Medicinal Chemistry and Therapeutic Potential of Agonists, Antagonists and Allosteric Modulators of A1 Adenosine Receptor: Current Status and Perspectives

Author(s): Pran Kishore Deb*, Satyendra Deka, Pobitra Borah, Sara N. Abed, Karl-Norbert Klotz.

Journal Name: Current Pharmaceutical Design

Volume 25 , Issue 25 , 2019

Abstract:

Adenosine is a purine nucleoside, responsible for the regulation of a wide range of physiological and pathophysiological conditions by binding with four G-protein-coupled receptors (GPCRs), namely A1, A2A, A2B and A3 adenosine receptors (ARs). In particular, A1 AR is ubiquitously present, mediating a variety of physiological processes throughout the body, thus represents a promising drug target for the management of various pathological conditions. Agonists of A1 AR are found to be useful for the treatment of atrial arrhythmia, angina, type-2 diabetes, glaucoma, neuropathic pain, epilepsy, depression and Huntington’s disease, whereas antagonists are being investigated for the treatment of diuresis, congestive heart failure, asthma, COPD, anxiety and dementia. However, treatment with full A1 AR agonists has been associated with numerous challenges like cardiovascular side effects, off-target activation as well as desensitization of A1 AR leading to tachyphylaxis. In this regard, partial agonists of A1 AR have been found to be beneficial in enhancing insulin sensitivity and subsequently reducing blood glucose level, while avoiding severe CVS side effects and tachyphylaxis. Allosteric enhancer of A1 AR is found to be potent for the treatment of neuropathic pain, culminating the side effects related to off-target tissue activation of A1 AR. This review provides an overview of the medicinal chemistry and therapeutic potential of various agonists/partial agonists, antagonists and allosteric modulators of A1 AR, with a particular emphasis on their current status and future perspectives in clinical settings.

Keywords: A1 adenosine receptors, A1 AR agonists, partial agonists, antagonists and allosteric modulators, pharmacology of A1 AR, structure- activity relationships of A1 AR.

[1]
Borea PA, Varani K, Gessi S, Merighi S, Vincenzi F. The Adenosine Receptors. Springer 2018.
[http://dx.doi.org/10.1007/978-3-319-90808-3]
[2]
Borea PA, Gessi S, Merighi S, Vincenzi F, Varani K. Pharmacology of adenosine receptors: the state of the art. Physiol Rev 2018; 98(3): 1591-625.
[http://dx.doi.org/10.1152/physrev.00049.2017] [PMID: 29848236]
[3]
Fredholm BB. Adenosine-a physiological or pathophysiological agent? J Mol Med (Berl) 2014; 92(3): 201-6.
[http://dx.doi.org/10.1007/s00109-013-1101-6] [PMID: 24362516]
[4]
Gessi S, Merighi S, Varani K, Borea PA. Adenosine receptors in health and disease. Adv Pharmacol 2011; 61: 41-75.
[http://dx.doi.org/10.1016/B978-0-12-385526-8.00002-3]
[5]
Fredholm BB, IJzerman AP, Jacobson KA, Klotz K-N, Linden J. International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol Rev 2001; 53(4): 527-52.
[PMID: 11734617]
[6]
Fredholm BB, IJzerman AP, Jacobson KA, Linden J, Müller CE. International Union of Basic and Clinical Pharmacology. LXXXI. Nomenclature and classification of adenosine receptors-an update. Pharmacol Rev 2011; 63(1): 1-34.
[http://dx.doi.org/10.1124/pr.110.003285] [PMID: 21303899]
[7]
Borea PA, Gessi S, Merighi S, Varani K. Adenosine as a multi-signalling guardian angel in human diseases: when, where and how does it exert its protective effects? Trends Pharmacol Sci 2016; 37(6): 419-34.
[http://dx.doi.org/10.1016/j.tips.2016.02.006] [PMID: 26944097]
[8]
Gao Z-G, Tosh DK, Jain S, Yu J, Suresh RR, Jacobson KAA. A1 adenosine receptor agonists, antagonists, and allosteric modulators. In: ed, The Adenosine Receptors Springer. 2018; pp. 59-89.
[9]
Varani K, Vincenzi F, Merighi S, Gessi S, Borea PA. Biochemical and pharmacological role of A1 adenosine receptors and their modulation as novel therapeutic strategy In: ed Protein Reviews. Springer. 2017; pp. 193-232.
[http://dx.doi.org/10.1007/5584_2017_61]
[10]
Merighi S, Gessi S, Borea PA. Adenosine Receptors: Structure, Distribution, and Signal Transduction. In: ed The Adenosine Receptors. Springer. 2018; pp. 33-57.
[11]
Kiesman WF, Elzein E, Zablocki J. A1 adenosine receptor antagonists, agonists, and allosteric enhancers. In: ed Adenosine receptors in health and disease. Springer. 2009; pp. 25-58.
[12]
Fredholm BB, Arslan G, Halldner L, Kull B, Schulte G, Wasserman W. Structure and function of adenosine receptors and their genes. Naunyn Schmiedebergs Arch Pharmacol 2000; 362(4-5): 364-74.
[http://dx.doi.org/10.1007/s002100000313] [PMID: 11111830]
[13]
Ellis MJ, Lindon AC, Flint KJ, Jones NC, Goodbourn S. Activating transcription factor-1 is a specific antagonist of the cyclic adenosine 3′.5′-monophosphate (cAMP) response element-binding protein-1-mediated response to cAMP. Mol Endocrinol 1995; 9(2): 255-65.
[PMID: 7776975]
[14]
Biber K, Klotz K-N, Berger M, Gebicke-Härter PJ, van Calker D. Adenosine A1 receptor-mediated activation of phospholipase C in cultured astrocytes depends on the level of receptor expression. J Neurosci 1997; 17(13): 4956-64.
[http://dx.doi.org/10.1523/JNEUROSCI.17-13-04956.1997] [PMID: 9185533]
[15]
Basheer R, Arrigoni E, Thatte HS, Greene RW, Ambudkar IS, McCarley RW. Adenosine induces inositol 1,4,5-trisphosphate receptor-mediated mobilization of intracellular calcium stores in basal forebrain cholinergic neurons. J Neurosci 2002; 22(17): 7680-6.
[http://dx.doi.org/10.1523/JNEUROSCI.22-17-07680.2002] [PMID: 12196591]
[16]
Nalli AD, Kumar DP, Al-Shboul O, et al. Regulation of Gβγi-dependent PLC-β3 activity in smooth muscle: inhibitory phosphorylation of PLC-β3 by PKA and PKG and stimulatory phosphorylation of Gαi-GTPase-activating protein RGS2 by PKG. Cell Biochem Biophys 2014; 70(2): 867-80.
[http://dx.doi.org/10.1007/s12013-014-9992-6] [PMID: 24777815]
[17]
Kirsch GE, Codina J, Birnbaumer L, Brown AM. Coupling of ATP-sensitive K+ channels to A1 receptors by G proteins in rat ventricular myocytes. Am J Physiol 1990; 259(3 Pt 2): H820-6.
[PMID: 2118729]
[18]
Schulte G, Fredholm BB. Human adenosine A(1), A(2A), A(2B), and A(3) receptors expressed in Chinese hamster ovary cells all mediate the phosphorylation of extracellular-regulated kinase 1/2. Mol Pharmacol 2000; 58(3): 477-82.
[http://dx.doi.org/10.1124/mol.58.3.477] [PMID: 10953039]
[19]
Schulte G, Fredholm BB. Signalling from adenosine receptors to mitogen-activated protein kinases. Cell Signal 2003; 15(9): 813-27.
[http://dx.doi.org/10.1016/S0898-6568(03)00058-5] [PMID: 12834807]
[20]
Kunduri S, Dick G, Nayeem M, Mustafa S. Adenosine A1 receptor signaling inhibits BK channels through a PKCα-dependent mechanism in mouse aortic smooth muscle. Physiol Rep 2013; 1(3)e00037
[http://dx.doi.org/10.1002/phy2.37] [PMID: 23977428]
[21]
Klinger M, Freissmuth M, Nanoff C. Adenosine receptors: G protein-mediated signalling and the role of accessory proteins. Cell Signal 2002; 14(2): 99-108.
[http://dx.doi.org/10.1016/S0898-6568(01)00235-2] [PMID: 11781133]
[22]
Jespers W, Schiedel AC, Heitman LH, et al. Structural mapping of adenosine receptor mutations: ligand binding and signaling mechanisms. Trends Pharmacol Sci 2018; 39(1): 75-89.
[http://dx.doi.org/10.1016/j.tips.2017.11.001] [PMID: 29203139]
[23]
Nguyen AT, Baltos J-A, Thomas T, et al. Extracellular loop 2 of the adenosine A1 receptor has a key role in orthosteric ligand affinity and agonist efficacy. Mol Pharmacol 2016; 90(6): 703-14.
[http://dx.doi.org/10.1124/mol.116.105007] [PMID: 27683014]
[24]
Glukhova A, Thal DM, Nguyen AT, et al. Structure of the adenosine A1 receptor reveals the basis for subtype selectivity. Cell 2017; 168: 867-77.
[http://dx.doi.org/10.1016/j.cell.2017.01.042]
[25]
Christopoulos A, May L, Avlani V, Sexton P. G-protein-coupled receptor allosterism: the promise and the problem (s). In: ed. Portland Press Limited 2004.
[26]
Christopoulos A, Kenakin T. G protein-coupled receptor allosterism and complexing. Pharmacol Rev 2002; 54(2): 323-74.
[http://dx.doi.org/10.1124/pr.54.2.323] [PMID: 12037145]
[27]
Kennedy DP, McRobb FM, Leonhardt SA, et al. The second extracellular loop of the adenosine A1 receptor mediates activity of allosteric enhancers. Mol Pharmacol 2014; 85(2): 301-9.
[http://dx.doi.org/10.1124/mol.113.088682] [PMID: 24217444]
[28]
Romagnoli R, Baraldi PG, Moorman AR, Borea PA, Varani K. Current status of A1 adenosine receptor allosteric enhancers. Future Med Chem 2015; 7(10): 1247-59.
[http://dx.doi.org/10.4155/fmc.15.65] [PMID: 26144263]
[29]
Lagarias P, Vrontaki E, Lambrinidis G, et al. Discovery of novel adenosine receptor antagonists through a combined structure- and ligand-based approach followed by molecular dynamics investigation of ligand binding mode. J Chem Inf Model 2018; 58(4): 794-815.
[http://dx.doi.org/10.1021/acs.jcim.7b00455] [PMID: 29485875]
[30]
Sirci F, Goracci L, Rodríguez D, van Muijlwijk-Koezen J, Gutiérrez-de-Terán H, Mannhold R. Ligand-, structure- and pharmacophore-based molecular fingerprints: a case study on adenosine A(1), A (2A), A (2B), and A (3) receptor antagonists. J Comput Aided Mol Des 2012; 26(11): 1247-66.
[http://dx.doi.org/10.1007/s10822-012-9612-8] [PMID: 23065321]
[31]
Pran Kishore D, Balakumar C, Raghuram Rao A, Roy PP, Roy K. QSAR of adenosine receptor antagonists: Exploring physicochemical requirements for binding of pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine derivatives with human adenosine A(3) receptor subtype. Bioorg Med Chem Lett 2011; 21(2): 818-23.
[http://dx.doi.org/10.1016/j.bmcl.2010.11.094] [PMID: 21163647]
[32]
González MP, Terán C, Teijeira M. Search for new antagonist ligands for adenosine receptors from QSAR point of view. How close are we? Med Res Rev 2008; 28(3): 329-71.
[http://dx.doi.org/10.1002/med.20108] [PMID: 17668454]
[33]
Gutiérrez-de-Terán H, Sallander J, Sotelo E. Structure-based rational design of adenosine receptor ligands. Curr Top Med Chem 2017; 17(1): 40-58.
[http://dx.doi.org/10.2174/1568026616666160719164207] [PMID: 27448653]
[34]
Rodríguez D, Piñeiro Á, Gutiérrez-de-Terán H. Molecular dynamics simulations reveal insights into key structural elements of adenosine receptors. Biochemistry 2011; 50(19): 4194-208.
[http://dx.doi.org/10.1021/bi200100t] [PMID: 21480628]
[35]
Deb PK, Mailavaram R, Chandrasekaran B, et al. Synthesis, adenosine receptor binding and molecular modelling studies of novel thieno[2,3-d]pyrimidine derivatives. Chem Biol Drug Des 2018; 91(4): 962-9.
[http://dx.doi.org/10.1111/cbdd.13155] [PMID: 29194979]
[36]
Samanta PN, Kar S, Leszczynski J. Recent advances of in-silico modeling of potent antagonists for the adenosine receptors. Curr Pharm Des 2019; 25(7): 750-73.
[http://dx.doi.org/10.2174/1381612825666190304123545] [PMID: 30836910]
[37]
Al-Shar’i NA, Al-Balas QA. Molecular dynamics simulations of adenosine receptors: Advances, applications and trends. Curr Pharm Des 2019; 25(7): 783-816.
[http://dx.doi.org/10.2174/1381612825666190304123414] [PMID: 30834825]
[38]
Mahmod Al-Qattan MN, Mordi MN. Molecular basis of modulating adenosine receptors activities. Curr Pharm Des 2019; 25(7): 817-31.
[http://dx.doi.org/10.2174/1381612825666190304122624] [PMID: 30834826]
[39]
Agrawal N, Chandrasekaran B, Al-Aboudi A. Recent advances in the in-silico structure-based and ligand-based approaches for the design and discovery of agonists and antagonists of A2A adenosine receptor. Curr Pharm Des 2019; 25(7): 774-82.
[http://dx.doi.org/10.2174/1381612825666190306162006] [PMID: 30848185]
[40]
Deb P. Recent updates in the computer aided drug design strategies for the discovery of agonists and antagonists of adenosine receptors. 2019; 25(7): 747-9.
[http://dx.doi.org/10.2174/1381612825999190515120510]
[41]
Deb PK, Chandrasekaran B, Mailavaram R, Tekade RK, Jaber AMY. Molecular modeling approaches for the discovery of adenosine A2B receptor antagonists: current status and future perspectives. Drug Discov Today 2019; S1359-6446(19): 30045-5.
[http://dx.doi.org/10.1016/j.drudis.2019.05.011] [PMID: 31103731]
[42]
Shaik K, Deb PK, Mailavaram RP, Chandrasekaran B, Kachler S, Klotz KN. Yousef Jaber Am. 7-Amino-2-aryl/heteroaryl-5-oxo-5, 8-dihydro [1, 2, 4] triazolo [1, 5-a] pyridine-6-carbonitriles: Synthesis and Adenosine Receptor Binding Studies. Chem Biol Drug Des 2019; 94(2): 1568-73.
[http://dx.doi.org/10.1111/cbdd.13528]
[43]
Chandrasekaran B, Deb PK, Kachler S, Akkinepalli RR, Mailavaram R, Klotz K-N. Synthesis and adenosine receptors binding studies of new fluorinated analogues of pyrido [2, 3-d] pyrimidines and quinazolines. Med Chem Res 2018; 27: 756-67.
[http://dx.doi.org/10.1007/s00044-017-2099-z]
[44]
Schenone S, Brullo C, Musumeci F, Bruno O, Botta M. A1 receptors ligands: past, present and future trends. Curr Top Med Chem 2010; 10(9): 878-901.
[http://dx.doi.org/10.2174/156802610791268729] [PMID: 20370661]
[45]
Elzein E, Zablocki J. A1 adenosine receptor agonists and their potential therapeutic applications. Expert Opin Investig Drugs 2008; 17(12): 1901-10.
[http://dx.doi.org/10.1517/13543780802497284] [PMID: 19012505]
[46]
Belardinelli L, Shryock JC, Song Y, Wang D, Srinivas M. Ionic basis of the electrophysiological actions of adenosine on cardiomyocytes. FASEB J 1995; 9(5): 359-65.
[http://dx.doi.org/10.1096/fasebj.9.5.7896004] [PMID: 7896004]
[47]
Belardinelli L, Lerman BB. Electrophysiological basis for the use of adenosine in the diagnosis and treatment of cardiac arrhythmias. Br Heart J 1990; 63(1): 3-4.
[http://dx.doi.org/10.1136/hrt.63.1.3] [PMID: 2178658]
[48]
Yan L, Burbiel JC, Maass A, Müller CE. Adenosine receptor agonists: from basic medicinal chemistry to clinical development. Expert Opin Emerg Drugs 2003; 8(2): 537-76.
[http://dx.doi.org/10.1517/14728214.8.2.537] [PMID: 14662005]
[49]
Gao Z-G, Jacobson KA. Emerging adenosine receptor agonists. Expert Opin Emerg Drugs 2007; 12(3): 479-92.
[http://dx.doi.org/10.1517/14728214.12.3.479] [PMID: 17874974]
[50]
Gao Z-G, Jacobson KA. Emerging adenosine receptor agonists–an update. Expert Opin Emerg Drugs 2011; 16(4): 597-602.
[http://dx.doi.org/10.1517/14728214.2011.644786]
[51]
Klotz K-N. Adenosine receptors and their ligands. Naunyn Schmiedebergs Arch Pharmacol 2000; 362(4-5): 382-91.
[http://dx.doi.org/10.1007/s002100000315] [PMID: 11111832]
[52]
Muller CE. Adenosine receptor ligands-recent developments part I. Agonists. Curr Med Chem 2000; 7(12): 1269-88.
[http://dx.doi.org/10.2174/0929867003374101] [PMID: 11032971]
[53]
Müller CE, Jacobson KA. Recent developments in adenosine receptor ligands and their potential as novel drugs. Biochim Biophys Acta 2011; 1808(5): 1290-308.
[http://dx.doi.org/10.1016/j.bbamem.2010.12.017] [PMID: 21185259]
[54]
Jacobson KA, Gao Z-G. Adenosine receptors as therapeutic targets. Nat Rev Drug Discov 2006; 5(3): 247-64.
[http://dx.doi.org/10.1038/nrd1983] [PMID: 16518376]
[55]
Nell PG, Albrecht-Küpper B. The adenosine A1 receptor and its ligands. Prog Med Chem 2009; 47: 163-201.
[http://dx.doi.org/10.1016/S0079-6468(08)00204-X] [PMID: 19328291]
[56]
Dinh W, Albrecht-Küpper B, Gheorghiade M, Voors AA, van der Laan M, Sabbah HN. Partial adenosine A1 agonist in heart failure. Handb Exp Pharmacol 2017; 243: 177-203.
[http://dx.doi.org/10.1007/164_2016_83]
[57]
Akkari R, Burbiel JC, Hockemeyer J, Müller CE. Recent progress in the development of adenosine receptor ligands as antiinflammatory drugs. Curr Top Med Chem 2006; 6(13): 1375-99.
[http://dx.doi.org/10.2174/15680266106061375] [PMID: 16918456]
[58]
Jacobson MA. Adenosine receptor agonists. Expert Opin Ther Pat 2002; 12: 489-501.
[http://dx.doi.org/10.1517/13543776.12.4.489] [PMID: 15734651]
[59]
Thompson CS, Strong P, Mikhailidis DP. Improvement of ketoacidosis in the diabetic rat after the administration of the oral antilipolytic agent GR 79236. Clin Sci (Lond) 1994; 86(5): 593-8.
[http://dx.doi.org/10.1042/cs0860593] [PMID: 8033512]
[60]
Sneyd JR, Langton JA, Allan LG, Peacock JE, Rowbotham DJ. Multicentre evaluation of the adenosine agonist GR79236X in patients with dental pain after third molar extraction. Br J Anaesth 2007; 98(5): 672-6.
[http://dx.doi.org/10.1093/bja/aem075] [PMID: 17416906]
[61]
Wagner H, Milavec-Krizman M, Gadient F, et al. General pharmacology of SDZ WAG 994, a potent selective and orally active adenosine A1 receptor agonist. Drug Dev Res 1995; 34: 276-88.
[http://dx.doi.org/10.1002/ddr.430340305]
[62]
Hutchinson SA, Baker SP, Scammells PJ. New 2,N6-disubstituted adenosines: potent and selective A1 adenosine receptor agonists. Bioorg Med Chem 2002; 10(4): 1115-22.
[http://dx.doi.org/10.1016/S0968-0896(01)00384-4] [PMID: 11836122]
[63]
Hutchinson SA, Baker SP, Linden J, Scammells PJ. New potent and selective A1 adenosine receptor agonists. Bioorg Med Chem 2004; 12(18): 4877-84.
[http://dx.doi.org/10.1016/j.bmc.2004.07.004] [PMID: 15336267]
[64]
Knutsen LJ, Lau J, Petersen H, et al. N-substituted adenosines as novel neuroprotective A(1) agonists with diminished hypotensive effects. J Med Chem 1999; 42(18): 3463-77.
[http://dx.doi.org/10.1021/jm960682u] [PMID: 10479279]
[65]
Corino VD, Holmqvist F, Mainardi LT, Platonov PG. Beta-blockade and A1-adenosine receptor agonist effects on atrial fibrillatory rate and atrioventricular conduction in patients with atrial fibrillation. Europace 2014; 16(4): 587-94.
[http://dx.doi.org/10.1093/europace/eut251] [PMID: 23989533]
[66]
Thomsen C, Valsborg JS, Foged C, Knutsen L. Characterization of [3H]-N-[R-(2-Benzothiazolyl) thio-2-propyl]-2-chloroadenosine ([3H]-NNC 21-0136) binding to rat brain: Profile of a novel selective agonist for adenosine A1 receptors. Drug Dev Res 1997; 42: 86-97.
[http://dx.doi.org/10.1002/(SICI)1098-2299(199710)42:2<86:AID-DDR5>3.0.CO;2-L]
[67]
Abracchio MP, Williams M. Purinergic and Pyrimidinergic Signalling: Molecular, Nervous and Urogenitary System Function. Springer Science & Business Media 2013.
[68]
Knutsen LJ, Lau J, Sheardown MJ, Thomsen C. The synthesis and biochemical evaluation of new A1 selective adenosine receptor agonists containing 6-hydrazinopurine moieties. Bioorg Med Chem Lett 1993; 3: 2661-6.
[http://dx.doi.org/10.1016/S0960-894X(01)80737-X]
[69]
Ha SB, Melman N, Jacobson KA, Nair V. New base-altered adenosine analogues: synthesis and affinity at adenosine A1 and A2A receptors. Bioorg Med Chem Lett 1997; 7(24): 3085-90.
[http://dx.doi.org/10.1016/S0960-894X(97)10177-9] [PMID: 25147430]
[70]
Beukers MW, Wanner MJ, Von Frijtag Drabbe Künzel JK, Klaasse EC, IJzerman AP, Koomen G-JN. N6-cyclopentyl-2-(3-phenylaminocarbonyltriazene-1-yl)adenosine (TCPA), a very selective agonist with high affinity for the human adenosine A1 receptor. J Med Chem 2003; 46(8): 1492-503.
[http://dx.doi.org/10.1021/jm021074j] [PMID: 12672250]
[71]
Wittendorp MC, von Frijtag Drabbe Künzel J, Ijzerman AP, Boddeke HW, Biber K. The mouse brain adenosine A1 receptor: functional expression and pharmacology. Eur J Pharmacol 2004; 487(1-3): 73-9.
[http://dx.doi.org/10.1016/j.ejphar.2004.01.034] [PMID: 15033378]
[72]
Ehlert FJ. Estimation of the affinities of allosteric ligands using radioligand binding and pharmacological null methods. Mol Pharmacol 1988; 33(2): 187-94.
[PMID: 2828914]
[73]
van der Wenden EM, Carnielli M, Roelen HC, Lorenzen A, von Frijtag Drabbe Künzel JK, IJzerman AP. 5′-substituted adenosine analogs as new high-affinity partial agonists for the adenosine A1 receptor. J Med Chem 1998; 41(1): 102-8.
[http://dx.doi.org/10.1021/jm970508l] [PMID: 9438026]
[74]
Zablocki JA, Wu L, Shryock J, Belardinelli L. Partial A(1) adenosine receptor agonists from a molecular perspective and their potential use as chronic ventricular rate control agents during atrial fibrillation (AF). Curr Top Med Chem 2004; 4(8): 839-54.
[http://dx.doi.org/10.2174/1568026043450998] [PMID: 15078215]
[75]
Tosh DK, Phan K, Gao Z-G, et al. Optimization of adenosine 5′-carboxamide derivatives as adenosine receptor agonists using structure-based ligand design and fragment screening. J Med Chem 2012; 55(9): 4297-308.
[http://dx.doi.org/10.1021/jm300095s] [PMID: 22486652]
[76]
Saegusa N, Sato T, Ogura T, Komuro I, Nakaya H. Inhibitory effects of AMP 579, a novel cardioprotective adenosine A1/A2A receptor agonist, on native IKr and cloned HERG current. Naunyn Schmiedebergs Arch Pharmacol 2004; 370(6): 492-9.
[http://dx.doi.org/10.1007/s00210-004-0999-1] [PMID: 15558241]
[77]
Tosh DK, Paoletta S, Deflorian F, et al. Structural sweet spot for A1 adenosine receptor activation by truncated (N)-methanocarba nucleosides: receptor docking and potent anticonvulsant activity. J Med Chem 2012; 55(18): 8075-90.
[http://dx.doi.org/10.1021/jm300965a] [PMID: 22921089]
[78]
Müller CE. A1 adenosine receptors and their ligands: overview and recent developments. Farmaco 2001; 56(1-2): 77-80.
[http://dx.doi.org/10.1016/S0014-827X(01)01005-9] [PMID: 11347971]
[79]
Veres G, Radovits T, Otila G, et al. Efficacy of the non-adenosine analogue A1 adenosine receptor agonist (BR-4935) on cardiovascular function after cardiopulmonary bypass. Thorac Cardiovasc Surg 2010; 58(2): 86-92.
[http://dx.doi.org/10.1055/s-0029-1186271] [PMID: 20333570]
[80]
Cosimelli B, Greco G, Laneri S, et al. 4-amino-6-alkyloxy-2-alkylthiopyrimidine derivatives as novel non-nucleoside agonists for the adenosine A1 receptor. Chem Biol Drug Des 2016; 88(5): 724-9.
[http://dx.doi.org/10.1111/cbdd.12801] [PMID: 27282729]
[81]
Song Y, Wu L, Shryock JC, Belardinelli L. Selective attenuation of isoproterenol-stimulated arrhythmic activity by a partial agonist of adenosine A1 receptor. Circulation 2002; 105(1): 118-23.
[http://dx.doi.org/10.1161/hc0102.101392] [PMID: 11772886]
[82]
Hayes ES. Adenosine receptors and cardiovascular disease: the adenosine-1 receptor (A1) and A1 selective ligands. Cardiovasc Toxicol 2003; 3(1): 71-88.
[http://dx.doi.org/10.1385/CT:3:1:71] [PMID: 12668891]
[83]
Ellenbogen KA, O’Neill G, Prystowsky EN, et al. Trial to evaluate the management of paroxysmal supraventricular tachycardia during an electrophysiology study with tecadenoson. Circulation 2005; 111(24): 3202-8.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.104.510982] [PMID: 15956124]
[84]
Bayes M, Rabasseda X, Prous J. Gateways to clinical trials. In: ed. 2003.
[85]
Baltos J-A, Vecchio EA, Harris MA, et al. Capadenoson, a clinically trialed partial adenosine A1 receptor agonist, can stimulate adenosine A2B receptor biased agonism. Biochem Pharmacol 2017; 135: 79-89.
[http://dx.doi.org/10.1016/j.bcp.2017.03.014] [PMID: 28344125]
[86]
Baltos J-A, Gregory KJ, White PJ, Sexton PM, Christopoulos A, May LT. Quantification of adenosine A(1) receptor biased agonism: Implications for drug discovery. Biochem Pharmacol 2016; 99: 101-12.
[http://dx.doi.org/10.1016/j.bcp.2015.11.013] [PMID: 26581123]
[87]
Albrecht-Küpper BE, Leineweber K, Nell PG. Partial adenosine A1 receptor agonists for cardiovascular therapies. Purinergic Signal 2012; 8(Suppl. 1): 91-9.
[http://dx.doi.org/10.1007/s11302-011-9274-3] [PMID: 22081230]
[88]
Louvel J, Guo D, Soethoudt M, et al. Structure-kinetics relationships of Capadenoson derivatives as adenosine A1 receptor agonists. Eur J Med Chem 2015; 101: 681-91.
[http://dx.doi.org/10.1016/j.ejmech.2015.07.023] [PMID: 26210506]
[89]
Rossignol P, Hernandez AF, Solomon SD, Zannad F. Heart failure drug treatment. Lancet 2019; 393(10175): 1034-44.
[http://dx.doi.org/10.1016/S0140-6736(18)31808-7] [PMID: 30860029]
[90]
Tamargo J, Caballero R, Delpón E. New drugs in preclinical and early stage clinical development in the treatment of heart failure. Expert Opin Investig Drugs 2018; 28: 1-21.
[PMID: 30523722]
[91]
Fredholm BB. On the mechanism of action of theophylline and caffeine. Acta Med Scand 1985; 217(2): 149-53.
[http://dx.doi.org/10.1111/j.0954-6820.1985.tb01650.x] [PMID: 2986418]
[92]
Biaggioni I, Paul S, Puckett A, Arzubiaga C. Caffeine and theophylline as adenosine receptor antagonists in humans. J Pharmacol Exp Ther 1991; 258(2): 588-93.
[PMID: 1865359]
[93]
Mendiola-Precoma J, Padilla K, Rodríguez-Cruz A, Berumen LC, Miledi R, García-Alcocer G. Theobromine-induced changes in A 1 Purinergic receptor gene expression and distribution in a rat brain Alzheimer’s disease model. J Alzheimers Dis 2017; 55(3): 1273-83.
[http://dx.doi.org/10.3233/JAD-160569] [PMID: 27792010]
[94]
Villani F, De Maria P, Ronchi E, Galimberti M. Oral doxophylline in patients with chronic obstructive pulmonary disease. Int J Clin Pharmacol Ther 1997; 35(3): 107-11.
[PMID: 9088999]
[95]
Baraldi PG, Tabrizi MA, Gessi S, Borea PA. Adenosine receptor antagonists: translating medicinal chemistry and pharmacology into clinical utility. Chem Rev 2008; 108(1): 238-63.
[http://dx.doi.org/10.1021/cr0682195] [PMID: 18181659]
[96]
Wilson CN, Vance CO, Lechner MG, Matuschak GM, Lechner AJ. Adenosine A1 receptor antagonist, L-97-1, improves survival and protects the kidney in a rat model of cecal ligation and puncture induced sepsis. Eur J Pharmacol 2014; 740: 346-52.
[http://dx.doi.org/10.1016/j.ejphar.2014.07.012] [PMID: 25041842]
[97]
Lohse MJ, Klotz K-N, Lindenborn-Fotinos J, Reddington M, Schwabe U, Olsson RA. 8-Cyclopentyl-1,3-dipropylxanthine (DPCPX)--a selective high affinity antagonist radioligand for A1 adenosine receptors. Naunyn Schmiedebergs Arch Pharmacol 1987; 336(2): 204-10.
[http://dx.doi.org/10.1007/BF00165806] [PMID: 2825043]
[98]
Hocher B. Adenosine A1 receptor antagonists in clinical research and development. Kidney Int 2010; 78(5): 438-45.
[http://dx.doi.org/10.1038/ki.2010.204] [PMID: 20592713]
[99]
Sedghi Y, Gaddam KK, Ventura HO. Emerging diuretics for the treatment of heart failure. Expert Opin Emerg Drugs 2009; 14(1): 195-204.
[http://dx.doi.org/10.1517/14728210902721230] [PMID: 19196235]
[100]
Jacobson KA. Introduction to adenosine receptors as therapeutic targets. Handb Exp Pharmacol 2009; 143: 1-24.
[http://dx.doi.org/10.1007/978-3-540-89615-9_1]
[101]
Cheng RK, Segala E, Robertson N, et al. Structures of human A1 and A2A adenosine receptors with xanthines reveal determinants of selectivity. Structure 2017; 25(8): 1275-85.
[102]
Hayashi S, Inaji M, Nariai T, et al. Increased binding potential of brain adenosine A1 receptor in chronic stages of patients with diffuse axonal injury measured with [1-methyl-11C] 8-dicyclopropylmethyl-1-methyl-3-propylxanthine positron emission tomography imaging. J Neurotrauma 2018; 35(1): 25-31.
[http://dx.doi.org/10.1089/neu.2017.5006] [PMID: 28728462]
[103]
Elmenhorst D, Elmenhorst E-M, Hennecke E, et al. Recovery sleep after extended wakefulness restores elevated A1 adenosine receptor availability in the human brain. Proc Natl Acad Sci USA 2017; 114(16): 4243-8.
[http://dx.doi.org/10.1073/pnas.1614677114] [PMID: 28373571]
[104]
Ishiwata K, Kimura Y, de Vries J, Erik F, Elsinga PH. PET tracers for mapping adenosine receptors as probes for diagnosis of CNS disorders 2007.
[http://dx.doi.org/10.2174/187152407780059259]
[105]
Moro S, Gao ZG, Jacobson KA, Spalluto G. Progress in the pursuit of therapeutic adenosine receptor antagonists. Med Res Rev 2006; 26(2): 131-59.
[http://dx.doi.org/10.1002/med.20048] [PMID: 16380972]
[106]
Scheiff AB, Yerande SG, El-Tayeb A, et al. 2-Amino-5-benzoyl-4-phenylthiazoles: Development of potent and selective adenosine A1 receptor antagonists. Bioorg Med Chem 2010; 18(6): 2195-203.
[http://dx.doi.org/10.1016/j.bmc.2010.01.072] [PMID: 20188574]
[107]
Martin PL, Wysocki RJ Jr, Barrett RJ, May JM, Linden J. Characterization of 8-(N-methylisopropyl)amino-N6-(5′-endohydroxy- endonorbornyl)-9-methyladenine (WRC-0571), a highly potent and selective, non-xanthine antagonist of A1 adenosine receptors. J Pharmacol Exp Ther 1996; 276(2): 490-9.
[PMID: 8632314]
[108]
Müller CE. A1-adenosine receptor antagonists. Expert Opin Ther Pat 1997; 7: 419-40.
[http://dx.doi.org/10.1517/13543776.7.5.419]
[109]
Alachouzos G, Lenselink EB, Mulder-Krieger T, de Vries H, IJzerman AP, Louvel J. Synthesis and evaluation of N-substituted 2-amino-4,5-diarylpyrimidines as selective adenosine A1 receptor antagonists. Eur J Med Chem 2017; 125: 586-602.
[http://dx.doi.org/10.1016/j.ejmech.2016.09.081] [PMID: 27718474]
[110]
Matsuya T, Takamatsu H, Murakami Y, et al. Synthesis and evaluation of [11C]FR194921 as a nonxanthine-type PET tracer for adenosine A1 receptors in the brain. Nucl Med Biol 2005; 32(8): 837-44.
[http://dx.doi.org/10.1016/j.nucmedbio.2005.06.008] [PMID: 16253808]
[111]
Kreft S, Bier D, Holschbach MH, Schulze A, Coenen HH. New potent A1 adenosine receptor radioligands for positron emission tomography. Nucl Med Biol 2017; 44: 69-77.
[http://dx.doi.org/10.1016/j.nucmedbio.2016.09.004] [PMID: 27821347]
[112]
Paul S, Elsinga PH, Ishiwata K, Dierckx RA, van Waarde A. Adenosine A(1) receptors in the central nervous system: their functions in health and disease, and possible elucidation by PET imaging. Curr Med Chem 2011; 18(31): 4820-35.
[http://dx.doi.org/10.2174/092986711797535335] [PMID: 21919845]
[113]
Kollias-Baker C, Ruble J, Dennis D, Bruns RF, Linden J, Belardinelli L. Allosteric enhancer PD 81,723 acts by novel mechanism to potentiate cardiac actions of adenosine. Circ Res 1994; 75(6): 961-71.
[http://dx.doi.org/10.1161/01.RES.75.6.961] [PMID: 7955150]
[114]
Aurelio L, Christopoulos A, Flynn BL, Scammells PJ, Sexton PM, Valant C. The synthesis and biological evaluation of 2-amino-4,5,6,7,8,9-hexahydrocycloocta[b]thiophenes as allosteric modulators of the A1 adenosine receptor. Bioorg Med Chem Lett 2011; 21(12): 3704-7.
[http://dx.doi.org/10.1016/j.bmcl.2011.04.080] [PMID: 21612922]
[115]
Kimatrai-Salvador M, Baraldi PG, Romagnoli R. Allosteric modulation of A1-adenosine receptor: a review. Drug Discov Today Technol 2013; 10(2): e285-96.
[http://dx.doi.org/10.1016/j.ddtec.2012.08.005] [PMID: 24050280]
[116]
Zylka MJ. Pain-relieving prospects for adenosine receptors and ectonucleotidases. Trends Mol Med 2011; 17(4): 188-96.
[http://dx.doi.org/10.1016/j.molmed.2010.12.006] [PMID: 21236731]
[117]
Vincenzi F, Targa M, Romagnoli R, et al. TRR469, a potent A(1) adenosine receptor allosteric modulator, exhibits anti-nociceptive properties in acute and neuropathic pain models in mice. Neuropharmacology 2014; 81: 6-14.
[http://dx.doi.org/10.1016/j.neuropharm.2014.01.028] [PMID: 24486382]
[118]
Salvemini D, Doyle TM, Largent-Milnes TM, Vanderah TW. The adenosine-receptor axis in chronic pain. Receptors 2018; 34: 413-37.
[http://dx.doi.org/10.1007/978-3-319-90808-3_16]
[119]
Vecchio EA, Baltos JA, Nguyen ATN, Christopoulos A, White PJ, May LT. New paradigms in adenosine receptor pharmacology: allostery, oligomerization and biased agonism. Br J Pharmacol 2018; 175(21): 4036-46.
[http://dx.doi.org/10.1111/bph.14337] [PMID: 29679502]
[120]
Lane JR, Sexton PM, Christopoulos A. Bridging the gap: bitopic ligands of G-protein-coupled receptors. Trends Pharmacol Sci 2013; 34(1): 59-66.
[http://dx.doi.org/10.1016/j.tips.2012.10.003] [PMID: 23177916]
[121]
Chuo CH, Devine SM, Scammells PJ, et al. VCP746, a novel A1 adenosine receptor biased agonist, reduces hypertrophy in a rat neonatal cardiac myocyte model. Clin Exp Pharmacol Physiol 2016; 43(10): 976-82.
[http://dx.doi.org/10.1111/1440-1681.12616] [PMID: 27377874]
[122]
Wilson CN, Nadeem A, Spina D, Brown R, Page CP, Mustafa SJ. Adenosine receptors and asthma. Handb Exp Pharmacol 2009; 193: 329-62.
[http://dx.doi.org/10.1007/978-3-540-89615-9_11]
[123]
Burnstock G. Purinergic signaling in the cardiovascular system. Circ Res 2017; 120(1): 207-28.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.309726] [PMID: 28057794]
[124]
Szentmiklosi AJ, Galajda Z, Cseppento Á, et al. The Janus face of adenosine: antiarrhythmic and proarrhythmic actions. Curr Pharm Des 2015; 21(8): 965-76.
[http://dx.doi.org/10.2174/1381612820666141029100346] [PMID: 25354187]
[125]
Vyas FS, Hargreaves AJ, Bonner PL, Boocock DJ, Coveney C, Dickenson JM. A1 adenosine receptor-induced phosphorylation and modulation of transglutaminase 2 activity in H9c2 cells: A role in cell survival. Biochem Pharmacol 2016; 107: 41-58.
[http://dx.doi.org/10.1016/j.bcp.2016.03.016] [PMID: 27005940]
[126]
DiMarco JP, Miles W, Akhtar M, et al. Adenosine for paroxysmal supraventricular tachycardia: dose ranging and comparison with verapamil. Assessment in placebo-controlled, multicenter trials. Ann Intern Med 1990; 113(2): 104-10.
[http://dx.doi.org/10.7326/0003-4819-113-2-104] [PMID: 2193560]
[127]
Wang D, Shryock JC, Belardinelli L. Cellular basis for the negative dromotropic effect of adenosine on rabbit single atrioventricular nodal cells. Circ Res 1996; 78(4): 697-706.
[http://dx.doi.org/10.1161/01.RES.78.4.697] [PMID: 8635227]
[128]
Belardinelli L, Shryock JC, Wu L, Song Y. Use of preclinical assays to predict risk of drug-induced torsades de pointes. Heart Rhythm 2005; 2(2)(Suppl.): S16-22.
[http://dx.doi.org/10.1016/j.hrthm.2004.10.032] [PMID: 16253927]
[129]
Aurora J, Gill M, Ong K. Pharmaceutical formulation for controlled release of selodenoson 2005.
[130]
Mason PK, DiMarco JP. New pharmacological agents for arrhythmias. Circ Arrhythm Electrophysiol 2009; 2(5): 588-97.
[http://dx.doi.org/10.1161/CIRCEP.109.884429] [PMID: 19843928]
[131]
Greene SJ, Sabbah HN, Butler J, et al. Partial adenosine A1 receptor agonism: a potential new therapeutic strategy for heart failure. Heart Fail Rev 2016; 21(1): 95-102.
[http://dx.doi.org/10.1007/s10741-015-9522-7] [PMID: 26701329]
[132]
Tendera M, Gaszewska-Żurek E, Parma Z, et al. The new oral adenosine A1 receptor agonist capadenoson in male patients with stable angina. Clin Res Cardiol 2012; 101(7): 585-91.
[http://dx.doi.org/10.1007/s00392-012-0430-8] [PMID: 22370739]
[133]
Greenberg B, Thomas I, Banish D, et al. Effects of multiple oral doses of an A1 adenosine antagonist, BG9928, in patients with heart failure: results of a placebo-controlled, dose-escalation study. J Am Coll Cardiol 2007; 50(7): 600-6.
[http://dx.doi.org/10.1016/j.jacc.2007.03.059] [PMID: 17692744]
[134]
Cotter G, Dittrich HC, Weatherley BD, et al. The PROTECT pilot study: a randomized, placebo-controlled, dose-finding study of the adenosine A1 receptor antagonist rolofylline in patients with acute heart failure and renal impairment. J Card Fail 2008; 14(8): 631-40.
[http://dx.doi.org/10.1016/j.cardfail.2008.08.010] [PMID: 18926433]
[135]
Massie BM, O’Connor CM, Metra M, et al. Rolofylline, an adenosine A1-receptor antagonist, in acute heart failure. N Engl J Med 2010; 363(15): 1419-28.
[http://dx.doi.org/10.1056/NEJMoa0912613] [PMID: 20925544]
[136]
Teerlink JR, Iragui VJ, Mohr JP, et al. The safety of an adenosine A(1)-receptor antagonist, rolofylline, in patients with acute heart failure and renal impairment: findings from PROTECT. Drug Saf 2012; 35(3): 233-44.
[http://dx.doi.org/10.2165/11594680-000000000-00000] [PMID: 22339573]
[137]
Voors AA, Düngen HD, Senni M, et al. Safety and tolerability of neladenoson bialanate, a novel oral partial adenosine A1 receptor agonist, in patients with chronic heart failure. J Clin Pharmacol 2017; 57(4): 440-51.
[http://dx.doi.org/10.1002/jcph.828] [PMID: 27624622]
[138]
Vallon V, Miracle C, Thomson S. Adenosine and kidney function: potential implications in patients with heart failure. Eur J Heart Fail 2008; 10(2): 176-87.
[http://dx.doi.org/10.1016/j.ejheart.2008.01.010] [PMID: 18242127]
[139]
Vallon V, Osswald H. Adenosine receptors and the kidney. Handb Exp Pharmacol 2009; (193): 443-70.
[http://dx.doi.org/10.1007/978-3-540-89615-9_15]
[140]
Welch WJ. Adenosine, type 1 receptors: role in proximal tubule Na+ reabsorption. Acta Physiol (Oxf) 2015; 213(1): 242-8.
[http://dx.doi.org/10.1111/apha.12413] [PMID: 25345761]
[141]
Menzies RI, Tam FW, Unwin RJ, Bailey MA. Purinergic signaling in kidney disease. Kidney Int 2017; 91(2): 315-23.
[http://dx.doi.org/10.1016/j.kint.2016.08.029] [PMID: 27780585]
[142]
Rieg T, Steigele H, Schnermann J, Richter K, Osswald H, Vallon V. Requirement of intact adenosine A1 receptors for the diuretic and natriuretic action of the methylxanthines theophylline and caffeine. J Pharmacol Exp Ther 2005; 313(1): 403-9.
[http://dx.doi.org/10.1124/jpet.104.080432] [PMID: 15590766]
[143]
Dittrich HC, Gupta DK, Hack TC, Dowling T, Callahan J, Thomson S. The effect of KW-3902, an adenosine A1 receptor antagonist, on renal function and renal plasma flow in ambulatory patients with heart failure and renal impairment. J Card Fail 2007; 13(8): 609-17.
[http://dx.doi.org/10.1016/j.cardfail.2007.08.006] [PMID: 17923351]
[144]
Givertz MM, Massie BM, Fields TK, Pearson LL, Dittrich HC. The effects of KW-3902, an adenosine A1-receptor antagonist,on diuresis and renal function in patients with acute decompensated heart failure and renal impairment or diuretic resistance. J Am Coll Cardiol 2007; 50(16): 1551-60.
[http://dx.doi.org/10.1016/j.jacc.2007.07.019] [PMID: 17936154]
[145]
Vaduganathan M, Butler J, Pitt B, Gheorghiade M. Contemporary drug development in heart failure: call for hemodynamically neutral therapies. Circ Heart Fail 2015; 8(4): 826-31.
[http://dx.doi.org/10.1161/CIRCHEARTFAILURE.115.002271] [PMID: 26199309]
[146]
Sabbah HN, Gupta RC, Kohli S, et al. Chronic therapy with a partial adenosine A1-receptor agonist improves left ventricular function and remodeling in dogs with advanced heart failure. Circ Heart Fail 2013; 6(3): 563-71.
[http://dx.doi.org/10.1161/CIRCHEARTFAILURE.112.000208] [PMID: 23564604]
[147]
Lee HT, Gallos G, Nasr SH, Emala CW. A1 adenosine receptor activation inhibits inflammation, necrosis, and apoptosis after renal ischemia-reperfusion injury in mice. J Am Soc Nephrol 2004; 15(1): 102-11.
[http://dx.doi.org/10.1097/01.ASN.0000102474.68613.AE] [PMID: 14694162]
[148]
Lee HT, Kim M, Jan M, Penn RB, Emala CW. Renal tubule necrosis and apoptosis modulation by A1 adenosine receptor expression. Kidney Int 2007; 71(12): 1249-61.
[http://dx.doi.org/10.1038/sj.ki.5002227] [PMID: 17429344]
[149]
Jang HR, Rabb H. Immune cells in experimental acute kidney injury. Nat Rev Nephrol 2015; 11(2): 88-101.
[http://dx.doi.org/10.1038/nrneph.2014.180] [PMID: 25331787]
[150]
Lee HT, Xu H, Nasr SH, Schnermann J, Emala CW. A1 adenosine receptor knockout mice exhibit increased renal injury following ischemia and reperfusion. Am J Physiol Renal Physiol 2004; 286(2): F298-306.
[http://dx.doi.org/10.1152/ajprenal.00185.2003] [PMID: 14600029]
[151]
Kim JY, Kim M, Ham A, et al. IL-11 is required for A1 adenosine receptor-mediated protection against ischemic AKI. J Am Soc Nephrol 2013; 24(10): 1558-70.
[http://dx.doi.org/10.1681/ASN.2013010114] [PMID: 23813214]
[152]
Joo JD, Kim M, Horst P, et al. Acute and delayed renal protection against renal ischemia and reperfusion injury with A1 adenosine receptors. Am J Physiol Renal Physiol 2007; 293(6): F1847-57.
[http://dx.doi.org/10.1152/ajprenal.00336.2007] [PMID: 17928414]
[153]
Lee HT, Park SW, Kim M, et al. Interleukin-11 protects against renal ischemia and reperfusion injury. Am J Physiol Renal Physiol 2012; 303(8): F1216-24.
[http://dx.doi.org/10.1152/ajprenal.00220.2012] [PMID: 22859402]
[154]
Xiong B, Li M, Xiang S, Han L. A1AR-mediated renal protection against ischemia/reperfusion injury is dependent on HSP27 induction. Int Urol Nephrol 2018; 50(7): 1355-63.
[http://dx.doi.org/10.1007/s11255-018-1797-x] [PMID: 29480441]
[155]
Dunwiddie TV, Worth T. Sedative and anticonvulsant effects of adenosine analogs in mouse and rat. J Pharmacol Exp Ther 1982; 220(1): 70-6.
[PMID: 7053424]
[156]
Dragunow M, Goddard GV, Laverty R. Is adenosine an endogenous anticonvulsant? Epilepsia 1985; 26(5): 480-7.
[http://dx.doi.org/10.1111/j.1528-1157.1985.tb05684.x] [PMID: 4043018]
[157]
Rombo DM, Ribeiro JA, Sebastião AM. Role of Adenosine Receptors in Epileptic Seizures. In: ed The Adenosine Receptors. Springer. 2018; pp. 309-50.
[158]
Amorim BO, Hamani C, Ferreira E, et al. Effects of A1 receptor agonist/antagonist on spontaneous seizures in pilocarpine-induced epileptic rats. Epilepsy Behav 2016; 61: 168-73.
[http://dx.doi.org/10.1016/j.yebeh.2016.05.036] [PMID: 27371881]
[159]
Klaft ZJ, Hollnagel JO, Salar S, et al. Adenosine A1 receptor-mediated suppression of carbamazepine-resistant seizure-like events in human neocortical slices. Epilepsia 2016; 57(5): 746-56.
[http://dx.doi.org/10.1111/epi.13360] [PMID: 27087530]
[160]
Wu L-G, Saggau P. Adenosine inhibits evoked synaptic transmission primarily by reducing presynaptic calcium influx in area CA1 of hippocampus. Neuron 1994; 12(5): 1139-48.
[http://dx.doi.org/10.1016/0896-6273(94)90321-2] [PMID: 8185949]
[161]
Gundlfinger A, Bischofberger J, Johenning FW, Torvinen M, Schmitz D, Breustedt J. Adenosine modulates transmission at the hippocampal mossy fibre synapse via direct inhibition of presynaptic calcium channels. J Physiol 2007; 582(Pt 1): 263-77.
[http://dx.doi.org/10.1113/jphysiol.2007.132613] [PMID: 17478533]
[162]
Lusardi TA, Akula KK, Coffman SQ, Ruskin DN, Masino SA, Boison D. Ketogenic diet prevents epileptogenesis and disease progression in adult mice and rats. Neuropharmacology 2015; 99: 500-9.
[http://dx.doi.org/10.1016/j.neuropharm.2015.08.007] [PMID: 26256422]
[163]
Masino SA, Li T, Theofilas P, et al. A ketogenic diet suppresses seizures in mice through adenosine A1 receptors. J Clin Invest 2011; 121(7): 2679-83.
[http://dx.doi.org/10.1172/JCI57813] [PMID: 21701065]
[164]
Schindler CW, Karcz-Kubicha M, Thorndike EB, et al. Role of central and peripheral adenosine receptors in the cardiovascular responses to intraperitoneal injections of adenosine A1 and A2A subtype receptor agonists. Br J Pharmacol 2005; 144(5): 642-50.
[http://dx.doi.org/10.1038/sj.bjp.0706043] [PMID: 15678095]
[165]
Adami M, Bertorelli R, Ferri N, Foddi MC, Ongini E. Effects of repeated administration of selective adenosine A1 and A2A receptor agonists on pentylenetetrazole-induced convulsions in the rat. Eur J Pharmacol 1995; 294(2-3): 383-9.
[http://dx.doi.org/10.1016/0014-2999(95)00557-9] [PMID: 8750698]
[166]
Burnstock G. Introduction to purinergic signalling in the brain. Adv Exp Med Biol 2013; 986: 1-12.
[http://dx.doi.org/10.1007/978-94-007-4719-7_1]
[167]
Stone TW, Ceruti S, Abbracchio MP. Adenosine receptors and neurological disease: neuroprotection and neurodegeneration. Handb Exp Pharmacol 2009; (193): 535-87.
[http://dx.doi.org/10.1007/978-3-540-89615-9_17]
[168]
Ferrante A, De Simone R, Ajmone-Cat MA, Minghetti L, Popoli P. Adenosine receptors and neuroinflammation. Receptors 2018; 34: 217-37.
[http://dx.doi.org/10.1007/978-3-319-90808-3_9]
[169]
Florán B, Barajas C, Florán L, Erlij D, Aceves J. Adenosine A1 receptors control dopamine D1-dependent [(3)H]GABA release in slices of substantia nigra pars reticulata and motor behavior in the rat. Neuroscience 2002; 115(3): 743-51.
[http://dx.doi.org/10.1016/S0306-4522(02)00479-7] [PMID: 12435413]
[170]
Franco R, Lluis C, Canela EI, et al. Receptor-receptor interactions involving adenosine A1 or dopamine D1 receptors and accessory proteins. J Neural Transm (Vienna) 2007; 114(1): 93-104.
[http://dx.doi.org/10.1007/s00702-006-0566-7] [PMID: 17024327]
[171]
Gomes CV, Kaster MP, Tomé AR, Agostinho PM, Cunha RA. Adenosine receptors and brain diseases: neuroprotection and neurodegeneration. Biochim Biophys Acta 2011; 1808(5): 1380-99.
[http://dx.doi.org/10.1016/j.bbamem.2010.12.001] [PMID: 21145878]
[172]
Mango D, Bonito-Oliva A, Ledonne A, et al. Adenosine A1 receptor stimulation reduces D1 receptor-mediated GABAergic transmission from striato-nigral terminals and attenuates l-DOPA-induced dyskinesia in dopamine-denervated mice. Exp Neurol 2014; 261: 733-43.
[http://dx.doi.org/10.1016/j.expneurol.2014.08.022] [PMID: 25173217]
[173]
Cunha RA. How does adenosine control neuronal dysfunction and neurodegeneration? J Neurochem 2016; 139(6): 1019-55.
[http://dx.doi.org/10.1111/jnc.13724] [PMID: 27365148]
[174]
Jaberi E, Rohani M, Shahidi GA, et al. Mutation in ADORA1 identified as likely cause of early-onset parkinsonism and cognitive dysfunction. Mov Disord 2016; 31(7): 1004-11.
[http://dx.doi.org/10.1002/mds.26627] [PMID: 27134041]
[175]
Ross GW, Abbott RD, Petrovitch H, et al. Association of coffee and caffeine intake with the risk of Parkinson disease. JAMA 2000; 283(20): 2674-9.
[http://dx.doi.org/10.1001/jama.283.20.2674] [PMID: 10819950]
[176]
Palacios N, Gao X, McCullough ML, et al. Caffeine and risk of Parkinson’s disease in a large cohort of men and women. Mov Disord 2012; 27(10): 1276-82.
[http://dx.doi.org/10.1002/mds.25076] [PMID: 22927157]
[177]
Blum D, Chern EC, Domenici MR, et al. What Is the Role of Adenosine Tone and Adenosine Receptors in Huntington’s Disease? Receptors 2018; 34: 281-308.
[http://dx.doi.org/10.1007/978-3-319-90808-3_12]
[178]
Zuccato C, Cattaneo E. Huntington’s disease. Neutrophic Factors 2014; pp. 357-409.
[http://dx.doi.org/10.1007/978-3-642-45106-5_14]
[179]
Ferrante A, Martire A, Pepponi R, et al. Expression, pharmacology and functional activity of adenosine A1 receptors in genetic models of Huntington’s disease. Neurobiol Dis 2014; 71: 193-204.
[http://dx.doi.org/10.1016/j.nbd.2014.08.013] [PMID: 25132555]
[180]
Alfinito PD, Wang S-P, Manzino L, Rijhsinghani S, Zeevalk GD, Sonsalla PK. Adenosinergic protection of dopaminergic and GABAergic neurons against mitochondrial inhibition through receptors located in the substantia nigra and striatum, respectively. J Neurosci 2003; 23(34): 10982-7.
[http://dx.doi.org/10.1523/JNEUROSCI.23-34-10982.2003] [PMID: 14645494]
[181]
Blum D, Gall D, Galas M-C, d’Alcantara P, Bantubungi K, Schiffmann SN. The adenosine A1 receptor agonist adenosine amine congener exerts a neuroprotective effect against the development of striatal lesions and motor impairments in the 3-nitropropionic acid model of neurotoxicity. J Neurosci 2002; 22(20): 9122-33.
[http://dx.doi.org/10.1523/JNEUROSCI.22-20-09122.2002] [PMID: 12388620]
[182]
Synowitz M, Glass R, Färber K, et al. A1 adenosine receptors in microglia control glioblastoma-host interaction. Cancer Res 2006; 66(17): 8550-7.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-0365] [PMID: 16951167]
[183]
Rivera-Oliver M, Díaz-Ríos M. Using caffeine and other adenosine receptor antagonists and agonists as therapeutic tools against neurodegenerative diseases: a review. Life Sci 2014; 101(1-2): 1-9.
[http://dx.doi.org/10.1016/j.lfs.2014.01.083] [PMID: 24530739]
[184]
Sawynok J. Adenosine receptor targets for pain. Neuroscience 2016; 338: 1-18.
[http://dx.doi.org/10.1016/j.neuroscience.2015.10.031] [PMID: 26500181]
[185]
Maione S, de Novellis V, Cappellacci L, et al. The antinociceptive effect of 2-chloro-2′-C-methyl-N6-cyclopentyladenosine (2′-Me-CCPA), a highly selective adenosine A1 receptor agonist, in the rat. Pain 2007; 131(3): 281-92.
[http://dx.doi.org/10.1016/j.pain.2007.01.013] [PMID: 17317007]
[186]
Johansson B, Halldner L, Dunwiddie TV, et al. Hyperalgesia, anxiety, and decreased hypoxic neuroprotection in mice lacking the adenosine A1 receptor. Proc Natl Acad Sci USA 2001; 98(16): 9407-12.
[http://dx.doi.org/10.1073/pnas.161292398] [PMID: 11470917]
[187]
Romagnoli R, Baraldi PG, Tabrizi MA, Gessi S, Borea PA, Merighi S. Allosteric enhancers of A1 adenosine receptors: state of the art and new horizons for drug development. Curr Med Chem 2010; 17(30): 3488-502.
[http://dx.doi.org/10.2174/092986710792927831] [PMID: 20738250]
[188]
Gao Z-G, Kim S-K, Ijzerman AP, Jacobson KA. Allosteric modulation of the adenosine family of receptors. Mini Rev Med Chem 2005; 5(6): 545-53.
[http://dx.doi.org/10.2174/1389557054023242] [PMID: 15974932]
[189]
Baraldi PG, Iaconinoto MA, Moorman AR, et al. Allosteric enhancers for A1 adenosine receptor. Mini Rev Med Chem 2007; 7(6): 559-69.
[http://dx.doi.org/10.2174/138955707780859459] [PMID: 17584155]
[190]
Vincenzi F, Ravani A, Pasquini S, et al. Positive allosteric modulation of A1 adenosine receptors as a novel and promising therapeutic strategy for anxiety. Neuropharmacology 2016; 111: 283-92.
[http://dx.doi.org/10.1016/j.neuropharm.2016.09.015] [PMID: 27639989]
[191]
Vincenzi F, Borea PA, Varani K. Anxiolytic properties of A1 adenosine receptor PAMs. Oncotarget 2017; 8(5): 7216-7.
[http://dx.doi.org/10.18632/oncotarget.13802] [PMID: 28055953]
[192]
Goldman N, Chen M, Fujita T, et al. Adenosine A1 receptors mediate local anti-nociceptive effects of acupuncture. Nat Neurosci 2010; 13(7): 883-8.
[http://dx.doi.org/10.1038/nn.2562] [PMID: 20512135]
[193]
Fujita T, Feng C, Takano T. Presence of caffeine reversibly interferes with efficacy of acupuncture-induced analgesia. Sci Rep 2017; 7(1): 3397.
[http://dx.doi.org/10.1038/s41598-017-03542-x] [PMID: 28611421]
[194]
Yen L-T, Hsieh C-L, Hsu H-C, Lin Y-W. Targeting ASIC3 for relieving mice fibromyalgia pain: roles of electroacupuncture, opioid, and adenosine. Sci Rep 2017; 7: 46663.
[http://dx.doi.org/10.1038/srep46663] [PMID: 28440280]
[195]
McNamara N, Gallup M, Khong A, et al. Adenosine up-regulation of the mucin gene, MUC2, in asthma. FASEB J 2004; 18(14): 1770-2.
[http://dx.doi.org/10.1096/fj.04-1964fje] [PMID: 15345696]
[196]
Ponnoth DS, Nadeem A, Tilley S, Mustafa SJ. Involvement of A1 adenosine receptors in altered vascular responses and inflammation in an allergic mouse model of asthma. Am J Physiol Heart Circ Physiol 2010; 299(1): H81-7.
[http://dx.doi.org/10.1152/ajpheart.01090.2009] [PMID: 20400685]
[197]
Pelleg A, Polosa R. Adenosine receptors in the lungs. Adenosine Receptors 2018; pp. 461-70.
[http://dx.doi.org/10.1007/978-3-319-90808-3_18]
[198]
Brown RA, Spina D, Page CP. Adenosine receptors and asthma. Br J Pharmacol 2008; 153(Suppl. 1): S446-56.
[http://dx.doi.org/10.1038/bjp.2008.22] [PMID: 18311158]
[199]
Russo C, Arcidiacono G, Polosa R. Adenosine receptors: promising targets for the development of novel therapeutics and diagnostics for asthma. Fundam Clin Pharmacol 2006; 20(1): 9-19.
[http://dx.doi.org/10.1111/j.1472-8206.2005.00388.x] [PMID: 16448391]
[200]
Brown RA, Clarke GW, Ledbetter CL, et al. Elevated expression of adenosine A1 receptor in bronchial biopsy specimens from asthmatic subjects. Eur Respir J 2008; 31(2): 311-9.
[http://dx.doi.org/10.1183/09031936.00003707] [PMID: 17959644]
[201]
Zhou Y, Schneider DJ, Blackburn MR. Adenosine signaling and the regulation of chronic lung disease. Pharmacol Ther 2009; 123(1): 105-16.
[http://dx.doi.org/10.1016/j.pharmthera.2009.04.003] [PMID: 19426761]
[202]
Caruso M, Alamo A, Crisafulli E, Raciti C, Fisichella A, Polosa R. Adenosine signaling pathways as potential therapeutic targets in respiratory disease. Expert Opin Ther Targets 2013; 17(7): 761-72.
[http://dx.doi.org/10.1517/14728222.2013.795220] [PMID: 23642090]
[203]
Keir S, Boswell-Smith V, Spina D, Page C. Mechanism of adenosine-induced airways obstruction in allergic guinea pigs. Br J Pharmacol 2006; 147(7): 720-8.
[http://dx.doi.org/10.1038/sj.bjp.0706663] [PMID: 16432507]
[204]
Burnstock G. Purinergic signalling in the gastrointestinal tract and related organs in health and disease. Purinergic Signal 2014; 10(1): 3-50.
[http://dx.doi.org/10.1007/s11302-013-9397-9] [PMID: 24307520]
[205]
Antonioli L, Fornai M, Colucci R, et al. Regulation of enteric functions by adenosine: pathophysiological and pharmacological implications. Pharmacol Ther 2008; 120(3): 233-53.
[http://dx.doi.org/10.1016/j.pharmthera.2008.08.010] [PMID: 18848843]
[206]
Suzuki M, Tomaru A, Kishibayashi N, Karasawa A. Effects of the adenosine A1-receptor antagonist on defecation, small intestinal propulsion and gastric emptying in rats. Jpn J Pharmacol 1995; 68(1): 119-23.
[http://dx.doi.org/10.1254/jjp.68.119] [PMID: 7494374]
[207]
Kadowaki M, Nagakura Y, Tokita K, Hanaoka K, Tomoi M. Adenosine A1 receptor blockade reverses experimental postoperative ileus in rat colon. Eur J Pharmacol 2003; 458(1-2): 197-200.
[http://dx.doi.org/10.1016/S0014-2999(02)02766-8] [PMID: 12498926]
[208]
Bornstein JC. Purinergic mechanisms in the control of gastrointestinal motility. Purinergic Signal 2008; 4(3): 197-212.
[http://dx.doi.org/10.1007/s11302-007-9081-z] [PMID: 18368521]
[209]
Lambertucci C, Marucci G, Dal Ben D, et al. New potent and selective A1 adenosine receptor antagonists as potential tools for the treatment of gastrointestinal diseases. Eur J Med Chem 2018; 151: 199-213.
[http://dx.doi.org/10.1016/j.ejmech.2018.03.067] [PMID: 29614417]
[210]
Haskó G, Szabó C, Németh ZH, Kvetan V, Pastores SM, Vizi ES. Adenosine receptor agonists differentially regulate IL-10, TNF-alpha, and nitric oxide production in RAW 264.7 macrophages and in endotoxemic mice. J Immunol 1996; 157(10): 4634-40.
[PMID: 8906843]
[211]
Tsutsui S, Schnermann J, Noorbakhsh F, et al. A1 adenosine receptor upregulation and activation attenuates neuroinflammation and demyelination in a model of multiple sclerosis. J Neurosci 2004; 24(6): 1521-9.
[http://dx.doi.org/10.1523/JNEUROSCI.4271-03.2004] [PMID: 14960625]
[212]
Ghanem E, Lövdahl C, Daré E, et al. Luminal adenosine stimulates chloride secretion through A1 receptor in mouse jejunum. Am J Physiol Gastrointest Liver Physiol 2005; 288(5): G972-7.
[http://dx.doi.org/10.1152/ajpgi.00346.2004] [PMID: 15637180]
[213]
Antonioli L, Fornai M, Colucci R, et al. Differential recruitment of high affinity A1 and A2A adenosine receptors in the control of colonic neuromuscular function in experimental colitis. Eur J Pharmacol 2011; 650(2-3): 639-49.
[http://dx.doi.org/10.1016/j.ejphar.2010.10.041] [PMID: 21034735]
[214]
Bahreyni A, Samani SS, Khazaei M, Ryzhikov M, Avan A, Hassanian SM. Therapeutic potentials of adenosine receptors agonists and antagonists in colitis; Current status and perspectives. J Cell Physiol 2018; 233(4): 2733-40.
[http://dx.doi.org/10.1002/jcp.26073] [PMID: 28661026]
[215]
Zhang M, Budak MT, Lu W, et al. Identification of the A3 adenosine receptor in rat retinal ganglion cells. Mol Vis 2006; 12: 937-48.
[PMID: 16943766]
[216]
Wan WJ, Cui DM, Yang X, et al. Expression of adenosine receptors in human retinal pigment epithelium cells in vitro. Chin Med J (Engl) 2011; 124(8): 1139-44.
[PMID: 21542986]
[217]
Jacobson KA, Civan MM. Ocular purine receptors as drug targets in the eye. J Ocul Pharmacol Ther 2016; 32(8): 534-47.
[http://dx.doi.org/10.1089/jop.2016.0090] [PMID: 27574786]
[218]
Zhang S, Li H, Li B, et al. Adenosine A1 receptors selectively modulate oxygen-induced retinopathy at the hyperoxic and hypoxic phases by distinct cellular mechanisms. Invest Ophthalmol Vis Sci 2015; 56(13): 8108-19.
[http://dx.doi.org/10.1167/iovs.15-17202] [PMID: 26720463]
[219]
Brito R, Pereira MR, Paes-de-Carvalho R, Calaza Kda C. Expression of A1 adenosine receptors in the developing avian retina: in vivo modulation by A(2A) receptors and endogenous adenosine. J Neurochem 2012; 123(2): 239-49.
[http://dx.doi.org/10.1111/j.1471-4159.2012.07909.x] [PMID: 22862679]
[220]
Crosson CE. Intraocular pressure responses to the adenosine agonist cyclohexyladenosine: evidence for a dual mechanism of action. Invest Ophthalmol Vis Sci 2001; 42(8): 1837-40.
[PMID: 11431451]
[221]
Avila MY, Stone RA, Civan MMA. (1)-, A(2A)- and A(3)-subtype adenosine receptors modulate intraocular pressure in the mouse. Br J Pharmacol 2001; 134(2): 241-5.
[http://dx.doi.org/10.1038/sj.bjp.0704267] [PMID: 11564641]
[222]
Husain S, Shearer TW, Crosson CE. Mechanisms linking adenosine A1 receptors and extracellular signal-regulated kinase 1/2 activation in human trabecular meshwork cells. J Pharmacol Exp Ther 2007; 320(1): 258-65.
[http://dx.doi.org/10.1124/jpet.106.110981] [PMID: 17015637]
[223]
Li A, Leung CT, Peterson-Yantorno K, Stamer WD, Mitchell CH, Civan MM. Mechanisms of ATP release by human trabecular meshwork cells, the enabling step in purinergic regulation of aqueous humor outflow. J Cell Physiol 2012; 227(1): 172-82.
[http://dx.doi.org/10.1002/jcp.22715] [PMID: 21381023]
[224]
Zhong Y, Yang Z, Huang W-C, Luo X. Adenosine, adenosine receptors and glaucoma: an updated overview. Biochim Biophys Acta 2013; 1830: 2882-90.
[http://dx.doi.org/10.1016/j.bbagen.2013.01.005]
[225]
Peleli M, Carlstrom M. Adenosine signaling in diabetes mellitus and associated cardiovascular and renal complications. Mol Aspects Med 2017; 55: 62-74.
[http://dx.doi.org/10.1016/j.mam.2016.12.001] [PMID: 28089906]
[226]
Tuomi T, Santoro N, Caprio S, Cai M, Weng J, Groop L. The many faces of diabetes: a disease with increasing heterogeneity. Lancet 2014; 383(9922): 1084-94.
[http://dx.doi.org/10.1016/S0140-6736(13)62219-9] [PMID: 24315621]
[227]
Antonioli L, Blandizzi C, Csóka B, Pacher P, Haskó G. Adenosine signalling in diabetes mellitus-pathophysiology and therapeutic considerations. Nat Rev Endocrinol 2015; 11(4): 228-41.
[http://dx.doi.org/10.1038/nrendo.2015.10] [PMID: 25687993]
[228]
Staehr PM, Dhalla AK, Zack J, et al. Reduction of free fatty acids, safety, and pharmacokinetics of oral GS-9667, an A(1) adenosine receptor partial agonist. J Clin Pharmacol 2013; 53(4): 385-92.
[http://dx.doi.org/10.1002/jcph.9] [PMID: 23427000]
[229]
Yang T, Gao X, Sandberg M, et al. Abrogation of adenosine A1 receptor signalling improves metabolic regulation in mice by modulating oxidative stress and inflammatory responses. Diabetologia 2015; 58(7): 1610-20.
[http://dx.doi.org/10.1007/s00125-015-3570-3] [PMID: 25835725]
[230]
Peng Z, Borea PA, Varani K, et al. Adenosine signaling contributes to ethanol-induced fatty liver in mice. J Clin Invest 2009; 119(3): 582-94.
[http://dx.doi.org/10.1172/JCI37409] [PMID: 19221436]
[231]
Xu B, Berkich DA, Crist GH, LaNoue KF. A1 adenosine receptor antagonism improves glucose tolerance in Zucker rats. Am J Physiol 1998; 274(2): E271-9.
[PMID: 9486158]
[232]
Sek K, Mølck C, Stewart GD, Kats L, Darcy PK, Beavis PA. Targeting adenosine receptor signaling in cancer immunotherapy. Int J Mol Sci 2018; 19(12): 3837.
[http://dx.doi.org/10.3390/ijms19123837] [PMID: 30513816]
[233]
Kazemi MH, Raoofi Mohseni S, Hojjat-Farsangi M, et al. Adenosine and adenosine receptors in the immunopathogenesis and treatment of cancer. J Cell Physiol 2018; 233(3): 2032-57.
[http://dx.doi.org/10.1002/jcp.25873] [PMID: 28233320]
[234]
Gessi S, Merighi S, Sacchetto V, Simioni C, Borea PA. Adenosine receptors and cancer. Biochimica et Biophysica Acta (BBA)-. Biomembranes 2011; 1808: 1400-12.
[http://dx.doi.org/10.1016/j.bbamem.2010.09.020]
[235]
Zhou Y, Tong L, Chu X, et al. The adenosine A1 receptor antagonist DPCPX inhibits tumor progression via the ERK/JNK pathway in renal cell carcinoma. Cell Physiol Biochem 2017; 43(2): 733-42.
[http://dx.doi.org/10.1159/000481557] [PMID: 28950257]
[236]
Lin Z, Yin P, Reierstad S, et al. Adenosine A1 receptor, a target and regulator of estrogen receptoralpha action, mediates the proliferative effects of estradiol in breast cancer. Oncogene 2010; 29(8): 1114-22.
[http://dx.doi.org/10.1038/onc.2009.409] [PMID: 19935720]
[237]
Mirza A, Basso A, Black S, et al. RNA interference targeting of A1 receptor-overexpressing breast carcinoma cells leads to diminished rates of cell proliferation and induction of apoptosis. Cancer Biol Ther 2005; 4(12): 1355-60.
[http://dx.doi.org/10.4161/cbt.4.12.2196] [PMID: 16294023]
[238]
Woodhouse EC, Amanatullah DF, Schetz JA, Liotta LA, Stracke ML, Clair T. Adenosine receptor mediates motility in human melanoma cells. Biochem Biophys Res Commun 1998; 246(3): 888-94.
[http://dx.doi.org/10.1006/bbrc.1998.8714] [PMID: 9618307]
[239]
Hosseinzadeh H, Jaafari MR, Shamsara J. Selective inhibitory effect of adenosine A1 receptor agonists on the proliferation of human tumor cell lines. Iran Biomed J 2008; 12(4): 203-8.
[PMID: 19079533]
[240]
D’Ancona S, Ragazzi E, Fassina G, Mazzo M, Gusella M, Berti T. Effect of dipyridamole, 5′-(N-ethyl)-carboxamidoadenosine and 1,3-dipropyl-8-(2-amino-4-chlorophenyl)-xanthine on LOVO cell growth and morphology. Anticancer Res 1994; 14(1A): 93-7.
[PMID: 8166462]
[241]
Shaban M, Smith RA, Stone TW. Purine suppression of proliferation of Sertoli-like TM4 cells in culture. Cell Prolif 1995; 28(12): 673-82.
[http://dx.doi.org/10.1111/j.1365-2184.1995.tb00053.x] [PMID: 8634374]
[242]
Daniele S, Zappelli E, Natali L, Martini C, Trincavelli ML. Modulation of A1 and A2B adenosine receptor activity: a new strategy to sensitise glioblastoma stem cells to chemotherapy. Cell Death Dis 2014; 5e1539
[http://dx.doi.org/10.1038/cddis.2014.487] [PMID: 25429616]
[243]
Saito M, Yaguchi T, Yasuda Y, Nakano T, Nishizaki T. Adenosine suppresses CW2 human colonic cancer growth by inducing apoptosis via A(1) adenosine receptors. Cancer Lett 2010; 290(2): 211-5.
[http://dx.doi.org/10.1016/j.canlet.2009.09.011] [PMID: 19822392]
[244]
Sai K, Yang D, Yamamoto H, et al. A(1) adenosine receptor signal and AMPK involving caspase-9/-3 activation are responsible for adenosine-induced RCR-1 astrocytoma cell death. Neurotoxicology 2006; 27(4): 458-67.
[http://dx.doi.org/10.1016/j.neuro.2005.12.008] [PMID: 16469385]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 25
ISSUE: 25
Year: 2019
Page: [2697 - 2715]
Pages: 19
DOI: 10.2174/1381612825666190716100509
Price: $58

Article Metrics

PDF: 29
HTML: 6
EPUB: 1
PRC: 1