Rheological Characterization of Pharmaceutical and Cosmetic Formulations for Cutaneous Applications

Author(s): Nicolas Huang*.

Journal Name: Current Pharmaceutical Design

Volume 25 , Issue 21 , 2019

Become EABM
Become Reviewer

Abstract:

Rheology, the study of the flow and deformation of matter, can be a daunting subject for scientists new to this field. However, its importance in characterization and optimization of formulations is indisputable. This review intends to provide basic and practical rheological notions in order to better understand the key concepts such as shear stress, shear rate, viscosity, elastic and viscous moduli and phase angle, and learn to distinguish between flow and oscillation experiments. We will explain the different rheological behaviors such as shear thinning, thixotropy or viscoelasticity. Throughout this review, these concepts will be illustrated with examples taken from pharmaceutical and cosmetic formulations. Rheology is a broad subject and this review does not intend to be comprehensive, but rather to be concise and pedagogical.

Keywords: Rheology, viscosity, viscoelasticity, formulation, pharmaceutics, cosmetics.

[1]
Barnes HA, Hutton JF, Walters K. An Introduction to RheologyVol 3. Elsevier 1989.
[2]
Doraiswamy D. The Origins of Rheology: A Short Historical ExcursionVol 71. 2002.
[3]
Bingham EC. Some Fundamental Definitions of Rheology. J Rheol (NYNY) 1930; 1: 507-16.
[http://dx.doi.org/10.1122/1.2116348]
[4]
Larson RG. The structure and rheology of complex fluids. New York: Oxford University Press 1999.
[5]
Masmoudi H, Piccerelle P, Le Dréau Y, Kister J. A rheological method to evaluate the physical stability of highly viscous pharmaceutical oil-in-water emulsions. Pharm Res 2006; 23(8): 1937-47.
[http://dx.doi.org/10.1007/s11095-006-9038-x] [PMID: 16850264]
[6]
Mezger TG. The rheology handbook: for users of rotational and oscillation rheometers. Hannover: Vincentz 2002.
[7]
Brummer R. Rheology essentials of cosmetic and food emulsions. Berlin, New York: Springer 2006.
[8]
Couarraze G, Grossiord J-L, Huang N. Initiation à la rhéologie bases théoriques et applications expérimentales. Paris: Lavoisier : Tec & Doc 2014.
[9]
Barnes HA. A handbook of elementary rheology. Aberystwyth: Univ. of Wales, Institute of Non-Newtonian Fluid Mechanics 2000.
[10]
Coussot P, Grossiord J-L. Comprendre la rhéologie: de la circulation du sang à la prise du béton. Les Ulis: EDP Sciences 2002.
[11]
Grossiord J-L, Ponton A. Groupe français de rhéologieLa mesure en Rhéologie: des avancées récentes aux perspectives 2013.
[12]
Macosko CW, Ed. Rheology: principles, measurements, and applications. New York: VCH 1994.
[13]
Guyon E, Hulin JP, Petit L. Hydrodynamique physique. Les Ulis: EDP Sciences 2012.
[14]
Oswald P. Rhéophysique, où comment coule la matière 2005.
[15]
Schramm G. A Practical Approach to Rheology and Rheometry. Gebrueder Haake 2000.
[16]
Destruel P-L, Zeng N, Maury M, Mignet N, Boudy V. In vitro and in vivo evaluation of in situ gelling systems for sustained topical ophthalmic delivery: state of the art and beyond. Drug Discov Today 2017; 22(4): 638-51.
[http://dx.doi.org/10.1016/j.drudis.2016.12.008] [PMID: 28017837]
[17]
Bother H, Waaler T. Rheological Characterization of Tear Substitutes. Drug Dev Ind Pharm 1990; 16: 755-68.
[http://dx.doi.org/10.3109/03639049009114907]
[18]
Kwon K-A, Shipley RJ, Edirisinghe M, et al. High-speed camera characterization of voluntary eye blinking kinematics. J R Soc Interface 2013; 10(85)20130227
[http://dx.doi.org/10.1098/rsif.2013.0227] [PMID: 23760297]
[19]
King-Smith PE, Fink BA, Hill RM, Koelling KW, Tiffany JM. The thickness of the tear film. Curr Eye Res 2004; 29(4-5): 357-68.
[http://dx.doi.org/10.1080/02713680490516099] [PMID: 15590483]
[20]
Gupta S, Wang WS, Vanapalli SA. Microfluidic viscometers for shear rheology of complex fluids and biofluids. Biomicrofluidics 2016; 10(4)043402
[http://dx.doi.org/10.1063/1.4955123] [PMID: 27478521]
[21]
Dorsey NE. Properties of ordinary water-substance. Reinhold 1940.
[22]
Segur JB, Oberstar HE. Viscosity of Glycerol and Its Aqueous Solutions. Ind Eng Chem 1951; 43: 2117-20.
[http://dx.doi.org/10.1021/ie50501a040]
[23]
Grossiord J-L, Seiller M. W/O/W multiple emulsions: a review of the release mechanisms by break-up of the oily membrane. STP Pharma Sci 2001; pp. 331-9.
[24]
Aserin A. Multiple emulsions: technology and applications. Hoboken, N.J.: Wiley-Interscience 2008.
[25]
Esposito E, Carducci F, Mariani P, et al. Monoolein liquid crystalline phases for topical delivery of crocetin. Colloids Surf B Biointerfaces 2018; 171: 67-74.
[http://dx.doi.org/10.1016/j.colsurfb.2018.07.011] [PMID: 30015140]
[26]
Reiner M. The Deborah number. Phys Today 1964.
[http://dx.doi.org/10.1063/1.3051374]
[27]
Mueller S, Llewellin EW, Mader HM. The rheology of suspensions of solid particles. Proc R Soc Math Phys Eng Sci 2010; 1201-28.
[http://dx.doi.org/10.1098/rspa.2009.0445]
[28]
Quémada D. Modélisation rhéologique structurelle: dispersions concentrées et fluides complexesParis: Editions TEC & DOC : Lavoisier. 2006.
[29]
El Kechai N, Geiger S, Fallacara A, et al. Mixtures of hyaluronic acid and liposomes for drug delivery: Phase behavior, microstructure and mobility of liposomes. Int J Pharm 2017; 523(1): 246-59.
[http://dx.doi.org/10.1016/j.ijpharm.2017.03.029] [PMID: 28323101]
[30]
Rubinstein M, Colby RH. Polymer physics. Oxford, New York: Oxford University Press 2003.
[31]
Flory PJ. Principles of polymer chemistry 19 print. Ithaca, NY: Cornell Univ. Press 1953.
[32]
Hiemenz PC, Lodge T. Polymer chemistry. 2nd ed. Boca Raton: CRC Press 2007.
[33]
Fall A, Huang N, Bertrand F, Ovarlez G, Bonn D. Shear thickening of cornstarch suspensions as a reentrant jamming transition. Phys Rev Lett 2008; 100(1)018301
[http://dx.doi.org/10.1103/PhysRevLett.100.018301] [PMID: 18232829]
[34]
Fall A, Bertrand F, Ovarlez G, Bonn D. Shear thickening of cornstarch suspensions. J Rheol (NYNY) 2012; 56: 575-91.
[http://dx.doi.org/10.1122/1.3696875]
[35]
Gürgen S, Kuşhan MC, Li W. Shear thickening fluids in protective applications: A review. Prog Polym Sci 2017; 75: 48-72.
[http://dx.doi.org/10.1016/j.progpolymsci.2017.07.003]
[36]
Hasanzadeh M, Mottaghitalab V. The Role of Shear-Thickening Fluids (STFs) in Ballistic and Stab-Resistance Improvement of Flexible Armor. J Mater Eng Perform 2014; 23: 1182-96.
[http://dx.doi.org/10.1007/s11665-014-0870-6]
[37]
Egres RG, Wagner NJ. The rheology and microstructure of acicular precipitated calcium carbonate colloidal suspensions through the shear thickening transition. J Rheol (NYNY) 2005; 49: 719-46.
[http://dx.doi.org/10.1122/1.1895800]
[38]
El Kechai N, Bochot A, Huang N, Nguyen Y, Ferrary E, Agnely F. Effect of liposomes on rheological and syringeability properties of hyaluronic acid hydrogels intended for local injection of drugs. Int J Pharm 2015; 487(1-2): 187-96.
[http://dx.doi.org/10.1016/j.ijpharm.2015.04.019] [PMID: 25882015]
[39]
El Kechai N, Mamelle E, Nguyen Y, et al. Hyaluronic acid liposomal gel sustains delivery of a corticoid to the inner ear. J Control Release 2016; 226: 248-57.
[http://dx.doi.org/10.1016/j.jconrel.2016.02.013] [PMID: 26860286]
[40]
Lee CH, Moturi V, Lee Y. Thixotropic property in pharmaceutical formulations. J Control Release 2009; 136(2): 88-98.
[http://dx.doi.org/10.1016/j.jconrel.2009.02.013] [PMID: 19250955]
[41]
Tanner PR. Sunscreen product formulation. Dermatol Clin 2006; 24(1): 53-62.
[http://dx.doi.org/10.1016/j.det.2005.09.002] [PMID: 16311167]
[42]
Esposito E, Drechsler M, Huang N, et al. Ethosomes and organogels for cutaneous administration of crocin. Biomed Microdevices 2016; 18(6): 108.
[http://dx.doi.org/10.1007/s10544-016-0134-3] [PMID: 27830454]
[43]
Moller P, Fall A, Chikkadi V, Derks D, Bonn D. An attempt to categorize yield stress fluid behaviour. Philos Trans- Royal Soc, Math Phys Eng Sci 2009; 367(1909): 5139-55.
[http://dx.doi.org/10.1098/rsta.2009.0194] [PMID: 19933132]
[44]
Barnes HA. The yield stress—a review or ‘παντα ρει’—everything flows? J Non-Newt Fluid Mech 1999; 81: 133-78.
[http://dx.doi.org/10.1016/S0377-0257(98)00094-9]
[45]
Dinkgreve M, Paredes J, Denn MM, Bonn D. On different ways of measuring “the” yield stress. J Non-Newt Fluid Mech 2016; 238: 233-41.
[http://dx.doi.org/10.1016/j.jnnfm.2016.11.001]
[46]
Møller PCF, Mewis J, Bonn D. Yield stress and thixotropy: on the difficulty of measuring yield stresses in practice. Soft Matter 2006; 2: 274.
[http://dx.doi.org/10.1039/b517840a]
[47]
Derkach SR. Rheology of emulsions. Adv Colloid Interface Sci 2009; 151(1-2): 1-23.
[http://dx.doi.org/10.1016/j.cis.2009.07.001] [PMID: 19683219]
[48]
Coussot P. Rheometry of pastes, suspensions, and granular materials: applications in industry and environment. Hoboken, N.J: Wiley 2005.
[http://dx.doi.org/10.1002/0471720577]
[49]
Huang N, Ovarlez G, Bertrand F, Rodts S, Coussot P, Bonn D. Flow of wet granular materials. Phys Rev Lett 2005; 94(2)028301
[http://dx.doi.org/10.1103/PhysRevLett.94.028301] [PMID: 15698237]
[50]
Mooney M. The viscosity of a concentrated suspension of spherical particles. J Colloid Sci 1951; 6: 162-70.
[http://dx.doi.org/10.1016/0095-8522(51)90036-0]
[51]
Krieger IM, Dougherty TJ. A Mechanism for Non‐Newtonian Flow in Suspensions of Rigid Spheres. Trans Soc Rheol 1959; 3: 137-52.
[http://dx.doi.org/10.1122/1.548848]
[52]
Quemada D. Rheology of concentrated disperse systems and minimum energy dissipation principle: I. Viscosity-concentration relationship. Rheol Acta 1977; 16: 82-94.
[http://dx.doi.org/10.1007/BF01516932]
[53]
Tadros TF. Emulsion Formation, Stability, and Rheology. In: Tadros TF, editor Emuls Form Stab, Weinheim,. Germany: Wiley-VCH Verlag GmbH & Co. KGaA 2013; pp. 1-75.
[54]
Laxton PB, Berg JC. Gel trapping of dense colloids. J Colloid Interface Sci 2005; 285(1): 152-7.
[http://dx.doi.org/10.1016/j.jcis.2004.11.006] [PMID: 15797408]
[55]
Ghica MV, Hîrjău M, Lupuleasa D, Dinu-Pîrvu C-E. Flow and Thixotropic Parameters for Rheological Characterization of Hydrogels. Molecules 2016; 21(6): 786.
[http://dx.doi.org/10.3390/molecules21060786] [PMID: 27322222]
[56]
Knowlton ED, Pine DJ, Cipelletti L. A microscopic view of the yielding transition in concentrated emulsions. Soft Matter 2014; 10(36): 6931-40.
[http://dx.doi.org/10.1039/C4SM00531G] [PMID: 24920407]
[57]
Hyun K, Wilhelm M, Klein CO, et al. A review of nonlinear oscillatory shear tests: Analysis and application of large amplitude oscillatory shear (LAOS). Prog Polym Sci 2011; 36: 1697-753.
[http://dx.doi.org/10.1016/j.progpolymsci.2011.02.002]
[58]
Sousa PC, Carneiro J, Vaz R, et al. Shear viscosity and nonlinear behavior of whole blood under large amplitude oscillatory shear. Biorheology 2013; 50(5-6): 269-82.
[http://dx.doi.org/10.3233/BIR-130643] [PMID: 24398609]
[59]
Poulos AS, Stellbrink J, Petekidis G. Flow of concentrated solutions of starlike micelles under large-amplitude oscillatory shear. Rheol Acta 2013; 52: 785-800.
[http://dx.doi.org/10.1007/s00397-013-0703-9]
[60]
Ptaszek P. Large Amplitude Oscillatory Shear (LAOS) Measurement and Fourier-Transform Rheology: Application to Food Adv Food Rheol Its Appl 2017; 87-123.
[http://dx.doi.org/10.1016/B978-0-08-100431-9.00005-X]
[61]
Belhomme-Henry C, Phan G, Huang N, et al. Texturing formulations for uranium skin decontamination. Pharm Dev Technol 2014; 19(6): 692-701.
[http://dx.doi.org/10.3109/10837450.2013.823991] [PMID: 23937529]
[62]
Dumortier G, Grossiord JL, Agnely F, Chaumeil JC. A review of poloxamer 407 pharmaceutical and pharmacological characteristics. Pharm Res 2006; 23(12): 2709-28.
[http://dx.doi.org/10.1007/s11095-006-9104-4] [PMID: 17096184]
[63]
Pipe CJ, McKinley GH. Microfluidic rheometry. Mech Res Commun 2009; 36: 110-20.
[http://dx.doi.org/10.1016/j.mechrescom.2008.08.009]
[64]
Guillot P, Panizza P, Salmon J-B, et al. Viscosimeter on a microfluidic chip. Langmuir 2006; 22(14): 6438-45.
[http://dx.doi.org/10.1021/la060131z] [PMID: 16800711]
[65]
Solomon DE, Abdel-Raziq A, Vanapalli SA. A stress-controlled microfluidic shear viscometer based on smartphone imaging. Rheol Acta 2016; 55: 727-38.
[http://dx.doi.org/10.1007/s00397-016-0940-9]
[66]
Grisel M, Savary G, Pensé-Lhéritier A-M, Masson C. Matières premières cosmétiques: ingrédients sensoriels 2017.
[67]
Pensé-Lhéritier A-M. Conception des produits cosmétiques: la formulationParis: Tec & doc 2016.
[68]
Burckbuchler V, Mekhloufi G, Giteau AP, Grossiord JL, Huille S, Agnely F. Rheological and syringeability properties of highly concentrated human polyclonal immunoglobulin solutions. Eur J Pharm Biopharm 2010; 76(3): 351-6.
[http://dx.doi.org/10.1016/j.ejpb.2010.08.002] [PMID: 20719247]
[69]
Gilbert L, Savary G, Grisel M, Picard C. Predicting sensory texture properties of cosmetic emulsions by physical measurements. Chemom Intell Lab Syst 2013; 124: 21-31.
[http://dx.doi.org/10.1016/j.chemolab.2013.03.002]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 25
ISSUE: 21
Year: 2019
Page: [2349 - 2363]
Pages: 15
DOI: 10.2174/1381612825666190716110919
Price: $65

Article Metrics

PDF: 18
HTML: 5