic activity of dendritic ferric oxide hierarchical structures. Micro Nano Lett., 2012, 7, 806-809.
[http://dx.doi.org/10.1049/mnl.2012.0474]
[64]
Atabaev, T.S. Facile hydrothermal synthesis of flower-like hematite microstructure with high photocatalytic properties. J. Adv. Ceram., 2015, 4, 61-64.
[http://dx.doi.org/10.1007/s40145-015-0133-5]
[65]
Jiao, Y.; Liu, Y.; Qu, F.; Umar, A.; Wu, X. Visible-light-driven photocatalytic properties of simply synthesized α-Iron(III)oxide nanourchins. J. Colloid Interface Sci., 2015, 451, 93-100.
[http://dx.doi.org/10.1016/j.jcis.2015.03.055] [PMID: 25890117]
[66]
Maji, S.K.; Mukherjee, N.; Mondal, A.; Adhikary, B. Synthesis, Characterization and Photocatalytic Activity of α-Fe2O3 Nanoparticles. Polyhedron, 2012, 33, 145-149.
[67]
Fujishima, A.; Zhang, X.; Tryk, D.A. TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep., 2008, 63, 515-582.
[http://dx.doi.org/10.1016/j.surfrep.2008.10.001]
[68]
Zuo, R.; Du, G.; Zhang, W.; Liu, L.; Liu, Y.; Mei, L.; Li, Z. Photocatalytic degradation of methylene blue using TiO2 impregnated diatomite. Adv. Mater. Sci. Eng., 2014.
[http://dx.doi.org/10.1155/2014/170148]
[69]
Wu, W.; He, Q.; Jiang, C. Magnetic iron oxide nanoparticles: Synthesis and surface functionalization strategies. Nanoscale Res. Lett., 2008, 3(11), 397-415.
[http://dx.doi.org/10.1007/s11671-008-9174-9] [PMID: 21749733]
[70]
Wu, W.; Wu, Z.; Yu, T.; Jiang, C.; Kim, W.S. Recent progress on magnetic iron oxide nanoparticles: Synthesis, surface functional strategies and biomedical applications. Sci. Technol. Adv. Mater., 2015, 16(2)023501
[http://dx.doi.org/10.1088/1468-6996/16/2/023501] [PMID: 27877761]
[71]
Teja, A.S.; Koh, P. Synthesis, properties, and applications of magnetic iron oxide nanoparticles. Prog. Cryst. Growth Charact. Mater., 2009, 55, 22-45.
[http://dx.doi.org/10.1016/j.pcrysgrow.2008.08.003]
[72]
Litter, I.; Blesa, M.A. Photodissolution of iron oxides IV. A comparative study on the photodissolution of hematite, magnetite, and maghemite in EDTA media. Can. J. Chem., 1992, 70, 2502-2510.
[http://dx.doi.org/10.1139/v92-316]
[73]
Litter, M.I.; Baumgartner, E.C.; Urrutla, G.A.; Blesa, M.A. Photodissolution of iron oxides. 3. interplay of photochemical and thermal processes in maghemite/carboxylic acid systems. Environ. Sci. Technol., 1991, 25, 1907-1913.
[http://dx.doi.org/10.1021/es00023a011]
[74]
Luan, P.; Xie, M.; Liu, D.; Fu, X.; Jing, L. Effective charge separation in the rutile TiO2 nanorod-coupled α-Fe2O3 with exceptionally high visible activities. Sci. Rep., 2014, 4, 6180.
[http://dx.doi.org/10.1038/srep06180] [PMID: 25154460]
[75]
Xia, Y.; Yin, L. Core-shell structured α-Fe2O3@TiO2 nanocomposites with improved photocatalytic activity in the visible light region. Phys. Chem. Chem. Phys., 2013, 15(42), 18627-18634.
[http://dx.doi.org/10.1039/c3cp53178c] [PMID: 24085286]
[76]
Lee, S.C.; Lintang, H.O.; Yuliati, L. High photocatalytic activity of Fe2O3/TiO2 nanocomposites prepared by photodeposition for degradation of 2,4-dichlorophenoxyacetic acid. Beilstein J. Nanotechnol., 2017, 8, 915-926.
[http://dx.doi.org/10.3762/bjnano.8.93] [PMID: 28546886]
[77]
Yu, X.X.; Dong, F.Z.; Dong, B.; Liu, L.; Wu, Y. High visible-light photocatalytic performance of natural hematite ore composited with ZnO nanomaterials. Adv. Mater. Lett., 2017, 8, 393-397.
[http://dx.doi.org/10.5185/amlett.2017.7079]
[78]
Suresh, R.; Sandoval, C.; Ramirez, E.; Alverez, A.; Mansilla, D.H.; Mangalaraja, R.V.; Yanez, J. Solid-state synthesis and characterization of α-Fe2O3@ZnO nanocomposites with enhanced visible light driven photocatalytic activity. J. Mater. Sci. Mater. Electron., 2018, 29, 20347-20355.
[http://dx.doi.org/10.1007/s10854-018-0170-2]
[79]
Abdullah Mirzaie, R.; Kamrani, F.; Anaraki Firooz, A.; Khodadadi, A.A. Effect of α-Fe2O3 addition on the morphological, optical and decolorization properties of ZnO nanostructures. Mater. Chem. Phys., 2012, 133, 311-316.
[http://dx.doi.org/10.1016/j.matchemphys.2012.01.029]
[80]
Xi, G.; Yue, B.; Cao, J.; Ye, J. Fe3O4/WO3 hierarchical core-shell structure: High-performance and recyclable visible-light photocatalysis. Chemistry, 2011, 17(18), 5145-5154.
[http://dx.doi.org/10.1002/chem.201002229] [PMID: 21432916]
[81]
Karunakaran, C.; Sakthiraadha, S.; Gomathisankar, P.; Vinayagamoorthy, P. Fe3O4/SnO2 nanocomposite: Hydrothermal and sonochemical synthesis, characterization, and visible-light photocatalytic and bactericidal activities. Powder Technol., 2013, 246, 635-642.
[http://dx.doi.org/10.1016/j.powtec.2013.06.011]
[82]
Wang, C.; Yin, L.; Zhang, L.; Kang, L.; Wang, X.; Gao, R. Magnetic (γ-Fe2O3@SiO2)N@TiO2 functional hybrid nanoparticles with actived photocatalytic ability. J. Phys. Chem. C, 2009, 113, 4008-4011.
[http://dx.doi.org/10.1021/jp809835a]
[83]
Peña-Flores, J.I.; Palomec-Garfias, A.F.; Márquez-Beltrán, C.; Sánchez-Mora, E.; Gómez-Barojas, E.; Pérez-Rodríguez, F. Effect on the optical properties of TiO2:Fe2O3 nanostructured composites supported on SiO2 microsphere assemblies. Nanoscale Res. Lett., 2014, 9(1), 499.
[84]
Stobinski, L.; Lesiak, B.; Malolepszy, A.; Mazurkiewicz, M.; Mierzwa, B.; Zemek, J.; Jiricek, P.; Bieloshapka, I. Graphene oxide and reduced graphene oxide studied by the XRD. TEM and electron spectroscopy methods. J. Electron Spectrosc. Relat. Phenom., 2014, 195, 145-154.
[http://dx.doi.org/10.1016/j.elspec.2014.07.003]
[85]
Georgakilas, V.; Tiwari, J.N.; Kemp, K.C.; Perman, J.A.; Bourlinos, A.B.; Kim, K.S.; Zboril, R. Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications. Chem. Rev., 2016, 116(9), 5464-5519.
[http://dx.doi.org/10.1021/acs.chemrev.5b00620] [PMID: 27033639]
[86]
Chen, Y.; Yan, Q.; Zhang, S.; Lu, L.; Xie, B.; Xie, T.; Zhang, Y.; Wu, Y.; Zhang, Y.; Liu, D. Buffering agents-assisted synthesis of nitrogen-doped graphene with oxygen-rich functional groups for enhanced electrochemical performance. J. Power Sources, 2016, 333, 125-133.
[http://dx.doi.org/10.1016/j.jpowsour.2016.09.111]
[87]
Singh, V.K.; Patra, M.K.; Manoth, M.; Gowd, G.S.; Vadera, S.R.; Kumar, N. In situ synthesis of graphene oxide and its composites with iron oxide. N. Carbon Mater., 2009, 24, 147-152.
[http://dx.doi.org/10.1016/S1872-5805(08)60044-X]
[88]
Wang, C.; Salmon, L.; Ciganda, R.; Yate, L.; Moya, S.; Ruiz, J.; Astruc, D. An efficient parts-per-million α-Fe2O3 nanocluster/graphene oxide catalyst for Suzuki-Miyaura coupling reactions and 4-nitrophenol reduction in aqueous solution. Chem. Commun. (Camb.), 2017, 53(3), 644-646.
[http://dx.doi.org/10.1039/C6CC08401J] [PMID: 27990528]
[89]
Gao, W. The chemistry of graphene oxide. In: Graphene oxide; Springer: Cham, 2015; pp. 61-95.
[http://dx.doi.org/10.1007/978-3-319-15500-5_3]
[90]
Anjaneyulu, R.B.; Mohan, B.S.; Naidu, G.P.; Muralikrishna, R. Visible light enhanced photocatalytic degradation of methylene blue by ternary nanocomposite, MoO3/Fe2O3/rGO. J. Asian Ceram. Soc., 2018, 6, 183-195.
[http://dx.doi.org/10.1080/21870764.2018.1479011]
[91]
Zhang, L.; Bao, Z.; Yu, X.; Dai, P.; Zhu, J.; Wu, M.; Li, G.; Liu, X.; Sun, Z.; Chen, C. Rational design of α-Fe2O3/reduced graphene oxide composites: Rapid detection and effective removal of organic pollutants. ACS Appl. Mater. Interfaces, 2016, 8(10), 6431-6438.
[http://dx.doi.org/10.1021/acsami.5b11292] [PMID: 26907977]
[92]
Pakuła, M.; Biniak, S.; Swiatkowski, A. Chemical and electrochemical studies of interactions between Iron (III) ions and an activated carbon surface. Langmuir, 1998, 14, 3082-3089.
[http://dx.doi.org/10.1021/la9705625]
[93]
Liu, W.; Zhang, J.; Zhang, C.; Ren, L. Preparation and evaluation of activated carbon-based iron-containing adsorbents for enhanced Cr(VI) removal: Mechanism study. Chem. Eng. J., 2012, 189-190, 295-302.
[http://dx.doi.org/10.1016/j.cej.2012.02.082]
[94]
Kadirova, Z.C.; Hojamberdiev, M.; Katsumata, K.; Isobe, T.; Matsushita, N.; Nakajima, A.; Okada, K. Fe2O3-loaded activated carbon fiber/polymer materials and their photocatalytic activity for methylene blue mineralization by combined heterogeneous-homogeneous photocatalytic processes. Appl. Surf. Sci., 2017, 402, 444-455.
[http://dx.doi.org/10.1016/j.apsusc.2017.01.131]
[95]
Li, G.; Jiang, Y.; Huang, K.; Ding, P.; Yao, L. Kinetics of adsorption of saccharomyces cerevisiae mandelated dehydrogenase on magnetic Fe3O4 - chitosan nanoparticles. Colloids Surf. A ., 2008, 320, 11-18.
[96]
Broujeni, B.R.; Nilchi, A.; Hassani, A.H.; Saberi, R. Preparation and characterization of chitosan/Fe2O3 nano composite for the adsorption of thorium (IV) ion from aqueous solution. Water Sci. Technol., 2018, 78(3-4), 708-720.
[http://dx.doi.org/10.2166/wst.2018.343] [PMID: 30208011]
[97]
Hernández-Alonso, M.D.; Fresno, F.; Suárez, S.; Coronado, J.M. Development of alternative photocatalysts to TiO2: Challenges and opportunities. Energy Environ. Sci., 2009, 2, 1231.
[http://dx.doi.org/10.1039/b907933e]
[98]
Yonezawa, T.; Kamoshita, K.; Tanaka, M.; Kinoshita, T. Easy preparation of stable iron oxide nanoparticles using gelatin as stabilizing molecules easy preparation of stable iron oxide nanoparticles using gelatin as stabilizing molecules. Jpn. J. Appl. Phys., 2008, 47, 1389-1392.
[http://dx.doi.org/10.1143/JJAP.47.1389]
[99]
Gaihre, B.; Aryal, S.; Khil, M.S.; Kim, H.Y. Encapsulation of Fe3O4 in gelatin nanoparticles: Effect of different parameters on size and stability of the colloidal dispersion. J. Microencapsul., 2008, 25(1), 21-30.
[http://dx.doi.org/10.1080/02652040701737697] [PMID: 18188729]
[100]
Andrade, L.; Fabris, D.; Ardisson, D.; Valente, M.A. Effect of tetramethylammonium hydroxide on nucleation, surface modification and growth of magnetic nanoparticles. J. Nanomater., 2012, 2012, 1-10.
[http://dx.doi.org/10.1155/2012/454759]
[101]
Ankamwar, B.; Lai, T.C.; Huang, J.H.; Liu, R.S.; Hsiao, M.; Chen, C.H.; Hwu, Y.K. Biocompatibility of Fe3O4 nanoparticles evaluated by in vitro cytotoxicity assays using normal, glia and breast cancer cells. Nanotechnology, 2010, 21(7), 75102.
[http://dx.doi.org/10.1088/0957-4484/21/7/075102] [PMID: 20090199]
[102]
Kontos, A.I.; Likodimos, V.; Stergiopoulos, T.; Tsoukleris, D.S.; Falaras, P.; Rabias, I.; Papavassiliou, G.; Kim, D.; Kunze, J.; Schmuki, P. Self-organized anodic TiO2 nanotube arrays functionalized by iron oxide nanoparticles. Chem. Mater., 2009, 21, 662-672.
[http://dx.doi.org/10.1021/cm802495p]
[103]
Harifi, T.; Montazer, M. A robust super-paramagnetic TiO2:Fe3O4:Ag nanocomposite with enhanced photo and bio activities on polyester fabric via one step sonosynthesis. Ultrason. Sonochem., 2015, 27, 543-551.
[http://dx.doi.org/10.1016/j.ultsonch.2015.04.008] [PMID: 25899439]
[104]
Tayefeh, A.; Mousavi, S.A.; Wiesner, M.; Poursalehi, R. Synthesis and surface characterization of magnetite-titania nanoparticles/polyamide nanocomposite smart RO membrane. Procedia Mater. Sci., 2015, 11, 342-346.
[http://dx.doi.org/10.1016/j.mspro.2015.11.114]
[105]
Yuan, P.; Fan, M.; Yang, D.; He, H.; Liu, D.; Yuan, A.; Zhu, J.; Chen, T. Montmorillonite-supported magnetite nanoparticles for the removal of hexavalent chromium [Cr(VI)] from aqueous solutions. J. Hazard. Mater., 2009, 166(2-3), 821-829.
[http://dx.doi.org/10.1016/j.jhazmat.2008.11.083] [PMID: 19135796]
[106]
Yang, Y.; Li, X.J.; Chen, J.T.; Wang, L.Y. Effect of doping mode on the photocatalytic activities of Mo/TiO2. J. Photochem. Photobiol. Chem., 2004, 163, 517-522.
[http://dx.doi.org/10.1016/j.jphotochem.2004.02.008]
[107]
Li, Y.; Peng, S.; Jiang, F.; Lu, G.; Li, S. Effect of doping TiO2 with alkaline-earth metal ions on its photocatalytic activity. J. Serb. Chem. Soc., 2007, 72, 393-402.
[http://dx.doi.org/10.2298/JSC0704393L]
[108]
Guo, J.; Gan, Z.; Lu, Z.; Liu, J.; Xi, J.; Wan, Y.; Le, L.; Liu, H.; Shi, J.; Xiong, R. Improvement of the photocatalytic properties of TiO2 by (Fe+Mo) Co-doping - A possible way to retard the recombination process. J. Appl. Phys., 2013, 114(10)104903
[http://dx.doi.org/10.1063/1.4819449]
[109]
Sánchez Mora, E.; Gómez Barojas, E.; Rojas Rojas, E.; Silva González, R. Morphological, optical and photocatalytic properties of TiO2-Fe2O3 multilayers. Sol. Energy Mater. Sol. Cells, 2007, 91, 1412-1415.
[http://dx.doi.org/10.1016/j.solmat.2007.05.010]
[110]
Tada, H.; Jin, Q.; Iwaszuk, A.; Nolan, M. Molecular-scale transition metal oxide nanocluster surface- modified titanium dioxide as solar-activated environmental catalysts. J. Phys. Chem. C, 2014, 118(23), 12077-12086.
[http://dx.doi.org/10.1021/jp412312m]
[111]
Thongsuwan, W.; Singjai, P. Influence of TiO2/Fe2O3 interfacial layers on optical properties under visible light. Surf. Coat. Tech., 2015, 306, 49-53.
[http://dx.doi.org/10.1016/j.surfcoat.2016.04.026]
[112]
Xie, J.; Zhou, Z.; Lian, Y.; Hao, Y.; Li, P.; Wei, Y. Synthesis of α-Fe2O3/ZnO composites for photocatalytic degradation of pentachlorophenol under UV-Vis light irradiation. Ceram. Int., 2015, 41, 2622-2625.
[http://dx.doi.org/10.1016/j.ceramint.2014.10.043]
[113]
Balu, S.; Velmurugan, S.; Palanisamy, S.; Chen, S. Synthesis of α-Fe2O3 decorated G-C3N/ZnO ternary Z-scheme photocatalyst for degradation of tartrazine dye in aqueous media. J. Taiwan Inst. Chem. Eng., 2019, 9, 258-267.
[114]
Kar, P.; Jain, P.; Kumar, V.; Kumar, R. Interfacial engineering of Fe2O3@BOC heterojunction for efficient detoxification of toxic metal and dye under visible light illumination. J. Environ. Chem. Eng., 2019, 7(1)102843
[http://dx.doi.org/10.1016/j.jece.2018.102843]
[115]
Abhilash, M.R.; Akshatha, G.; Srikantaswamy, S. Photocatalytic dye degradation and biological activities of the Fe2O3/Cu2O nanocomposite†. RSC Advances, 2019, 9, 8557-8568.
[http://dx.doi.org/10.1039/C8RA09929D]
[116]
Lubis, S. Synthesis, characterization and photocatalytic activity of α-Fe2O3/bentonite composite prepared by mechanical milling. In: Journal of Physics: Conference Series, IOP Publishing,; , 2018; Vol.1116, . No. 4, p. 042016.
[117]
Lei, R.; Ni, H.; Chen, R.; Gu, H.; Zhang, B.; Zhan, W. Hydrothermal synthesis of CdS nanorods anchored on α-Fe2O3 nanotube arrays with enhanced visible-light-driven photocatalytic properties. J. Colloid Interface Sci., 2018, 514, 496-506.
[PMID: 29289732]
[118]
Bhatnagar, A.; Sillanpää, M. Removal of Natural Organic Matter (NOM) and its constituents from water by adsorption - A review. Chemosphere, 2017, 166, 497-510.
[http://dx.doi.org/10.1016/j.chemosphere.2016.09.098] [PMID: 27710885]
[119]
Dong, H.; Zeng, G.; Tang, L.; Fan, C.; Zhang, C.; He, X.; He, Y. An overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures. Water Res., 2015, 79, 128-146.
[http://dx.doi.org/10.1016/j.watres.2015.04.038] [PMID: 25980914]
[120]
Anku, W.W.; Mamo, M.A.; Govender, P.P. Phenolic compounds compounds in water: water: sources, phenolic; Phenolic Compound - Natural Sources, Importance and Application, 2017, pp. 419-443.
[121]
Oliveira, C.; Lima, D.L.D.; Silva, C.P.; Otero, M.; Esteves, V.I. Photodegradation behaviour of estriol: An insight on natural aquatic organic matter influence. Chemosphere, 2016, 159, 545-551.
[http://dx.doi.org/10.1016/j.chemosphere.2016.06.046] [PMID: 27341158]
[122]
Pulgarin, C.; Kiwi, J. Iron oxide-mediated degradation, photodegradation, and biodegradation of aminophenols. Langmuir, 1995, 11, 519-526.
[http://dx.doi.org/10.1021/la00002a026]
[123]
Gaffour, H.; Mokhtari, M. Photocatalytic degradation of 4-nitrophenol using TiO2+Fe2O3 and TiO2/Fe2O3-supported bentonite as heterogeneous catalysts. Res. Chem. Intermed., 2016, 42(6), 6025-6038.
[http://dx.doi.org/10.1007/s11164-016-2436-8]
[124]
Smith, A.H.; Lopipero, P.A.; Bates, M.N.; Steinmaus, C.M. Arsenic Epidemiology and Drinking Water Standards; Science’s Compass, 2002, pp. 2145-2146.
[125]
Mayo, J.T.; Yavuz, C.; Yean, S.; Cong, L.; Shipley, H.; Yu, W.; Falkner, J.; Kan, A. The effect of nanocrystalline magnetite size on arsenic removal. Sci. Technol. Adv. Mater., 2007, 8, 71-75.
[http://dx.doi.org/10.1016/j.stam.2006.10.005]
[126]
Yu, L.; Peng, X.; Ni, F.; Li, J.; Wang, D.; Luan, Z. Arsenite removal from aqueous solutions by γ-Fe2O3-TiO2 magnetic nanoparticles through simultaneous photocatalytic oxidation and adsorption. J. Hazard. Mater., 2013, 246-247, 10-17.
[http://dx.doi.org/10.1016/j.jhazmat.2012.12.007] [PMID: 23276789]
[127]
Zhong, B.L.; Hu, J.; Liang, H.; Cao, A.; Song, W.; Wan, L. Self-assembled 3D flowerlike iron oxide nanostructures and their application in water treatment. Adv. Mater., 2006, 18, 2426-2431.
[http://dx.doi.org/10.1002/adma.200600504]
[128]
Idris, A.; Hassan, N.; Mohd Ismail, N.S.; Misran, E.; Yusof, N.M.; Ngomsik, A.F.; Bee, A.; Bee, A. Photocatalytic magnetic separable beads for chromium (VI) reduction. Water Res., 2010, 44(6), 1683-1688.
[http://dx.doi.org/10.1016/j.watres.2009.11.026] [PMID: 19963234]
[129]
Gupta, V.K.; Agarwal, S.; Saleh, T.A. Chromium removal by combining the magnetic properties of iron oxide with adsorption properties of carbon nanotubes. Water Res., 2011, 45(6), 2207-2212.
[http://dx.doi.org/10.1016/j.watres.2011.01.012] [PMID: 21303713]
[130]
Hu, H.; Wang, Z.; Pan, L. Synthesis of monodisperse Fe3O4@silica core – shell microspheres and their application for removal of heavy metal ions from water. J. Alloys Compd., 2010, 492, 656-661.
[http://dx.doi.org/10.1016/j.jallcom.2009.11.204]
[131]
Mohamed, T.; Attia, S.; Hu, X.L.; Yin, D.Q. Synthesised Magnetic Nanoparticles Coated Zeolite (MNCZ) for the removal of arsenic (As) from aqueous solution. J. Exp. Nanosci., 2014, 9(6), 551-560.
[132]
Es, B. Photocatalytic removal of Pb ions from aqueous solution using Fe2O3 doped in G-C3N4 nanocomposite under visible light. Front. Nanosci. Nanotechnol., 2016, 2, 100-106.
[http://dx.doi.org/10.15761/FNN.1000116]
[133]
Al-farhan, B.S. Removal of Cd+2 and Pb+2 ions from aqueous solutions using bentonite-modified magnetic nanoparticles. Int. J. Nanomater. Chem., 2016, 2, 27-31.
[http://dx.doi.org/10.18576/ijnc/020105]
[134]
Zhu, H.; Fu, Y.; Jiang, R.; Yao, J.; Xiao, L.; Zeng, G. Optimization of Copper (II) adsorption onto novel magnetic calcium alginate/maghemite hydrogel beads using response surface methodology. Ind. Eng. Chem. Res., 2014, 10, 4059-4066.
[http://dx.doi.org/10.1021/ie4031677]
[135]
Vélez, E.; Campillo, G.E.; Morales, G.; Hincapié, C.; Osorio, J.; Arnache, O.; Uribe, J.I.; Jaramillo, F. Mercury removal in wastewater by iron oxide nanoparticles. J. Phys. Conf. Ser., 2016, 687, 4.
[http://dx.doi.org/10.1088/1742-6596/687/1/012050]
[136]
Asl, M.I.; Ghazi, M.M.; Jahangiri, M. Synthesis, characterization and degradation activity of methyl orange azo dye using synthesized CuO/α-Fe2O3 nanocomposite. Adv. Environ. Technol., 2016, 3, 143-151.
[137]
Ng, T.W.; Zhang, L.; Liu, J.; Huang, G.; Wang, W.; Wong, P.K. Visible-light-driven photocatalytic inactivation of Escherichia coli by magnetic Fe2O3-AgBr. Water Res., 2016, 90, 111-118.
[http://dx.doi.org/10.1016/j.watres.2015.12.022] [PMID: 26724445]
[138]
Ma, S.; Zhan, S.; Jia, Y.; Zhou, Q. Superior antibacterial activity of Fe3O4-TiO2 nanosheets under Solar Light. ACS Appl. Mater. Interfaces, 2015, 7(39), 21875-21883.
[http://dx.doi.org/10.1021/acsami.5b06264] [PMID: 26372171]

© 2024 Bentham Science Publishers | Privacy Policy