Discovery and Development of Anti-HIV Therapeutic Agents: Progress Towards Improved HIV Medication

Author(s): Kenji Maeda*, Debananda Das, Takuya Kobayakawa, Hirokazu Tamamura, Hiroaki Takeuchi*.

Journal Name: Current Topics in Medicinal Chemistry

Volume 19 , Issue 18 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

The history of the human immunodeficiency virus (HIV)/AIDS therapy, which spans over 30 years, is one of the most dramatic stories of science and medicine leading to the treatment of a disease. Since the advent of the first AIDS drug, AZT or zidovudine, a number of agents acting on different drug targets, such as HIV enzymes (e.g. reverse transcriptase, protease, and integrase) and host cell factors critical for HIV infection (e.g. CD4 and CCR5), have been added to our armamentarium to combat HIV/AIDS. In this review article, we first discuss the history of the development of anti-HIV drugs, during which several problems such as drug-induced side effects and the emergence of drug-resistant viruses became apparent and had to be overcome. Nowadays, the success of Combination Antiretroviral Therapy (cART), combined with recently-developed powerful but nonetheless less toxic drugs has transformed HIV/AIDS from an inevitably fatal disease into a manageable chronic infection. However, even with such potent cART, it is impossible to eradicate HIV because none of the currently available HIV drugs are effective in eliminating occult "dormant" HIV cell reservoirs. A number of novel unique treatment approaches that should drastically improve the quality of life (QOL) of patients or might actually be able to eliminate HIV altogether have also been discussed later in the review.

Keywords: HIV, AIDS, Combination antiretroviral therapy, Reverse transcriptase inhibitors, Protease inhibitors, Integrase inhibitors.

[1]
Barré-Sinoussi, F.; Chermann, J.C.; Rey, F.; Nugeyre, M.T.; Chamaret, S.; Gruest, J.; Dauguet, C.; Axler-Blin, C.; Vézinet-Brun, F.; Rouzioux, C.; Rozenbaum, W.; Montagnier, L. Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). Science, 1983, 220(4599), 868-871.
[http://dx.doi.org/10.1126/science.6189183] [PMID: 6189183]
[2]
Gallo, R.C.; Sarin, P.S.; Gelmann, E.P.; Robert-Guroff, M.; Richardson, E.; Kalyanaraman, V.S.; Mann, D.; Sidhu, G.D.; Stahl, R.E.; Zolla-Pazner, S.; Leibowitch, J.; Popovic, M. Isolation of human T-cell leukemia virus in acquired immune deficiency syndrome (AIDS). Science, 1983, 220(4599), 865-867.
[http://dx.doi.org/10.1126/science.6601823] [PMID: 6601823]
[3]
Mitsuya, H.; Weinhold, K.J.; Furman, P.A.; St Clair, M.H.; Lehrman, S.N.; Gallo, R.C.; Bolognesi, D.; Barry, D.W.; Broder, S. 3′-Azido-3′-deoxythymidine (BW A509U): An antiviral agent that inhibits the infectivity and cytopathic effect of human T-lymphotropic virus type III/lymphadenopathy-associated virus in vitro. Proc. Natl. Acad. Sci. USA, 1985, 82(20), 7096-7100.
[http://dx.doi.org/10.1073/pnas.82.20.7096] [PMID: 2413459]
[4]
Yarchoan, R.; Klecker, R.W.; Weinhold, K.J.; Markham, P.D.; Lyerly, H.K.; Durack, D.T.; Gelmann, E.; Lehrman, S.N.; Blum, R.M.; Barry, D.W. Administration of 3′-azido-3′-deoxythymidine, an inhibitor of HTLV-III/LAV replication, to patients with AIDS or AIDS-related complex. Lancet, 1986, 1(8481), 575-580.
[http://dx.doi.org/10.1016/S0140-6736(86)92808-4] [PMID: 2869302]
[5]
Graves, M.C.; Lim, J.J.; Heimer, E.P.; Kramer, R.A. An 11-kDa form of human immunodeficiency virus protease expressed in Escherichia coli is sufficient for enzymatic activity. Proc. Natl. Acad. Sci. USA, 1988, 85(8), 2449-2453.
[http://dx.doi.org/10.1073/pnas.85.8.2449] [PMID: 3282230]
[6]
Farmerie, W.G.; Loeb, D.D.; Casavant, N.C.; Hutchison, C.A., III; Edgell, M.H.; Swanstrom, R. Expression and processing of the AIDS virus reverse transcriptase in Escherichia coli. Science, 1987, 236(4799), 305-308.
[http://dx.doi.org/10.1126/science.2436298] [PMID: 2436298]
[7]
Autran, B.; Carcelain, G.; Li, T.S.; Blanc, C.; Mathez, D.; Tubiana, R.; Katlama, C.; Debré, P.; Leibowitch, J. Positive effects of combined antiretroviral therapy on CD4+ T cell homeostasis and function in advanced HIV disease. Science, 1997, 277(5322), 112-116.
[http://dx.doi.org/10.1126/science.277.5322.112] [PMID: 9204894]
[8]
Komanduri, K.V.; Viswanathan, M.N.; Wieder, E.D.; Schmidt, D.K.; Bredt, B.M.; Jacobson, M.A.; McCune, J.M. Restoration of cytomegalovirus-specific CD4+ T-lymphocyte responses after ganciclovir and highly active antiretroviral therapy in individuals infected with HIV-1. Nat. Med., 1998, 4(8), 953-956.
[http://dx.doi.org/10.1038/nm0898-953] [PMID: 9701250]
[9]
Lederman, M.M.; Connick, E.; Landay, A.; Kuritzkes, D.R.; Spritzler, J.; St Clair, M.; Kotzin, B.L.; Fox, L.; Chiozzi, M.H.; Leonard, J.M.; Rousseau, F.; Wade, M.; Roe, J.D.; Martinez, A.; Kessler, H. Immunologic responses associated with 12 weeks of combination antiretroviral therapy consisting of zidovudine, lamivudine, and ritonavir: results of AIDS clinical trials group protocol 315. J. Infect. Dis., 1998, 178(1), 70-79.
[http://dx.doi.org/10.1086/515591] [PMID: 9652425]
[10]
Bhaskaran, K.; Hamouda, O.; Sannes, M.; Boufassa, F.; Johnson, A.M.; Lambert, P.C.; Porter, K.; Collaboration, C. Changes in the risk of death after HIV seroconversion compared with mortality in the general population. JAMA, 2008, 300(1), 51-59.
[http://dx.doi.org/10.1001/jama.300.1.51] [PMID: 18594040]
[11]
Walensky, R.P.; Paltiel, A.D.; Losina, E.; Mercincavage, L.M.; Schackman, B.R.; Sax, P.E.; Weinstein, M.C.; Freedberg, K.A. The survival benefits of AIDS treatment in the United States. J. Infect. Dis., 2006, 194(1), 11-19.
[http://dx.doi.org/10.1086/505147] [PMID: 16741877]
[12]
Gupta, R.; Hill, A.; Sawyer, A.W.; Pillay, D. Emergence of drug resistance in HIV type 1-infected patients after receipt of first-line highly active antiretroviral therapy: A systematic review of clinical trials. Clin. Infect. Dis., 2008, 47(5), 712-722.
[http://dx.doi.org/10.1086/590943] [PMID: 18662137]
[13]
Koh, Y.; Nakata, H.; Maeda, K.; Ogata, H.; Bilcer, G.; Devasamudram, T.; Kincaid, J.F.; Boross, P.; Wang, Y.F.; Tie, Y.; Volarath, P.; Gaddis, L.; Harrison, R.W.; Weber, I.T.; Ghosh, A.K.; Mitsuya, H. Novel bis-tetrahydrofuranylurethane-containing nonpeptidic protease inhibitor (PI) UIC-94017 (TMC114) with potent activity against multi-PI-resistant human immunodeficiency virus in vitro. Antimicrob. Agents Chemother., 2003, 47(10), 3123-3129.
[http://dx.doi.org/10.1128/AAC.47.10.3123-3129.2003] [PMID: 14506019]
[14]
Ghosh, A.K.; Osswald, H.L.; Prato, G. Recent progress in the development of HIV-1 Protease inhibitors for the treatment of HIV/AIDS. J. Med. Chem., 2016, 59(11), 5172-5208.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01697] [PMID: 26799988]
[15]
Hazuda, D.J.; Felock, P.; Witmer, M.; Wolfe, A.; Stillmock, K.; Grobler, J.A.; Espeseth, A.; Gabryelski, L.; Schleif, W.; Blau, C.; Miller, M.D. Inhibitors of strand transfer that prevent integration and inhibit HIV-1 replication in cells. Science, 2000, 287(5453), 646-650.
[http://dx.doi.org/10.1126/science.287.5453.646] [PMID: 10649997]
[16]
Min, S.; Song, I.; Borland, J.; Chen, S.; Lou, Y.; Fujiwara, T.; Piscitelli, S.C. Pharmacokinetics and safety of S/GSK1349572, a next-generation HIV integrase inhibitor, in healthy volunteers. Antimicrob. Agents Chemother., 2010, 54(1), 254-258.
[http://dx.doi.org/10.1128/AAC.00842-09] [PMID: 19884365]
[17]
Baba, M.; Nishimura, O.; Kanzaki, N.; Okamoto, M.; Sawada, H.; Iizawa, Y.; Shiraishi, M.; Aramaki, Y.; Okonogi, K.; Ogawa, Y.; Meguro, K.; Fujino, M. A small-molecule, nonpeptide CCR5 antagonist with highly potent and selective anti-HIV-1 activity. Proc. Natl. Acad. Sci. USA, 1999, 96(10), 5698-5703.
[http://dx.doi.org/10.1073/pnas.96.10.5698] [PMID: 10318947]
[18]
Dorr, P.; Westby, M.; Dobbs, S.; Griffin, P.; Irvine, B.; Macartney, M.; Mori, J.; Rickett, G.; Smith-Burchnell, C.; Napier, C.; Webster, R.; Armour, D.; Price, D.; Stammen, B.; Wood, A.; Perros, M. Maraviroc (UK-427,857), a potent, orally bioavailable, and selective small-molecule inhibitor of chemokine receptor CCR5 with broad-spectrum anti-human immunodeficiency virus type 1 activity. Antimicrob. Agents Chemother., 2005, 49(11), 4721-4732.
[http://dx.doi.org/10.1128/AAC.49.11.4721-4732.2005] [PMID: 16251317]
[19]
World Health Organization. (Accessed at http://www.who.int/gho/hiv/en/
[20]
Piot, P.; Abdool Karim, S.S.; Hecht, R.; Legido-Quigley, H.; Buse, K.; Stover, J.; Resch, S.; Ryckman, T.; Møgedal, S.; Dybul, M.; Goosby, E.; Watts, C.; Kilonzo, N.; McManus, J.; Sidibé, M. Defeating AIDS-advancing global health. Lancet, 2015, 386(9989), 171-218.
[http://dx.doi.org/10.1016/S0140-6736(15)60658-4] [PMID: 26117719]
[21]
UNAIDS. (Accessed at: http://www.unaids.org/en
[22]
UNAIDS. 90-90-90: An ambitious treatment target to help end the aids epidemic. (Accessed at: http://www.unaids.org/en/resources/909090).
[23]
Shaik, M.M.; Peng, H.; Lu, J.; Rits-Volloch, S.; Xu, C.; Liao, M.; Chen, B. Structural basis of coreceptor recognition by HIV-1 envelope spike. Nature, 2019, 565(7739), 318-323.
[http://dx.doi.org/10.1038/s41586-018-0804-9] [PMID: 30542158]
[24]
Wu, L.; Gerard, N.P.; Wyatt, R.; Choe, H.; Parolin, C.; Ruffing, N.; Borsetti, A.; Cardoso, A.A.; Desjardin, E.; Newman, W.; Gerard, C.; Sodroski, J. CD4-induced interaction of primary HIV-1 gp120 glycoproteins with the chemokine receptor CCR-5. Nature, 1996, 384(6605), 179-183.
[http://dx.doi.org/10.1038/384179a0] [PMID: 8906795]
[25]
Trkola, A.; Dragic, T.; Arthos, J.; Binley, J.M.; Olson, W.C.; Allaway, G.P.; Cheng-Mayer, C.; Robinson, J.; Maddon, P.J.; Moore, J.P. CD4-dependent, antibody-sensitive interactions between HIV-1 and its co-receptor CCR-5. Nature, 1996, 384(6605), 184-187.
[http://dx.doi.org/10.1038/384184a0] [PMID: 8906796]
[26]
Bleul, C.C.; Farzan, M.; Choe, H.; Parolin, C.; Clark-Lewis, I.; Sodroski, J.; Springer, T.A. The lymphocyte chemoattractant SDF-1 is a ligand for LESTR/fusin and blocks HIV-1 entry. Nature, 1996, 382(6594), 829-833.
[http://dx.doi.org/10.1038/382829a0] [PMID: 8752280]
[27]
Deng, H.; Liu, R.; Ellmeier, W.; Choe, S.; Unutmaz, D.; Burkhart, M.; Di Marzio, P.; Marmon, S.; Sutton, R.E.; Hill, C.M.; Davis, C.B.; Peiper, S.C.; Schall, T.J.; Littman, D.R.; Landau, N.R. Identification of a major co-receptor for primary isolates of HIV-1. Nature, 1996, 381(6584), 661-666.
[http://dx.doi.org/10.1038/381661a0] [PMID: 8649511]
[28]
Doranz, B.J.; Rucker, J.; Yi, Y.; Smyth, R.J.; Samson, M.; Peiper, S.C.; Parmentier, M.; Collman, R.G.; Doms, R.W. A dual-tropic primary HIV-1 isolate that uses fusin and the beta-chemokine receptors CKR-5, CKR-3, and CKR-2b as fusion cofactors. Cell, 1996, 85(7), 1149-1158.
[http://dx.doi.org/10.1016/S0092-8674(00)81314-8] [PMID: 8674120]
[29]
Choe, H.; Farzan, M.; Sun, Y.; Sullivan, N.; Rollins, B.; Ponath, P.D.; Wu, L.; Mackay, C.R.; LaRosa, G.; Newman, W.; Gerard, N.; Gerard, C.; Sodroski, J. The beta-chemokine receptors CCR3 and CCR5 facilitate infection by primary HIV-1 isolates. Cell, 1996, 85(7), 1135-1148.
[http://dx.doi.org/10.1016/S0092-8674(00)81313-6] [PMID: 8674119]
[30]
Dragic, T.; Litwin, V.; Allaway, G.P.; Martin, S.R.; Huang, Y.; Nagashima, K.A.; Cayanan, C.; Maddon, P.J.; Koup, R.A.; Moore, J.P.; Paxton, W.A. HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5. Nature, 1996, 381(6584), 667-673.
[http://dx.doi.org/10.1038/381667a0] [PMID: 8649512]
[31]
Alkhatib, G.; Combadiere, C.; Broder, C.C.; Feng, Y.; Kennedy, P.E.; Murphy, P.M.; Berger, E.A. CC CKR5: a RANTES, MIP-1alpha, MIP-1beta receptor as a fusion cofactor for macrophage-tropic HIV-1. Science, 1996, 272(5270), 1955-1958.
[http://dx.doi.org/10.1126/science.272.5270.1955] [PMID: 8658171]
[32]
Feng, Y.; Broder, C.C.; Kennedy, P.E.; Berger, E.A. HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science, 1996, 272(5263), 872-877.
[http://dx.doi.org/10.1126/science.272.5263.872] [PMID: 8629022]
[33]
Kilby, J.M.; Eron, J.J. Novel therapies based on mechanisms of HIV-1 cell entry. N. Engl. J. Med., 2003, 348(22), 2228-2238.
[http://dx.doi.org/10.1056/NEJMra022812] [PMID: 12773651]
[34]
Jahn, R.; Lang, T.; Südhof, T.C. Membrane fusion. Cell, 2003, 112(4), 519-533.
[http://dx.doi.org/10.1016/S0092-8674(03)00112-0] [PMID: 12600315]
[35]
Chan, D.C.; Fass, D.; Berger, J.M.; Kim, P.S. Core structure of gp41 from the HIV envelope glycoprotein. Cell, 1997, 89(2), 263-273.
[http://dx.doi.org/10.1016/S0092-8674(00)80205-6] [PMID: 9108481]
[36]
Chan, D.C.; Kim, P.S. HIV entry and its inhibition. Cell, 1998, 93(5), 681-684.
[http://dx.doi.org/10.1016/S0092-8674(00)81430-0] [PMID: 9630213]
[37]
De Clercq, E. Strategies in the design of antiviral drugs. Nat. Rev. Drug Discov., 2002, 1(1), 13-25.
[http://dx.doi.org/10.1038/nrd703] [PMID: 12119605]
[38]
Mitsuya, H.; Broder, S. Strategies for antiviral therapy in AIDS. Nature, 1987, 325(6107), 773-778.
[http://dx.doi.org/10.1038/325773a0] [PMID: 2434858]
[39]
Mehellou, Y.; De Clercq, E. Twenty-six years of anti-HIV drug discovery: where do we stand and where do we go? J. Med. Chem., 2010, 53(2), 521-538.
[http://dx.doi.org/10.1021/jm900492g] [PMID: 19785437]
[40]
Kohlstaedt, L.A.; Wang, J.; Friedman, J.M.; Rice, P.A.; Steitz, T.A. Crystal structure at 3.5 A resolution of HIV-1 reverse transcriptase complexed with an inhibitor. Science, 1992, 256(5065), 1783-1790.
[http://dx.doi.org/10.1126/science.1377403] [PMID: 1377403]
[41]
Jacobo-Molina, A.; Ding, J.; Nanni, R.G.; Clark, A.D., Jr; Lu, X.; Tantillo, C.; Williams, R.L.; Kamer, G.; Ferris, A.L.; Clark, P. Crystal structure of human immunodeficiency virus type 1 reverse transcriptase complexed with double-stranded DNA at 3.0 A resolution shows bent DNA. Proc. Natl. Acad. Sci. USA, 1993, 90(13), 6320-6324.
[http://dx.doi.org/10.1073/pnas.90.13.6320] [PMID: 7687065]
[42]
Mitsuya, H.; Broder, S. Inhibition of the in vitro infectivity and cytopathic effect of human T-lymphotrophic virus type III/lymphadenopathy-associated virus (HTLV-III/LAV) by 2′,3′-dideoxynucleosides. Proc. Natl. Acad. Sci. USA, 1986, 83(6), 1911-1915.
[http://dx.doi.org/10.1073/pnas.83.6.1911] [PMID: 3006077]
[43]
Cheng, Y.C.; Dutschman, G.E.; Bastow, K.F.; Sarngadharan, M.G.; Ting, R.Y. Human immunodeficiency virus reverse transcriptase. General properties and its interactions with nucleoside triphosphate analogs. J. Biol. Chem., 1987, 262(5), 2187-2189.
[PMID: 2434477]
[44]
Balzarini, J.; Herdewijn, P.; De Clercq, E. Differential patterns of intracellular metabolism of 2′,3′-didehydro-2′,3′-dideoxythymidine and 3′-azido-2′,3′-dideoxythymidine, two potent anti-human immunodeficiency virus compounds. J. Biol. Chem., 1989, 264(11), 6127-6133.
[PMID: 2539371]
[45]
Richman, D.D. HIV chemotherapy. Nature, 2001, 410(6831), 995-1001.
[http://dx.doi.org/10.1038/35073673] [PMID: 11309630]
[46]
De Clercq, E. The role of non-nucleoside reverse transcriptase inhibitors (NNRTIs) in the therapy of HIV-1 infection. Antiviral Res., 1998, 38(3), 153-179.
[http://dx.doi.org/10.1016/S0166-3542(98)00025-4] [PMID: 9754886]
[47]
Esnouf, R.; Ren, J.; Ross, C.; Jones, Y.; Stammers, D.; Stuart, D. Mechanism of inhibition of HIV-1 reverse transcriptase by non-nucleoside inhibitors. Nat. Struct. Biol., 1995, 2(4), 303-308.
[http://dx.doi.org/10.1038/nsb0495-303] [PMID: 7540935]
[48]
Spence, R.A.; Kati, W.M.; Anderson, K.S.; Johnson, K.A. Mechanism of inhibition of HIV-1 reverse transcriptase by nonnucleoside inhibitors. Science, 1995, 267(5200), 988-993.
[http://dx.doi.org/10.1126/science.7532321] [PMID: 7532321]
[49]
Witvrouw, M.; Pannecouque, C.; Van Laethem, K.; Desmyter, J.; De Clercq, E.; Vandamme, A.M. Activity of non-nucleoside reverse transcriptase inhibitors against HIV-2 and SIV. AIDS, 1999, 13(12), 1477-1483.
[http://dx.doi.org/10.1097/00002030-199908200-00006] [PMID: 10465070]
[50]
Larder, B.A.; Darby, G.; Richman, D.D. HIV with reduced sensitivity to zidovudine (AZT) isolated during prolonged therapy. Science, 1989, 243(4899), 1731-1734.
[http://dx.doi.org/10.1126/science.2467383] [PMID: 2467383]
[51]
Shafer, R.W.; Kozal, M.J.; Winters, M.A.; Iversen, A.K.; Katzenstein, D.A.; Ragni, M.V.; Meyer, W.A., III; Gupta, P.; Rasheed, S.; Coombs, R. Combination therapy with zidovudine and didanosine selects for drug-resistant human immunodeficiency virus type 1 strains with unique patterns of pol gene mutations. J. Infect. Dis., 1994, 169(4), 722-729.
[http://dx.doi.org/10.1093/infdis/169.4.722] [PMID: 8133086]
[52]
Shirasaka, T.; Kavlick, M.F.; Ueno, T.; Gao, W.Y.; Kojima, E.; Alcaide, M.L.; Chokekijchai, S.; Roy, B.M.; Arnold, E.; Yarchoan, R. Emergence of human immunodeficiency virus type 1 variants with resistance to multiple dideoxynucleosides in patients receiving therapy with dideoxynucleosides. Proc. Natl. Acad. Sci. USA, 1995, 92(6), 2398-2402.
[http://dx.doi.org/10.1073/pnas.92.6.2398] [PMID: 7534421]
[53]
Schinazi, R.F.; Lloyd, R.M., Jr; Nguyen, M.H.; Cannon, D.L.; McMillan, A.; Ilksoy, N.; Chu, C.K.; Liotta, D.C.; Bazmi, H.Z.; Mellors, J.W. Characterization of human immunodeficiency viruses resistant to oxathiolane-cytosine nucleosides. Antimicrob. Agents Chemother., 1993, 37(4), 875-881.
[http://dx.doi.org/10.1128/AAC.37.4.875] [PMID: 7684216]
[54]
Quan, Y.; Gu, Z.; Li, X.; Li, Z.; Morrow, C.D.; Wainberg, M.A. Endogenous reverse transcription assays reveal high-level resistance to the triphosphate of (-)2′-dideoxy-3′-thiacytidine by mutated M184V human immunodeficiency virus type 1. J. Virol., 1996, 70(8), 5642-5645.
[PMID: 8764080]
[55]
Schuurman, R.; Nijhuis, M.; van Leeuwen, R.; Schipper, P.; de Jong, D.; Collis, P.; Danner, S.A.; Mulder, J.; Loveday, C.; Christopherson, C. Rapid changes in human immunodeficiency virus type 1 RNA load and appearance of drug-resistant virus populations in persons treated with lamivudine (3TC). J. Infect. Dis., 1995, 171(6), 1411-1419.
[http://dx.doi.org/10.1093/infdis/171.6.1411] [PMID: 7539472]
[56]
Ferrer, E.; Podzamczer, D.; Arnedo, M.; Fumero, E.; McKenna, P.; Rinehart, A.; Pérez, J.L.; Barberá, M.J.; Pumarola, T.; Gatell, J.M.; Gudiol, F. Genotype and phenotype at baseline and at failure in human immunodeficiency virus-infected antiretroviral-naive patients in a randomized trial comparing zidovudine and lamivudine plus nelfinavir or nevirapine. J. Infect. Dis., 2003, 187(4), 687-690.
[http://dx.doi.org/10.1086/367987] [PMID: 12599088]
[57]
Johnson, M.S.; McClure, M.A.; Feng, D.F.; Gray, J.; Doolittle, R.F. Computer analysis of retroviral pol genes: Assignment of enzymatic functions to specific sequences and homologies with nonviral enzymes. Proc. Natl. Acad. Sci. USA, 1986, 83(20), 7648-7652.
[http://dx.doi.org/10.1073/pnas.83.20.7648] [PMID: 2429313]
[58]
Huang, H.; Chopra, R.; Verdine, G.L.; Harrison, S.C. Structure of a covalently trapped catalytic complex of HIV-1 reverse transcriptase: implications for drug resistance. Science, 1998, 282(5394), 1669-1675.
[http://dx.doi.org/10.1126/science.282.5394.1669] [PMID: 9831551]
[59]
Tuske, S.; Sarafianos, S.G.; Clark, A.D., Jr; Ding, J.; Naeger, L.K.; White, K.L.; Miller, M.D.; Gibbs, C.S.; Boyer, P.L.; Clark, P.; Wang, G.; Gaffney, B.L.; Jones, R.A.; Jerina, D.M.; Hughes, S.H.; Arnold, E. Structures of HIV-1 RT-DNA complexes before and after incorporation of the anti-AIDS drug tenofovir. Nat. Struct. Mol. Biol., 2004, 11(5), 469-474.
[http://dx.doi.org/10.1038/nsmb760] [PMID: 15107837]
[60]
Harrigan, P.R.; Stone, C.; Griffin, P.; Nájera, I.; Bloor, S.; Kemp, S.; Tisdale, M.; Larder, B. Resistance profile of the human immunodeficiency virus type 1 reverse transcriptase inhibitor abacavir (1592U89) after monotherapy and combination therapy. CNA2001 Investigative Group. J. Infect. Dis., 2000, 181(3), 912-920.
[http://dx.doi.org/10.1086/315317] [PMID: 10720512]
[61]
Wainberg, M.A.; Miller, M.D.; Quan, Y.; Salomon, H.; Mulato, A.S.; Lamy, P.D.; Margot, N.A.; Anton, K.E.; Cherrington, J.M. In vitro selection and characterization of HIV-1 with reduced susceptibility to PMPA. Antivir. Ther. (Lond.), 1999, 4(2), 87-94.
[PMID: 10682153]
[62]
Margot, N.A.; Isaacson, E.; McGowan, I.; Cheng, A.K.; Schooley, R.T.; Miller, M.D. Genotypic and phenotypic analyses of HIV-1 in antiretroviral-experienced patients treated with tenofovir DF. AIDS, 2002, 16(9), 1227-1235.
[http://dx.doi.org/10.1097/00002030-200206140-00004] [PMID: 12045487]
[63]
García-Lerma, J.G.; MacInnes, H.; Bennett, D.; Reid, P.; Nidtha, S.; Weinstock, H.; Kaplan, J.E.; Heneine, W. A novel genetic pathway of human immunodeficiency virus type 1 resistance to stavudine mediated by the K65R mutation. J. Virol., 2003, 77(10), 5685-5693.
[http://dx.doi.org/10.1128/JVI.77.10.5685-5693.2003] [PMID: 12719561]
[64]
Arion, D.; Kaushik, N.; McCormick, S.; Borkow, G.; Parniak, M.A. Phenotypic mechanism of HIV-1 resistance to 3′-azido-3′-deoxythymidine (AZT): increased polymerization processivity and enhanced sensitivity to pyrophosphate of the mutant viral reverse transcriptase. Biochemistry, 1998, 37(45), 15908-15917.
[http://dx.doi.org/10.1021/bi981200e] [PMID: 9843396]
[65]
Meyer, P.R.; Matsuura, S.E.; So, A.G.; Scott, W.A. Unblocking of chain-terminated primer by HIV-1 reverse transcriptase through a nucleotide-dependent mechanism. Proc. Natl. Acad. Sci. USA, 1998, 95(23), 13471-13476.
[http://dx.doi.org/10.1073/pnas.95.23.13471] [PMID: 9811824]
[66]
Boyer, P.L.; Sarafianos, S.G.; Arnold, E.; Hughes, S.H. Selective excision of AZTMP by drug-resistant human immunodeficiency virus reverse transcriptase. J. Virol., 2001, 75(10), 4832-4842.
[http://dx.doi.org/10.1128/JVI.75.10.4832-4842.2001] [PMID: 11312355]
[67]
Parikh, U.M.; Bacheler, L.; Koontz, D.; Mellors, J.W. The K65R mutation in human immunodeficiency virus type 1 reverse transcriptase exhibits bidirectional phenotypic antagonism with thymidine analog mutations. J. Virol., 2006, 80(10), 4971-4977.
[http://dx.doi.org/10.1128/JVI.80.10.4971-4977.2006] [PMID: 16641288]
[68]
White, K.L.; Chen, J.M.; Feng, J.Y.; Margot, N.A.; Ly, J.K.; Ray, A.S.; Macarthur, H.L.; McDermott, M.J.; Swaminathan, S.; Miller, M.D. The K65R reverse transcriptase mutation in HIV-1 reverses the excision phenotype of zidovudine resistance mutations. Antivir. Ther. (Lond.), 2006, 11(2), 155-163.
[PMID: 16640096]
[69]
Deval, J.; White, K.L.; Miller, M.D.; Parkin, N.T.; Courcambeck, J.; Halfon, P.; Selmi, B.; Boretto, J.; Canard, B. Mechanistic basis for reduced viral and enzymatic fitness of HIV-1 reverse transcriptase containing both K65R and M184V mutations. J. Biol. Chem., 2004, 279(1), 509-516.
[http://dx.doi.org/10.1074/jbc.M308806200] [PMID: 14551187]
[70]
Kodama, E.I.; Kohgo, S.; Kitano, K.; Machida, H.; Gatanaga, H.; Shigeta, S.; Matsuoka, M.; Ohrui, H.; Mitsuya, H. 4′-Ethynyl nucleoside analogs: potent inhibitors of multidrug-resistant human immunodeficiency virus variants in vitro. Antimicrob. Agents Chemother., 2001, 45(5), 1539-1546.
[http://dx.doi.org/10.1128/AAC.45.5.1539-1546.2001] [PMID: 11302824]
[71]
Nakata, H.; Amano, M.; Koh, Y.; Kodama, E.; Yang, G.; Bailey, C.M.; Kohgo, S.; Hayakawa, H.; Matsuoka, M.; Anderson, K.S.; Cheng, Y.C.; Mitsuya, H. Activity against human immunodeficiency virus type 1, intracellular metabolism, and effects on human DNA polymerases of 4′-ethynyl-2-fluoro-2′-deoxyadenosine. Antimicrob. Agents Chemother., 2007, 51(8), 2701-2708.
[http://dx.doi.org/10.1128/AAC.00277-07] [PMID: 17548498]
[72]
Kawamoto, A.; Kodama, E.; Sarafianos, S.G.; Sakagami, Y.; Kohgo, S.; Kitano, K.; Ashida, N.; Iwai, Y.; Hayakawa, H.; Nakata, H.; Mitsuya, H.; Arnold, E.; Matsuoka, M. 2′-deoxy-4′-C-ethynyl-2-halo-adenosines active against drug-resistant human immunodeficiency virus type 1 variants. Int. J. Biochem. Cell Biol., 2008, 40(11), 2410-2420.
[http://dx.doi.org/10.1016/j.biocel.2008.04.007] [PMID: 18487070]
[73]
Markowitz, M.; Sarafianos, S.G. 4′-Ethynyl-2-fluoro-2′-deoxyadenosine, MK-8591: a novel HIV-1 reverse transcriptase translocation inhibitor. Curr. Opin. HIV AIDS, 2018, 13(4), 294-299.
[http://dx.doi.org/10.1097/COH.0000000000000467] [PMID: 29697468]
[74]
Stoddart, C.A.; Galkina, S.A.; Joshi, P.; Kosikova, G.; Moreno, M.E.; Rivera, J.M.; Sloan, B.; Reeve, A.B.; Sarafianos, S.G.; Murphey-Corb, M.; Parniak, M.A. Oral administration of the nucleoside EFdA (4′-ethynyl-2-fluoro-2′-deoxyadenosine) provides rapid suppression of HIV viremia in humanized mice and favorable pharmacokinetic properties in mice and the rhesus macaque. Antimicrob. Agents Chemother., 2015, 59(7), 4190-4198.
[http://dx.doi.org/10.1128/AAC.05036-14] [PMID: 25941222]
[75]
Murphey-Corb, M.; Rajakumar, P.; Michael, H.; Nyaundi, J.; Didier, P.J.; Reeve, A.B.; Mitsuya, H.; Sarafianos, S.G.; Parniak, M.A. Response of simian immunodeficiency virus to the novel nucleoside reverse transcriptase inhibitor 4′-ethynyl-2-fluoro-2′-deoxyadenosine in vitro and in vivo. Antimicrob. Agents Chemother., 2012, 56(9), 4707-4712.
[http://dx.doi.org/10.1128/AAC.00723-12] [PMID: 22713337]
[76]
Hattori, S.; Ide, K.; Nakata, H.; Harada, H.; Suzu, S.; Ashida, N.; Kohgo, S.; Hayakawa, H.; Mitsuya, H.; Okada, S. Potent activity of a nucleoside reverse transcriptase inhibitor, 4′-ethynyl-2-fluoro-2′-deoxyadenosine, against human immunodeficiency virus type 1 infection in a model using human peripheral blood mononuclear cell-transplanted NOD/SCID Janus kinase 3 knockout mice. Antimicrob. Agents Chemother., 2009, 53(9), 3887-3893.
[http://dx.doi.org/10.1128/AAC.00270-09] [PMID: 19546363]
[77]
Maeda, K.; Desai, D.V.; Aoki, M.; Nakata, H.; Kodama, E.N.; Mitsuya, H. Delayed emergence of HIV-1 variants resistant to 4′-ethynyl-2-fluoro-2′-deoxyadenosine: comparative sequential passage study with lamivudine, tenofovir, emtricitabine and BMS-986001. Antivir. Ther. (Lond.), 2014, 19(2), 179-189.
[http://dx.doi.org/10.3851/IMP2697] [PMID: 24162098]
[78]
Takamatsu, Y.; Das, D.; Kohgo, S.; Hayashi, H.; Delino, N.S.; Sarafianos, S.G.; Mitsuya, H.; Maeda, K. The high genetic barrier of EFdA/MK-8591 stems from strong interactions with the active site of drug-resistant HIV-1 reverse transcriptase. Cell Chem. Biol., 2018, 25(10), 1268-1278.
[79]
De Clercq, E. Non-nucleoside reverse transcriptase inhibitors (NNRTIs): past, present, and future. Chem. Biodivers., 2004, 1(1), 44-64.
[http://dx.doi.org/10.1002/cbdv.200490012] [PMID: 17191775]
[80]
Pauwels, R. New non-nucleoside reverse transcriptase inhibitors (NNRTIs) in development for the treatment of HIV infections. Curr. Opin. Pharmacol., 2004, 4(5), 437-446.
[http://dx.doi.org/10.1016/j.coph.2004.07.005] [PMID: 15351347]
[81]
Sluis-Cremer, N.; Temiz, N.A.; Bahar, I. Conformational changes in HIV-1 reverse transcriptase induced by nonnucleoside reverse transcriptase inhibitor binding. Curr. HIV Res., 2004, 2(4), 323-332.
[http://dx.doi.org/10.2174/1570162043351093] [PMID: 15544453]
[82]
Domaoal, R.A.; Demeter, L.M. Structural and biochemical effects of human immunodeficiency virus mutants resistant to non-nucleoside reverse transcriptase inhibitors. Int. J. Biochem. Cell Biol., 2004, 36(9), 1735-1751.
[http://dx.doi.org/10.1016/j.biocel.2004.02.026] [PMID: 15183341]
[83]
Das, K.; Clark, A.D., Jr; Lewi, P.J.; Heeres, J.; De Jonge, M.R.; Koymans, L.M.; Vinkers, H.M.; Daeyaert, F.; Ludovici, D.W.; Kukla, M.J.; De Corte, B.; Kavash, R.W.; Ho, C.Y.; Ye, H.; Lichtenstein, M.A.; Andries, K.; Pauwels, R.; De Béthune, M.P.; Boyer, P.L.; Clark, P.; Hughes, S.H.; Janssen, P.A.; Arnold, E. Roles of conformational and positional adaptability in structure-based design of TMC125-R165335 (etravirine) and related non-nucleoside reverse transcriptase inhibitors that are highly potent and effective against wild-type and drug-resistant HIV-1 variants. J. Med. Chem., 2004, 47(10), 2550-2560.
[http://dx.doi.org/10.1021/jm030558s] [PMID: 15115397]
[84]
Janssen, P.A.; Lewi, P.J.; Arnold, E.; Daeyaert, F.; de Jonge, M.; Heeres, J.; Koymans, L.; Vinkers, M.; Guillemont, J.; Pasquier, E.; Kukla, M.; Ludovici, D.; Andries, K.; de Béthune, M.P.; Pauwels, R.; Das, K.; Clark, A.D., Jr; Frenkel, Y.V.; Hughes, S.H.; Medaer, B.; De Knaep, F.; Bohets, H.; De Clerck, F.; Lampo, A.; Williams, P.; Stoffels, P. In search of a novel anti-HIV drug: multidisciplinary coordination in the discovery of 4-[[4-[[4-[(1E)-2-cyanoethenyl]-2,6-dimethylphenyl]amino]-2- pyrimidinyl]amino]benzonitrile (R278474, rilpivirine). J. Med. Chem., 2005, 48(6), 1901-1909.
[http://dx.doi.org/10.1021/jm040840e] [PMID: 15771434]
[85]
Pelemans, H.; Esnouf, R.; De Clercq, E.; Balzarini, J. Mutational analysis of trp-229 of human immunodeficiency virus type 1 reverse transcriptase (RT) identifies this amino acid residue as a prime target for the rational design of new non-nucleoside RT inhibitors. Mol. Pharmacol., 2000, 57(5), 954-960.
[PMID: 10779379]
[86]
Brik, A.; Wong, C.H. HIV-1 protease: mechanism and drug discovery. Org. Biomol. Chem., 2003, 1(1), 5-14.
[http://dx.doi.org/10.1039/b208248a] [PMID: 12929379]
[87]
Wlodawer, A.; Miller, M.; Jaskólski, M.; Sathyanarayana, B.K.; Baldwin, E.; Weber, I.T.; Selk, L.M.; Clawson, L.; Schneider, J.; Kent, S.B. Conserved folding in retroviral proteases: Crystal structure of a synthetic HIV-1 protease. Science, 1989, 245(4918), 616-621.
[http://dx.doi.org/10.1126/science.2548279] [PMID: 2548279]
[88]
Kumar, G.N.; Rodrigues, A.D.; Buko, A.M.; Denissen, J.F. Cytochrome P450-mediated metabolism of the HIV-1 protease inhibitor ritonavir (ABT-538) in human liver microsomes. J. Pharmacol. Exp. Ther., 1996, 277(1), 423-431.
[PMID: 8613951]
[89]
Nijhuis, M.; Deeks, S.; Boucher, C. Implications of antiretroviral resistance on viral fitness. Curr. Opin. Infect. Dis., 2001, 14(1), 23-28.
[http://dx.doi.org/10.1097/00001432-200102000-00005] [PMID: 11979111]
[90]
Quiñones-Mateu, M.E.; Moore-Dudley, D.M.; Jegede, O.; Weber, J.J.; Arts, E. Viral drug resistance and fitness. Adv. Pharmacol., 2008, 56, 257-296.
[http://dx.doi.org/10.1016/S1054-3589(07)56009-6] [PMID: 18086415]
[91]
Shafer, R.W.D.K.; Winters, M.A.; Eshleman, S.H. A guide to HIV-1 reverse transcriptase and protease sequencing for drug resistance studies. In: HIV sequence compendium.2000; Cl, K., Ed.; Los Alamos National Laboratory: Los Alamos, NM, 2000; pp. 1-51.
[PMID: 22324021]
[92]
Doyon, L.; Payant, C.; Brakier-Gingras, L.; Lamarre, D. Novel Gag-Pol frameshift site in human immunodeficiency virus type 1 variants resistant to protease inhibitors. J. Virol., 1998, 72(7), 6146-6150.
[PMID: 9621079]
[93]
Gatanaga, H.; Suzuki, Y.; Tsang, H.; Yoshimura, K.; Kavlick, M.F.; Nagashima, K.; Gorelick, R.J.; Mardy, S.; Tang, C.; Summers, M.F.; Mitsuya, H. Amino acid substitutions in Gag protein at non-cleavage sites are indispensable for the development of a high multitude of HIV-1 resistance against protease inhibitors. J. Biol. Chem., 2002, 277(8), 5952-5961.
[http://dx.doi.org/10.1074/jbc.M108005200] [PMID: 11741936]
[94]
Zhang, Y.M.; Imamichi, H.; Imamichi, T.; Lane, H.C.; Falloon, J.; Vasudevachari, M.B.; Salzman, N.P. Drug resistance during indinavir therapy is caused by mutations in the protease gene and in its Gag substrate cleavage sites. J. Virol., 1997, 71(9), 6662-6670.
[PMID: 9261388]
[95]
Tamiya, S.; Mardy, S.; Kavlick, M.F.; Yoshimura, K.; Mistuya, H. Amino acid insertions near Gag cleavage sites restore the otherwise compromised replication of human immunodeficiency virus type 1 variants resistant to protease inhibitors. J. Virol., 2004, 78(21), 12030-12040.
[http://dx.doi.org/10.1128/JVI.78.21.12030-12040.2004] [PMID: 15479842]
[96]
Clavel, F.; Race, E.; Mammano, F. HIV drug resistance and viral fitness. Adv. Pharmacol., 2000, 49, 41-66.
[http://dx.doi.org/10.1016/S1054-3589(00)49023-X] [PMID: 11013760]
[97]
De Meyer, S.; Azijn, H.; Surleraux, D.; Jochmans, D.; Tahri, A.; Pauwels, R.; Wigerinck, P.; de Béthune, M.P. TMC114, a novel human immunodeficiency virus type 1 protease inhibitor active against protease inhibitor-resistant viruses, including a broad range of clinical isolates. Antimicrob. Agents Chemother., 2005, 49(6), 2314-2321.
[http://dx.doi.org/10.1128/AAC.49.6.2314-2321.2005] [PMID: 15917527]
[98]
Ghosh, A.K.; Anderson, D.D.; Weber, I.T.; Mitsuya, H. Enhancing protein backbone binding--a fruitful concept for combating drug-resistant HIV. Angew. Chem. Int. Ed. Engl., 2012, 51(8), 1778-1802.
[http://dx.doi.org/10.1002/anie.201102762] [PMID: 22290878]
[99]
Deeks, E.D. Darunavir: a review of its use in the management of HIV-1 infection. Drugs, 2014, 74(1), 99-125.
[http://dx.doi.org/10.1007/s40265-013-0159-3] [PMID: 24338166]
[100]
Koh, Y.; Amano, M.; Towata, T.; Danish, M.; Leshchenko-Yashchuk, S.; Das, D.; Nakayama, M.; Tojo, Y.; Ghosh, A.K.; Mitsuya, H. In vitro selection of highly darunavir-resistant and replication-competent HIV-1 variants by using a mixture of clinical HIV-1 isolates resistant to multiple conventional protease inhibitors. J. Virol., 2010, 84(22), 11961-11969.
[http://dx.doi.org/10.1128/JVI.00967-10] [PMID: 20810732]
[101]
de Meyer, S.; Vangeneugden, T.; van Baelen, B.; de Paepe, E.; van Marck, H.; Picchio, G.; Lefebvre, E.; de Béthune, M.P. Resistance profile of darunavir: combined 24-week results from the POWER trials. AIDS Res. Hum. Retroviruses, 2008, 24(3), 379-388.
[http://dx.doi.org/10.1089/aid.2007.0173] [PMID: 18327986]
[102]
Mitsuya, Y.; Liu, T.F.; Rhee, S.Y.; Fessel, W.J.; Shafer, R.W. Prevalence of darunavir resistance-associated mutations: patterns of occurrence and association with past treatment. J. Infect. Dis., 2007, 196(8), 1177-1179.
[http://dx.doi.org/10.1086/521624] [PMID: 17955436]
[103]
Tie, Y.; Boross, P.I.; Wang, Y.F.; Gaddis, L.; Hussain, A.K.; Leshchenko, S.; Ghosh, A.K.; Louis, J.M.; Harrison, R.W.; Weber, I.T. High resolution crystal structures of HIV-1 protease with a potent non-peptide inhibitor (UIC-94017) active against multi-drug-resistant clinical strains. J. Mol. Biol., 2004, 338(2), 341-352.
[http://dx.doi.org/10.1016/j.jmb.2004.02.052] [PMID: 15066436]
[104]
Koh, Y.; Matsumi, S.; Das, D.; Amano, M.; Davis, D.A.; Li, J.; Leschenko, S.; Baldridge, A.; Shioda, T.; Yarchoan, R.; Ghosh, A.K.; Mitsuya, H. Potent inhibition of HIV-1 replication by novel non-peptidyl small molecule inhibitors of protease dimerization. J. Biol. Chem., 2007, 282(39), 28709-28720.
[http://dx.doi.org/10.1074/jbc.M703938200] [PMID: 17635930]
[105]
Espeseth, A.S.; Felock, P.; Wolfe, A.; Witmer, M.; Grobler, J.; Anthony, N.; Egbertson, M.; Melamed, J.Y.; Young, S.; Hamill, T.; Cole, J.L.; Hazuda, D.J. HIV-1 integrase inhibitors that compete with the target DNA substrate define a unique strand transfer conformation for integrase. Proc. Natl. Acad. Sci. USA, 2000, 97(21), 11244-11249.
[http://dx.doi.org/10.1073/pnas.200139397] [PMID: 11016953]
[106]
Hazuda, D.J.; Anthony, N.J.; Gomez, R.P.; Jolly, S.M.; Wai, J.S.; Zhuang, L.; Fisher, T.E.; Embrey, M.; Guare, J.P., Jr; Egbertson, M.S.; Vacca, J.P.; Huff, J.R.; Felock, P.J.; Witmer, M.V.; Stillmock, K.A.; Danovich, R.; Grobler, J.; Miller, M.D.; Espeseth, A.S.; Jin, L.; Chen, I.W.; Lin, J.H.; Kassahun, K.; Ellis, J.D.; Wong, B.K.; Xu, W.; Pearson, P.G.; Schleif, W.A.; Cortese, R.; Emini, E.; Summa, V.; Holloway, M.K.; Young, S.D. A naphthyridine carboxamide provides evidence for discordant resistance between mechanistically identical inhibitors of HIV-1 integrase. Proc. Natl. Acad. Sci. USA, 2004, 101(31), 11233-11238.
[http://dx.doi.org/10.1073/pnas.0402357101] [PMID: 15277684]
[107]
McColl, D.J.; Chen, X. Strand transfer inhibitors of HIV-1 integrase: bringing IN a new era of antiretroviral therapy. Antiviral Res., 2010, 85(1), 101-118.
[http://dx.doi.org/10.1016/j.antiviral.2009.11.004] [PMID: 19925830]
[108]
Pommier, Y.; Johnson, A.A.; Marchand, C. Integrase inhibitors to treat HIV/AIDS. Nat. Rev. Drug Discov., 2005, 4(3), 236-248.
[http://dx.doi.org/10.1038/nrd1660] [PMID: 15729361]
[109]
Chiu, T.K.; Davies, D.R. Structure and function of HIV-1 integrase. Curr. Top. Med. Chem., 2004, 4(9), 965-977.
[http://dx.doi.org/10.2174/1568026043388547] [PMID: 15134551]
[110]
Engelman, A.; Cherepanov, P. The structural biology of HIV-1: mechanistic and therapeutic insights. Nat. Rev. Microbiol., 2012, 10(4), 279-290.
[http://dx.doi.org/10.1038/nrmicro2747] [PMID: 22421880]
[111]
Grobler, J.A.; Stillmock, K.; Hu, B.; Witmer, M.; Felock, P.; Espeseth, A.S.; Wolfe, A.; Egbertson, M.; Bourgeois, M.; Melamed, J.; Wai, J.S.; Young, S.; Vacca, J.; Hazuda, D.J. Diketo acid inhibitor mechanism and HIV-1 integrase: implications for metal binding in the active site of phosphotransferase enzymes. Proc. Natl. Acad. Sci. USA, 2002, 99(10), 6661-6666.
[http://dx.doi.org/10.1073/pnas.092056199] [PMID: 11997448]
[112]
Hare, S.; Smith, S.J.; Métifiot, M.; Jaxa-Chamiec, A.; Pommier, Y.; Hughes, S.H.; Cherepanov, P. Structural and functional analyses of the second-generation integrase strand transfer inhibitor dolutegravir (S/GSK1349572). Mol. Pharmacol., 2011, 80(4), 565-572.
[http://dx.doi.org/10.1124/mol.111.073189] [PMID: 21719464]
[113]
Cushman, M.; Sherman, P. Inhibition of HIV-1 integration protein by aurintricarboxylic acid monomers, monomer analogs, and polymer fractions. Biochem. Biophys. Res. Commun., 1992, 185(1), 85-90.
[http://dx.doi.org/10.1016/S0006-291X(05)80958-1] [PMID: 1599491]
[114]
Fesen, M.R.; Kohn, K.W.; Leteurtre, F.; Pommier, Y. Inhibitors of human immunodeficiency virus integrase. Proc. Natl. Acad. Sci. USA, 1993, 90(6), 2399-2403.
[http://dx.doi.org/10.1073/pnas.90.6.2399] [PMID: 8460151]
[115]
Goldgur, Y.; Craigie, R.; Cohen, G.H.; Fujiwara, T.; Yoshinaga, T.; Fujishita, T.; Sugimoto, H.; Endo, T.; Murai, H.; Davies, D.R. Structure of the HIV-1 integrase catalytic domain complexed with an inhibitor: A platform for antiviral drug design. Proc. Natl. Acad. Sci. USA, 1999, 96(23), 13040-13043.
[http://dx.doi.org/10.1073/pnas.96.23.13040] [PMID: 10557269]
[116]
Steigbigel, R.T.; Cooper, D.A.; Kumar, P.N.; Eron, J.E.; Schechter, M.; Markowitz, M.; Loutfy, M.R.; Lennox, J.L.; Gatell, J.M.; Rockstroh, J.K.; Katlama, C.; Yeni, P.; Lazzarin, A.; Clotet, B.; Zhao, J.; Chen, J.; Ryan, D.M.; Rhodes, R.R.; Killar, J.A.; Gilde, L.R.; Strohmaier, K.M.; Meibohm, A.R.; Miller, M.D.; Hazuda, D.J.; Nessly, M.L.; DiNubile, M.J.; Isaacs, R.D.; Nguyen, B.Y.; Teppler, H.; Teams, B.S. Raltegravir with optimized background therapy for resistant HIV-1 infection. N. Engl. J. Med., 2008, 359(4), 339-354.
[http://dx.doi.org/10.1056/NEJMoa0708975] [PMID: 18650512]
[117]
DeJesus, E.; Berger, D.; Markowitz, M.; Cohen, C.; Hawkins, T.; Ruane, P.; Elion, R.; Farthing, C.; Zhong, L.; Cheng, A.K.; McColl, D.; Kearney, B.P.; Study, T. Antiviral activity, pharmacokinetics, and dose response of the HIV-1 integrase inhibitor GS-9137 (JTK-303) in treatment-naive and treatment-experienced patients. J. Acquir. Immune Defic. Syndr., 2006, 43(1), 1-5.
[http://dx.doi.org/10.1097/01.qai.0000233308.82860.2f] [PMID: 16936557]
[118]
Unger, N.R.; Worley, M.V.; Kisgen, J.J.; Sherman, E.M.; Childs-Kean, L.M. Elvitegravir for the treatment of HIV. Expert Opin. Pharmacother., 2016, 17(17), 2359-2370.
[http://dx.doi.org/10.1080/14656566.2016.1250885] [PMID: 27767362]
[119]
Arts, E.J.; Hazuda, D.J. HIV-1 antiretroviral drug therapy. Cold Spring Harb. Perspect. Med., 2012, 2(4)a007161
[http://dx.doi.org/10.1101/cshperspect.a007161] [PMID: 22474613]
[120]
Stanford University. INSTI resistance notes., (Available at;. https://hivdb.stanford.edu/dr-summary/resistance-notes/INSTI/
[121]
Fransen, S.; Gupta, S.; Danovich, R.; Hazuda, D.; Miller, M.; Witmer, M.; Petropoulos, C.J.; Huang, W. Loss of raltegravir susceptibility by human immunodeficiency virus type 1 is conferred via multiple nonoverlapping genetic pathways. J. Virol., 2009, 83(22), 11440-11446.
[http://dx.doi.org/10.1128/JVI.01168-09] [PMID: 19759152]
[122]
Abram, M.E.; Hluhanich, R.M.; Goodman, D.D.; Andreatta, K.N.; Margot, N.A.; Ye, L.; Niedziela-Majka, A.; Barnes, T.L.; Novikov, N.; Chen, X.; Svarovskaia, E.S.; McColl, D.J.; White, K.L.; Miller, M.D. Impact of primary elvitegravir resistance-associated mutations in HIV-1 integrase on drug susceptibility and viral replication fitness. Antimicrob. Agents Chemother., 2013, 57(6), 2654-2663.
[http://dx.doi.org/10.1128/AAC.02568-12] [PMID: 23529738]
[123]
Shimura, K.; Kodama, E.; Sakagami, Y.; Matsuzaki, Y.; Watanabe, W.; Yamataka, K.; Watanabe, Y.; Ohata, Y.; Doi, S.; Sato, M.; Kano, M.; Ikeda, S.; Matsuoka, M. Broad antiretroviral activity and resistance profile of the novel human immunodeficiency virus integrase inhibitor elvitegravir (JTK-303/GS-9137). J. Virol., 2008, 82(2), 764-774.
[http://dx.doi.org/10.1128/JVI.01534-07] [PMID: 17977962]
[124]
Vandekerckhove, L. GSK-1349572, a novel integrase inhibitor for the treatment of HIV infection. Curr. Opin. Investig. Drugs, 2010, 11(2), 203-212.
[PMID: 20112170]
[125]
Dow, D.E.; Bartlett, J.A. Dolutegravir, the second-generation of integrase strand transfer inhibitors (INSTIs) for the treatment of HIV. Infect. Dis. Ther., 2014, 3(2), 83-102.
[http://dx.doi.org/10.1007/s40121-014-0029-7] [PMID: 25134686]
[126]
Choi, E.; Mallareddy, J.R.; Lu, D.; Kolluru, S. Recent advances in the discovery of small-molecule inhibitors of HIV-1 integrase. Future Sci. OA, 2018, 4(9)FSO338
[http://dx.doi.org/10.4155/fsoa-2018-0060] [PMID: 30416746]
[127]
Wild, C.; Greenwell, T.; Matthews, T. A synthetic peptide from HIV-1 gp41 is a potent inhibitor of virus-mediated cell-cell fusion. AIDS Res. Hum. Retroviruses, 1993, 9(11), 1051-1053.
[http://dx.doi.org/10.1089/aid.1993.9.1051] [PMID: 8312047]
[128]
Walker, D.K.; Abel, S.; Comby, P.; Muirhead, G.J.; Nedderman, A.N.; Smith, D.A. Species differences in the disposition of the CCR5 antagonist, UK-427,857, a new potential treatment for HIV. Drug Metab. Dispos., 2005, 33(4), 587-595.
[http://dx.doi.org/10.1124/dmd.104.002626] [PMID: 15650075]
[129]
De Clercq, E. Mozobil® (Plerixafor, AMD3100), 10 years after its approval by the US food and drug administration. Antivir. Chem. Chemother., 2019, 272040206619829382
[http://dx.doi.org/10.1177/2040206619829382] [PMID: 30776910]
[130]
Tamamura, H.; Hori, A.; Kanzaki, N.; Hiramatsu, K.; Mizumoto, M.; Nakashima, H.; Yamamoto, N.; Otaka, A.; Fujii, N. T140 analogs as CXCR4 antagonists identified as anti-metastatic agents in the treatment of breast cancer. FEBS Lett., 2003, 550(1-3), 79-83.
[http://dx.doi.org/10.1016/S0014-5793(03)00824-X] [PMID: 12935890]
[131]
[132]
Shimura, K.; Nameki, D.; Kajiwara, K.; Watanabe, K.; Sakagami, Y.; Oishi, S.; Fujii, N.; Matsuoka, M.; Sarafianos, S.G.; Kodama, E.N. Resistance profiles of novel electrostatically constrained HIV-1 fusion inhibitors. J. Biol. Chem., 2010, 285(50), 39471-39480.
[http://dx.doi.org/10.1074/jbc.M110.145789] [PMID: 20937812]
[133]
Otaka, A.; Nakamura, M.; Nameki, D.; Kodama, E.; Uchiyama, S.; Nakamura, S.; Nakano, H.; Tamamura, H.; Kobayashi, Y.; Matsuoka, M.; Fujii, N. Remodeling of gp41-C34 peptide leads to highly effective inhibitors of the fusion of HIV-1 with target cells. Angew. Chem. Int. Ed. Engl., 2002, 41(16), 2937-2940.
[http://dx.doi.org/10.1002/1521-3773(20020816)41:16<2937:AID-ANIE2937>3.0.CO;2-J] [PMID: 12203417]
[134]
Nishikawa, H.; Nakamura, S.; Kodama, E.; Ito, S.; Kajiwara, K.; Izumi, K.; Sakagami, Y.; Oishi, S.; Ohkubo, T.; Kobayashi, Y.; Otaka, A.; Fujii, N.; Matsuoka, M. Electrostatically constrained alpha-helical peptide inhibits replication of HIV-1 resistant to enfuvirtide. Int. J. Biochem. Cell Biol., 2009, 41(4), 891-899.
[http://dx.doi.org/10.1016/j.biocel.2008.08.039] [PMID: 18834950]
[135]
Liu, S.; Lu, H.; Niu, J.; Xu, Y.; Wu, S.; Jiang, S. Different from the HIV fusion inhibitor C34, the anti-HIV drug Fuzeon (T-20) inhibits HIV-1 entry by targeting multiple sites in gp41 and gp120. J. Biol. Chem., 2005, 280(12), 11259-11273.
[http://dx.doi.org/10.1074/jbc.M411141200] [PMID: 15640162]
[136]
Derdeyn, C.A.; Decker, J.M.; Sfakianos, J.N.; Zhang, Z.; O’Brien, W.A.; Ratner, L.; Shaw, G.M.; Hunter, E. Sensitivity of human immunodeficiency virus type 1 to fusion inhibitors targeted to the gp41 first heptad repeat involves distinct regions of gp41 and is consistently modulated by gp120 interactions with the coreceptor. J. Virol., 2001, 75(18), 8605-8614.
[http://dx.doi.org/10.1128/JVI.75.18.8605-8614.2001] [PMID: 11507206]
[137]
Pierson, T.C.; Doms, R.W.; Pöhlmann, S. Prospects of HIV-1 entry inhibitors as novel therapeutics. Rev. Med. Virol., 2004, 14(4), 255-270.
[http://dx.doi.org/10.1002/rmv.435] [PMID: 15248253]
[138]
Liu, S.; Jiang, S. High throughput screening and characterization of HIV-1 entry inhibitors targeting gp41: theories and techniques. Curr. Pharm. Des., 2004, 10(15), 1827-1843.
[http://dx.doi.org/10.2174/1381612043384466] [PMID: 15180543]
[139]
Si, Z.; Madani, N.; Cox, J.M.; Chruma, J.J.; Klein, J.C.; Schön, A.; Phan, N.; Wang, L.; Biorn, A.C.; Cocklin, S.; Chaiken, I.; Freire, E.; Smith, A.B., III; Sodroski, J.G. Small-molecule inhibitors of HIV-1 entry block receptor-induced conformational changes in the viral envelope glycoproteins. Proc. Natl. Acad. Sci. USA, 2004, 101(14), 5036-5041.
[http://dx.doi.org/10.1073/pnas.0307953101] [PMID: 15051887]
[140]
Zwick, M.B.; Saphire, E.O.; Burton, D.R. gp41: HIV’s shy protein. Nat. Med., 2004, 10(2), 133-134.
[http://dx.doi.org/10.1038/nm0204-133] [PMID: 14760422]
[141]
Nakahara, T.; Nomura, W.; Ohba, K.; Ohya, A.; Tanaka, T.; Hashimoto, C.; Narumi, T.; Murakami, T.; Yamamoto, N.; Tamamura, H. Remodeling of dynamic structures of HIV-1 envelope proteins leads to synthetic antigen molecules inducing neutralizing antibodies. Bioconjug. Chem., 2010, 21(4), 709-714.
[http://dx.doi.org/10.1021/bc900502z] [PMID: 20359196]
[142]
Nomura, W.; Hashimoto, C.; Ohya, A.; Miyauchi, K.; Urano, E.; Tanaka, T.; Narumi, T.; Nakahara, T.; Komano, J.A.; Yamamoto, N.; Tamamura, H. A synthetic C34 trimer of HIV-1 gp41 shows significant increase in inhibition potency. ChemMedChem, 2012, 7(2), 205-208.
[http://dx.doi.org/10.1002/cmdc.201100542] [PMID: 22247043]
[143]
Hashimoto, C.; Nomura, W.; Ohya, A.; Urano, E.; Miyauchi, K.; Narumi, T.; Aikawa, H.; Komano, J.A.; Yamamoto, N.; Tamamura, H. Evaluation of a synthetic C34 trimer of HIV-1 gp41 as AIDS vaccines. Bioorg. Med. Chem., 2012, 20(10), 3287-3291.
[http://dx.doi.org/10.1016/j.bmc.2012.03.050] [PMID: 22507207]
[144]
Nomura, W.; Hashimoto, C.; Suzuki, T.; Ohashi, N.; Fujino, M.; Murakami, T.; Yamamoto, N.; Tamamura, H. Multimerized CHR-derived peptides as HIV-1 fusion inhibitors. Bioorg. Med. Chem., 2013, 21(15), 4452-4458.
[http://dx.doi.org/10.1016/j.bmc.2013.05.060] [PMID: 23800723]
[145]
Nomura, W.; Mizuguchi, T.; Tamamura, H. Multimerized HIV-gp41-derived peptides as fusion inhibitors and vaccines. Biopolymers, 2016, 106(4), 622-628.
[http://dx.doi.org/10.1002/bip.22782] [PMID: 26583370]
[146]
Maeda, K.; Das, D.; Ogata-Aoki, H.; Nakata, H.; Miyakawa, T.; Tojo, Y.; Norman, R.; Takaoka, Y.; Ding, J.; Arnold, G.F.; Arnold, E.; Mitsuya, H. Structural and molecular interactions of CCR5 inhibitors with CCR5. J. Biol. Chem., 2006, 281(18), 12688-12698.
[http://dx.doi.org/10.1074/jbc.M512688200] [PMID: 16476734]
[147]
Tan, Q.; Zhu, Y.; Li, J.; Chen, Z.; Han, G.W.; Kufareva, I.; Li, T.; Ma, L.; Fenalti, G.; Li, J.; Zhang, W.; Xie, X.; Yang, H.; Jiang, H.; Cherezov, V.; Liu, H.; Stevens, R.C.; Zhao, Q.; Wu, B. Structure of the CCR5 chemokine receptor-HIV entry inhibitor maraviroc complex. Science, 2013, 341(6152), 1387-1390.
[http://dx.doi.org/10.1126/science.1241475] [PMID: 24030490]
[148]
Strizki, J.M.; Xu, S.; Wagner, N.E.; Wojcik, L.; Liu, J.; Hou, Y.; Endres, M.; Palani, A.; Shapiro, S.; Clader, J.W.; Greenlee, W.J.; Tagat, J.R.; McCombie, S.; Cox, K.; Fawzi, A.B.; Chou, C.C.; Pugliese-Sivo, C.; Davies, L.; Moreno, M.E.; Ho, D.D.; Trkola, A.; Stoddart, C.A.; Moore, J.P.; Reyes, G.R.; Baroudy, B.M. SCH-C (SCH 351125), an orally bioavailable, small molecule antagonist of the chemokine receptor CCR5, is a potent inhibitor of HIV-1 infection in vitro and in vivo. Proc. Natl. Acad. Sci. USA, 2001, 98(22), 12718-12723.
[http://dx.doi.org/10.1073/pnas.221375398] [PMID: 11606733]
[149]
Tagat, J.R.; McCombie, S.W.; Nazareno, D.; Labroli, M.A.; Xiao, Y.; Steensma, R.W.; Strizki, J.M.; Baroudy, B.M.; Cox, K.; Lachowicz, J.; Varty, G.; Watkins, R. Piperazine-based CCR5 antagonists as HIV-1 inhibitors. IV. Discovery of 1-[(4,6-dimethyl-5-pyrimidinyl)carbonyl]- 4-[4-[2-methoxy-1(R)-4-(trifluoromethyl)phenyl]ethyl-3(S)-methyl-1-piperazinyl]- 4-methylpiperidine (Sch-417690/Sch-D), a potent, highly selective, and orally bioavailable CCR5 antagonist. J. Med. Chem., 2004, 47(10), 2405-2408.
[http://dx.doi.org/10.1021/jm0304515] [PMID: 15115380]
[150]
Maeda, K.; Nakata, H.; Koh, Y.; Miyakawa, T.; Ogata, H.; Takaoka, Y.; Shibayama, S.; Sagawa, K.; Fukushima, D.; Moravek, J.; Koyanagi, Y.; Mitsuya, H. Spirodiketopiperazine-based CCR5 inhibitor which preserves CC-chemokine/CCR5 interactions and exerts potent activity against R5 human immunodeficiency virus type 1 in vitro. J. Virol., 2004, 78(16), 8654-8662.
[http://dx.doi.org/10.1128/JVI.78.16.8654-8662.2004] [PMID: 15280474]
[151]
Lalezari, J.; Thompson, M.; Kumar, P.; Piliero, P.; Davey, R.; Patterson, K.; Shachoy-Clark, A.; Adkison, K.; Demarest, J.; Lou, Y.; Berrey, M.; Piscitelli, S. Antiviral activity and safety of 873140, a novel CCR5 antagonist, during short-term monotherapy in HIV-infected adults. AIDS, 2005, 19(14), 1443-1448.
[http://dx.doi.org/10.1097/01.aids.0000183633.06580.8a] [PMID: 16135896]
[152]
Nichols, W.G.; Steel, H.M.; Bonny, T.; Adkison, K.; Curtis, L.; Millard, J.; Kabeya, K.; Clumeck, N. Hepatotoxicity observed in clinical trials of aplaviroc (GW873140). Antimicrob. Agents Chemother., 2008, 52(3), 858-865.
[http://dx.doi.org/10.1128/AAC.00821-07] [PMID: 18070967]
[153]
Demarest, J.F.; Amrine-Madsen, H.; Irlbeck, D.M.; Kitrinos, K.M.; Team, C.C.R.C.S. Virologic failure in first-line human immunodeficiency virus therapy with a CCR5 entry inhibitor, aplaviroc, plus a fixed-dose combination of lamivudine-zidovudine: nucleoside reverse transcriptase inhibitor resistance regardless of envelope tropism. Antimicrob. Agents Chemother., 2009, 53(3), 1116-1123.
[http://dx.doi.org/10.1128/AAC.01055-08] [PMID: 19075055]
[154]
Gulick, R.M.; Lalezari, J.; Goodrich, J.; Clumeck, N.; DeJesus, E.; Horban, A.; Nadler, J.; Clotet, B.; Karlsson, A.; Wohlfeiler, M.; Montana, J.B.; McHale, M.; Sullivan, J.; Ridgway, C.; Felstead, S.; Dunne, M.W.; van der Ryst, E.; Mayer, H.; Teams, M.S. Maraviroc for previously treated patients with R5 HIV-1 infection. N. Engl. J. Med., 2008, 359(14), 1429-1441.
[http://dx.doi.org/10.1056/NEJMoa0803152] [PMID: 18832244]
[155]
Fätkenheuer, G.; Nelson, M.; Lazzarin, A.; Konourina, I.; Hoepelman, A.I.; Lampiris, H.; Hirschel, B.; Tebas, P.; Raffi, F.; Trottier, B.; Bellos, N.; Saag, M.; Cooper, D.A.; Westby, M.; Tawadrous, M.; Sullivan, J.F.; Ridgway, C.; Dunne, M.W.; Felstead, S.; Mayer, H.; van der Ryst, E. Subgroup analyses of maraviroc in previously treated R5 HIV-1 infection. N. Engl. J. Med., 2008, 359(14), 1442-1455.
[http://dx.doi.org/10.1056/NEJMoa0803154] [PMID: 18832245]
[156]
Cooper, D.A.; Heera, J.; Goodrich, J.; Tawadrous, M.; Saag, M.; Dejesus, E.; Clumeck, N.; Walmsley, S.; Ting, N.; Coakley, E.; Reeves, J.D.; Reyes-Teran, G.; Westby, M.; Van Der Ryst, E.; Ive, P.; Mohapi, L.; Mingrone, H.; Horban, A.; Hackman, F.; Sullivan, J.; Mayer, H. Maraviroc versus efavirenz, both in combination with zidovudine-lamivudine, for the treatment of antiretroviral-naive subjects with CCR5-tropic HIV-1 infection. J. Infect. Dis., 2010, 201(6), 803-813.
[http://dx.doi.org/10.1086/650697] [PMID: 20151839]
[157]
Seto, M.; Aikawa, K.; Miyamoto, N.; Aramaki, Y.; Kanzaki, N.; Takashima, K.; Kuze, Y.; Iizawa, Y.; Baba, M.; Shiraishi, M. Highly potent and orally active CCR5 antagonists as anti-HIV-1 agents: synthesis and biological activities of 1-benzazocine derivatives containing a sulfoxide moiety. J. Med. Chem., 2006, 49(6), 2037-2048.
[http://dx.doi.org/10.1021/jm0509703] [PMID: 16539392]
[158]
Krenkel, O.; Puengel, T.; Govaere, O.; Abdallah, A.T.; Mossanen, J.C.; Kohlhepp, M.; Liepelt, A.; Lefebvre, E.; Luedde, T.; Hellerbrand, C.; Weiskirchen, R.; Longerich, T.; Costa, I.G.; Anstee, Q.M.; Trautwein, C.; Tacke, F. Therapeutic inhibition of inflammatory monocyte recruitment reduces steatohepatitis and liver fibrosis. Hepatology, 2018, 67(4), 1270-1283.
[http://dx.doi.org/10.1002/hep.29544] [PMID: 28940700]
[159]
Joy, M.T.; Ben Assayag, E.; Shabashov-Stone, D.; Liraz-Zaltsman, S.; Mazzitelli, J.; Arenas, M.; Abduljawad, N.; Kliper, E.; Korczyn, A.D.; Thareja, N.S.; Kesner, E.L.; Zhou, M.; Huang, S.; Silva, T.K.; Katz, N.; Bornstein, N.M.; Silva, A.J.; Shohami, E.; Carmichael, S.T. CCR5 is a therapeutic target for recovery after stroke and traumatic. Brain Inj., 2019, 176(5), 1143-1157.
[http://dx.doi.org/10.1016/j.cell.2019.01.044]
[160]
Asmuth, D.M.; Goodrich, J.; Cooper, D.A.; Haubrich, R.; Rajicic, N.; Hirschel, B.; Mayer, H.; Valdez, H. CD4+ T-cell restoration after 48 weeks in the maraviroc treatment-experienced trials MOTIVATE 1 and 2. J. Acquir. Immune Defic. Syndr., 2010, 54(4), 394-397.
[http://dx.doi.org/10.1097/QAI.0b013e3181c5c83b] [PMID: 20009949]
[161]
López-Huertas, M.R.; Jiménez-Tormo, L.; Madrid-Elena, N.; Gutiérrez, C.; Rodríguez-Mora, S.; Coiras, M.; Alcamí, J.; Moreno, S. The CCR5-antagonist Maraviroc reverses HIV-1 latency in vitro alone or in combination with the PKC-agonist Bryostatin-1. Sci. Rep., 2017, 7(1), 2385.
[http://dx.doi.org/10.1038/s41598-017-02634-y] [PMID: 28539614]
[162]
Fernandez-Fernandez, B.; Montoya-Ferrer, A.; Sanz, A.B.; Sanchez-Niño, M.D.; Izquierdo, M.C.; Poveda, J.; Sainz-Prestel, V.; Ortiz-Martin, N.; Parra-Rodriguez, A.; Selgas, R.; Ruiz-Ortega, M.; Egido, J.; Ortiz, A. Tenofovir nephrotoxicity: 2011 update. Aids Res. Treat., 2011, •••2011354908
[http://dx.doi.org/10.1155/2011/354908] [PMID: 21716719]
[163]
Malik, A.; Abraham, P.; Malik, N. Acute renal failure and Fanconi syndrome in an AIDS patient on tenofovir treatment--case report and review of literature. J. Infect., 2005, 51(2), E61-E65.
[http://dx.doi.org/10.1016/j.jinf.2004.08.031] [PMID: 16038754]
[164]
Eisenberg, E.J.; He, G.X.; Lee, W.A. Metabolism of GS-7340, a novel phenyl monophosphoramidate intracellular prodrug of PMPA, in blood. Nucleosides Nucleotides Nucleic Acids, 2001, 20(4-7), 1091-1098.
[http://dx.doi.org/10.1081/NCN-100002496] [PMID: 11562963]
[165]
De Clercq, E. Tenofovir alafenamide (TAF) as the successor of tenofovir disoproxil fumarate (TDF). Biochem. Pharmacol., 2016, 119, 1-7.
[http://dx.doi.org/10.1016/j.bcp.2016.04.015] [PMID: 27133890]
[166]
Ankrom, W. Effect of severe renal impairment on doravirine pharmacokinetics.The annual conference on retroviruses and opportunistic infections (CROI), Seattle, 2016.
[167]
Margolis, D.A.; Gonzalez-Garcia, J.; Stellbrink, H.J.; Eron, J.J.; Yazdanpanah, Y.; Podzamczer, D.; Lutz, T.; Angel, J.B.; Richmond, G.J.; Clotet, B.; Gutierrez, F.; Sloan, L.; Clair, M.S.; Murray, M.; Ford, S.L.; Mrus, J.; Patel, P.; Crauwels, H.; Griffith, S.K.; Sutton, K.C.; Dorey, D.; Smith, K.Y.; Williams, P.E.; Spreen, W.R. Long-acting intramuscular cabotegravir and rilpivirine in adults with HIV-1 infection (LATTE-2): 96-week results of a randomised, open-label, phase 2b, non-inferiority trial. Lancet, 2017, 390(10101), 1499-1510.
[http://dx.doi.org/10.1016/S0140-6736(17)31917-7] [PMID: 28750935]
[168]
Grobler, J. Long-acting oral and parenteral dosing of MK-8591 for HIV treatment or prophylaxis. The annual conference on retroviruses and opportunistic infections (CROI), Boston, 2016.
[169]
Friedman, E. A Single monotherapy dose of MK-8591, a Novel NRTI, Suppresses HIV for 10 days. The Annual Conference on Retroviruses and Opportunistic Infections (CROI), Boston2016.
[170]
Barrett, S.E.; Teller, R.S.; Forster, S.P.; Li, L.; Mackey, M.A.; Skomski, D.; Yang, Z.; Fillgrove, K.L.; Doto, G.J.; Wood, S.L.; Lebron, J.; Grobler, J.A.; Sanchez, R.I.; Liu, Z.; Lu, B.; Niu, T.; Sun, L.; Gindy, M.E. Extended-duration MK-8591-eluting implant as a candidate for HIV treatment and prevention. Antimicrob. Agents Chemother., 2018, 62(10), e01058-e18.
[http://dx.doi.org/10.1128/AAC.01058-18] [PMID: 30012772]
[171]
Campbell, E.M.; Hope, T.J. HIV-1 capsid: the multifaceted key player in HIV-1 infection. Nat. Rev. Microbiol., 2015, 13(8), 471-483.
[http://dx.doi.org/10.1038/nrmicro3503] [PMID: 26179359]
[172]
von Schwedler, U.K.; Stray, K.M.; Garrus, J.E.; Sundquist, W.I. Functional surfaces of the human immunodeficiency virus type 1 capsid protein. J. Virol., 2003, 77(9), 5439-5450.
[http://dx.doi.org/10.1128/JVI.77.9.5439-5450.2003] [PMID: 12692245]
[173]
Forshey, B.M.; von Schwedler, U.; Sundquist, W.I.; Aiken, C. Formation of a human immunodeficiency virus type 1 core of optimal stability is crucial for viral replication. J. Virol., 2002, 76(11), 5667-5677.
[http://dx.doi.org/10.1128/JVI.76.11.5667-5677.2002] [PMID: 11991995]
[174]
Rihn, S.J.; Wilson, S.J.; Loman, N.J.; Alim, M.; Bakker, S.E.; Bhella, D.; Gifford, R.J.; Rixon, F.J.; Bieniasz, P.D. Extreme genetic fragility of the HIV-1 capsid. PLoS Pathog., 2013, 9(6)e1003461
[http://dx.doi.org/10.1371/journal.ppat.1003461] [PMID: 23818857]
[175]
Rawle, D.J.; Harrich, D. Toward the “unravelling” of HIV: Host cell factors involved in HIV-1 core uncoating. PLoS Pathog., 2018, 14(10)e1007270
[http://dx.doi.org/10.1371/journal.ppat.1007270] [PMID: 30286189]
[176]
Hilditch, L.; Towers, G.J. A model for cofactor use during HIV-1 reverse transcription and nuclear entry. Curr. Opin. Virol., 2014, 4, 32-36.
[http://dx.doi.org/10.1016/j.coviro.2013.11.003] [PMID: 24525292]
[177]
Fassati, A. Multiple roles of the capsid protein in the early steps of HIV-1 infection. Virus Res., 2012, 170(1-2), 15-24.
[http://dx.doi.org/10.1016/j.virusres.2012.09.012] [PMID: 23041358]
[178]
Ambrose, Z.; Aiken, C. HIV-1 uncoating: connection to nuclear entry and regulation by host proteins. Virology, 2014, 454-455, 371-379.
[http://dx.doi.org/10.1016/j.virol.2014.02.004] [PMID: 24559861]
[179]
Tang, C.; Loeliger, E.; Kinde, I.; Kyere, S.; Mayo, K.; Barklis, E.; Sun, Y.; Huang, M.; Summers, M.F. Antiviral inhibition of the HIV-1 capsid protein. J. Mol. Biol., 2003, 327(5), 1013-1020.
[http://dx.doi.org/10.1016/S0022-2836(03)00289-4] [PMID: 12662926]
[180]
Sticht, J.; Humbert, M.; Findlow, S.; Bodem, J.; Müller, B.; Dietrich, U.; Werner, J.; Kräusslich, H.G. A peptide inhibitor of HIV-1 assembly in vitro. Nat. Struct. Mol. Biol., 2005, 12(8), 671-677.
[http://dx.doi.org/10.1038/nsmb964] [PMID: 16041387]
[181]
Ternois, F.; Sticht, J.; Duquerroy, S.; Kräusslich, H.G.; Rey, F.A. The HIV-1 capsid protein C-terminal domain in complex with a virus assembly inhibitor. Nat. Struct. Mol. Biol., 2005, 12(8), 678-682.
[http://dx.doi.org/10.1038/nsmb967] [PMID: 16041386]
[182]
Kelly, B.N.; Kyere, S.; Kinde, I.; Tang, C.; Howard, B.R.; Robinson, H.; Sundquist, W.I.; Summers, M.F.; Hill, C.P. Structure of the antiviral assembly inhibitor CAP-1 complex with the HIV-1 CA protein. J. Mol. Biol., 2007, 373(2), 355-366.
[http://dx.doi.org/10.1016/j.jmb.2007.07.070] [PMID: 17826792]
[183]
Blair, W.S.; Pickford, C.; Irving, S.L.; Brown, D.G.; Anderson, M.; Bazin, R.; Cao, J.; Ciaramella, G.; Isaacson, J.; Jackson, L.; Hunt, R.; Kjerrstrom, A.; Nieman, J.A.; Patick, A.K.; Perros, M.; Scott, A.D.; Whitby, K.; Wu, H.; Butler, S.L. HIV capsid is a tractable target for small molecule therapeutic intervention. PLoS Pathog., 2010, 6(12)e1001220
[http://dx.doi.org/10.1371/journal.ppat.1001220] [PMID: 21170360]
[184]
Bocanegra, R.; Rodríguez-Huete, A.; Fuertes, M.A.; Del Álamo, M.; Mateu, M.G. Molecular recognition in the human immunodeficiency virus capsid and antiviral design. Virus Res., 2012, 169(2), 388-410.
[http://dx.doi.org/10.1016/j.virusres.2012.06.016] [PMID: 22728445]
[185]
Curreli, F.; Zhang, H.; Zhang, X.; Pyatkin, I.; Victor, Z.; Altieri, A.; Debnath, A.K. Virtual screening based identification of novel small-molecule inhibitors targeted to the HIV-1 capsid. Bioorg. Med. Chem., 2011, 19(1), 77-90.
[http://dx.doi.org/10.1016/j.bmc.2010.11.045] [PMID: 21168336]
[186]
Fader, L.D.; Bethell, R.; Bonneau, P.; Bös, M.; Bousquet, Y.; Cordingley, M.G.; Coulombe, R.; Deroy, P.; Faucher, A.M.; Gagnon, A.; Goudreau, N.; Grand-Maître, C.; Guse, I.; Hucke, O.; Kawai, S.H.; Lacoste, J.E.; Landry, S.; Lemke, C.T.; Malenfant, E.; Mason, S.; Morin, S.; O’Meara, J.; Simoneau, B.; Titolo, S.; Yoakim, C. Discovery of a 1,5-dihydrobenzo[b][1,4]diazepine-2,4-dione series of inhibitors of HIV-1 capsid assembly. Bioorg. Med. Chem. Lett., 2011, 21(1), 398-404.
[http://dx.doi.org/10.1016/j.bmcl.2010.10.131] [PMID: 21087861]
[187]
Lemke, C.T.; Titolo, S.; von Schwedler, U.; Goudreau, N.; Mercier, J.F.; Wardrop, E.; Faucher, A.M.; Coulombe, R.; Banik, S.S.; Fader, L.; Gagnon, A.; Kawai, S.H.; Rancourt, J.; Tremblay, M.; Yoakim, C.; Simoneau, B.; Archambault, J.; Sundquist, W.I.; Mason, S.W. Distinct effects of two HIV-1 capsid assembly inhibitor families that bind the same site within the N-terminal domain of the viral CA protein. J. Virol., 2012, 86(12), 6643-6655.
[http://dx.doi.org/10.1128/JVI.00493-12] [PMID: 22496222]
[188]
Tremblay, M.; Bonneau, P.; Bousquet, Y.; DeRoy, P.; Duan, J.; Duplessis, M.; Gagnon, A.; Garneau, M.; Goudreau, N.; Guse, I.; Hucke, O.; Kawai, S.H.; Lemke, C.T.; Mason, S.W.; Simoneau, B.; Surprenant, S.; Titolo, S.; Yoakim, C. Inhibition of HIV-1 capsid assembly: optimization of the antiviral potency by site selective modifications at N1, C2 and C16 of a 5-(5-furan-2-yl-pyrazol-1-yl)-1H-benzimidazole scaffold. Bioorg. Med. Chem. Lett., 2012, 22(24), 7512-7517.
[http://dx.doi.org/10.1016/j.bmcl.2012.10.034] [PMID: 23122820]
[189]
Lamorte, L.; Titolo, S.; Lemke, C.T.; Goudreau, N.; Mercier, J.F.; Wardrop, E.; Shah, V.B.; von Schwedler, U.K.; Langelier, C.; Banik, S.S.; Aiken, C.; Sundquist, W.I.; Mason, S.W. Discovery of novel small-molecule HIV-1 replication inhibitors that stabilize capsid complexes. Antimicrob. Agents Chemother., 2013, 57(10), 4622-4631.
[http://dx.doi.org/10.1128/AAC.00985-13] [PMID: 23817385]
[190]
Gres, A.T.; Kirby, K.A. KewalRamani, V.N.; Tanner, J.J.; Pornillos, O.; Sarafianos, S.G. Structural virology. X-ray crystal structures of native HIV-1 capsid protein reveal conformational variability. Science, 2015, 349(6243), 99-103.
[http://dx.doi.org/10.1126/science.aaa5936] [PMID: 26044298]
[191]
Price, A.J.; Jacques, D.A.; McEwan, W.A.; Fletcher, A.J.; Essig, S.; Chin, J.W.; Halambage, U.D.; Aiken, C.; James, L.C. Host cofactors and pharmacologic ligands share an essential interface in HIV-1 capsid that is lost upon disassembly. PLoS Pathog., 2014, 10(10)e1004459
[http://dx.doi.org/10.1371/journal.ppat.1004459] [PMID: 25356722]
[192]
Bhattacharya, A.; Alam, S.L.; Fricke, T.; Zadrozny, K.; Sedzicki, J.; Taylor, A.B.; Demeler, B.; Pornillos, O.; Ganser-Pornillos, B.K.; Diaz-Griffero, F.; Ivanov, D.N.; Yeager, M. Structural basis of HIV-1 capsid recognition by PF74 and CPSF6. Proc. Natl. Acad. Sci. USA, 2014, 111(52), 18625-18630.
[http://dx.doi.org/10.1073/pnas.1419945112] [PMID: 25518861]
[193]
Price, A.J.; Fletcher, A.J.; Schaller, T.; Elliott, T.; Lee, K. KewalRamani, V.N.; Chin, J.W.; Towers, G.J.; James, L.C. CPSF6 defines a conserved capsid interface that modulates HIV-1 replication. PLoS Pathog., 2012, 8(8)e1002896
[http://dx.doi.org/10.1371/journal.ppat.1002896] [PMID: 22956906]
[194]
Shi, J.; Zhou, J.; Shah, V.B.; Aiken, C.; Whitby, K. Small-molecule inhibition of human immunodeficiency virus type 1 infection by virus capsid destabilization. J. Virol., 2011, 85(1), 542-549.
[http://dx.doi.org/10.1128/JVI.01406-10] [PMID: 20962083]
[195]
Xu, H.; Franks, T.; Gibson, G.; Huber, K.; Rahm, N.; Strambio De Castillia, C.; Luban, J.; Aiken, C.; Watkins, S.; Sluis-Cremer, N.; Ambrose, Z. Evidence for biphasic uncoating during HIV-1 infection from a novel imaging assay. Retrovirology, 2013, 10, 70.
[http://dx.doi.org/10.1186/1742-4690-10-70] [PMID: 23835323]
[196]
Peng, K.; Muranyi, W.; Glass, B.; Laketa, V.; Yant, S.R.; Tsai, L.; Cihlar, T.; Müller, B.; Kräusslich, H.G. Quantitative microscopy of functional HIV post-entry complexes reveals association of replication with the viral capsid.eLife, 2014.3e04114.
[http://dx.doi.org/10.7554/eLife.04114] [PMID: 25517934]
[197]
Hulme, A.E.; Kelley, Z.; Foley, D.; Hope, T.J. Complementary assays reveal a low level of CA associated with viral complexes in the nuclei of HIV-1-infected cells. J. Virol., 2015, 89(10), 5350-5361.
[http://dx.doi.org/10.1128/JVI.00476-15] [PMID: 25741002]
[198]
Zhang, H.; Curreli, F.; Waheed, A.A.; Mercredi, P.Y.; Mehta, M.; Bhargava, P.; Scacalossi, D.; Tong, X.; Lee, S.; Cooper, A.; Summers, M.F.; Freed, E.O.; Debnath, A.K. Dual-acting stapled peptides target both HIV-1 entry and assembly. Retrovirology, 2013, 10, 136.
[http://dx.doi.org/10.1186/1742-4690-10-136] [PMID: 24237936]
[199]
Kortagere, S.; Madani, N.; Mankowski, M.K.; Schön, A.; Zentner, I.; Swaminathan, G.; Princiotto, A.; Anthony, K.; Oza, A.; Sierra, L.J.; Passic, S.R.; Wang, X.; Jones, D.M.; Stavale, E.; Krebs, F.C.; Martín-García, J.; Freire, E.; Ptak, R.G.; Sodroski, J.; Cocklin, S.; Smith, A.B. III Inhibiting early-stage events in HIV-1 replication by small-molecule targeting of the HIV-1 capsid. J. Virol., 2012, 86(16), 8472-8481.
[http://dx.doi.org/10.1128/JVI.05006-11] [PMID: 22647699]
[200]
Tse, W.C.; Link, J.O.; Mulato, A.; Niedziela-Majka, A.; Rowe, W.; Somoza, J.R.; Villasenor, A.G.; Yant, S.R.; Zhang, J.R.; Zheng, J. Discovery of novel potent HIV capsid inhibitors with longacting potential.Conference on Retroviruses and Opportunistic Infections, Seattle, Washington, USA2017.
[201]
Zheng, J.; Yant, S.R.; Ahmadyar, S.; Chan, T.Y.; Chiu, A.; Cihlar, T.; Link, J.O.; Lu, B.; Mwangi, J.; Rowe, W.; Schroeder, S.D.; Stepan, G.J.; Wang, K.W.; Subramanian, R.; Tse, W.C. 539. GS-CA2: A novel, potent, and selective first-in-class inhibitor of hiv-1 capsid function displays nonclinical pharmacokinetics supporting long-acting potential in humans. Open Forum Infect. Dis., 2018, 5(Suppl. 1), S199-S200.
[http://dx.doi.org/ 10.1093/ofid/ofy210.548]
[202]
Jarvis, L.M. Conquering, H. IV’s capsid. Chem. Eng. News, 2017, 95(31), 23-25.
[203]
Carnes, S.K.; Sheehan, J.H.; Aiken, C. Inhibitors of the HIV-1 capsid, a target of opportunity. Curr. Opin. HIV AIDS, 2018, 13(4), 359-365.
[http://dx.doi.org/10.1097/COH.0000000000000472] [PMID: 29782334]
[204]
Zhao, Q.; Ma, L.; Jiang, S.; Lu, H.; Liu, S.; He, Y.; Strick, N.; Neamati, N.; Debnath, A.K. Identification of N-phenyl-N'-(2,2,6,6-tetramethyl-piperidin-4-yl)-oxalamides as a new class of HIV-1 entry inhibitors that prevent gp120 binding to CD4. Virology, 2005, 339(2), 213-225.
[http://dx.doi.org/10.1016/j.virol.2005.06.008] [PMID: 15996703]
[205]
Schön, A.; Madani, N.; Klein, J.C.; Hubicki, A.; Ng, D.; Yang, X.; Smith, A.B., III; Sodroski, J.; Freire, E. Thermodynamics of binding of a low-molecular-weight CD4 mimetic to HIV-1 gp120. Biochemistry, 2006, 45(36), 10973-10980.
[http://dx.doi.org/10.1021/bi061193r] [PMID: 16953583]
[206]
Yamada, Y.; Ochiai, C.; Yoshimura, K.; Tanaka, T.; Ohashi, N.; Narumi, T.; Nomura, W.; Harada, S.; Matsushita, S.; Tamamura, H. CD4 mimics targeting the mechanism of HIV entry. Bioorg. Med. Chem. Lett., 2010, 20(1), 354-358.
[http://dx.doi.org/10.1016/j.bmcl.2009.10.098] [PMID: 19926478]
[207]
Narumi, T.; Ochiai, C.; Yoshimura, K.; Harada, S.; Tanaka, T.; Nomura, W.; Arai, H.; Ozaki, T.; Ohashi, N.; Matsushita, S.; Tamamura, H. CD4 mimics targeting the HIV entry mechanism and their hybrid molecules with a CXCR4 antagonist. Bioorg. Med. Chem. Lett., 2010, 20(19), 5853-5858.
[http://dx.doi.org/10.1016/j.bmcl.2010.07.106] [PMID: 20728351]
[208]
Yoshimura, K.; Harada, S.; Shibata, J.; Hatada, M.; Yamada, Y.; Ochiai, C.; Tamamura, H.; Matsushita, S. Enhanced exposure of human immunodeficiency virus type 1 primary isolate neutralization epitopes through binding of CD4 mimetic compounds. J. Virol., 2010, 84(15), 7558-7568.
[http://dx.doi.org/10.1128/JVI.00227-10] [PMID: 20504942]
[209]
Lalonde, J.M.; Elban, M.A.; Courter, J.R.; Sugawara, A.; Soeta, T.; Madani, N.; Princiotto, A.M.; Kwon, Y.D.; Kwong, P.D.; Schön, A.; Freire, E.; Sodroski, J.; Smith, A.B. III Design, synthesis and biological evaluation of small molecule inhibitors of CD4-gp120 binding based on virtual screening. Bioorg. Med. Chem., 2011, 19(1), 91-101.
[http://dx.doi.org/10.1016/j.bmc.2010.11.049] [PMID: 21169023]
[210]
Lu, R.J.; Tucker, J.A.; Zinevitch, T.; Kirichenko, O.; Konoplev, V.; Kuznetsova, S.; Sviridov, S.; Pickens, J.; Tandel, S.; Brahmachary, E.; Yang, Y.; Wang, J.; Freel, S.; Fisher, S.; Sullivan, A.; Zhou, J.; Stanfield-Oakley, S.; Greenberg, M.; Bolognesi, D.; Bray, B.; Koszalka, B.; Jeffs, P.; Khasanov, A.; Ma, Y.A.; Jeffries, C.; Liu, C.; Proskurina, T.; Zhu, T.; Chucholowski, A.; Li, R.; Sexton, C. Design and synthesis of human immunodeficiency virus entry inhibitors: sulfonamide as an isostere for the alpha-ketoamide group. J. Med. Chem., 2007, 50(26), 6535-6544.
[http://dx.doi.org/10.1021/jm070650e] [PMID: 18052117]
[211]
Ohashi, N.; Harada, S.; Mizuguchi, T.; Irahara, Y.; Yamada, Y.; Kotani, M.; Nomura, W.; Matsushita, S.; Yoshimura, K.; Tamamura, H. Small-molecule CD4 mimics containing mono-cyclohexyl moieties as HIV entry inhibitors. ChemMedChem, 2016, 11(8), 940-946.
[http://dx.doi.org/10.1002/cmdc.201500590] [PMID: 26891461]
[212]
Eda, Y.; Takizawa, M.; Murakami, T.; Maeda, H.; Kimachi, K.; Yonemura, H.; Koyanagi, S.; Shiosaki, K.; Higuchi, H.; Makizumi, K.; Nakashima, T.; Osatomi, K.; Tokiyoshi, S.; Matsushita, S.; Yamamoto, N.; Honda, M. Sequential immunization with V3 peptides from primary human immunodeficiency virus type 1 produces cross-neutralizing antibodies against primary isolates with a matching narrow-neutralization sequence motif. J. Virol., 2006, 80(11), 5552-5562.
[http://dx.doi.org/10.1128/JVI.02094-05] [PMID: 16699036]
[213]
Chun, T.W.; Davey, R.T., Jr; Engel, D.; Lane, H.C.; Fauci, A.S. Re-emergence of HIV after stopping therapy. Nature, 1999, 401(6756), 874-875.
[http://dx.doi.org/10.1038/44755] [PMID: 10553903]
[214]
Finzi, D.; Hermankova, M.; Pierson, T.; Carruth, L.M.; Buck, C.; Chaisson, R.E.; Quinn, T.C.; Chadwick, K.; Margolick, J.; Brookmeyer, R.; Gallant, J.; Markowitz, M.; Ho, D.D.; Richman, D.D.; Siliciano, R.F. Identification of a reservoir for HIV-1 in patients on highly active antiretroviral therapy. Science, 1997, 278(5341), 1295-1300.
[http://dx.doi.org/10.1126/science.278.5341.1295] [PMID: 9360927]
[215]
Siliciano, J.D.; Kajdas, J.; Finzi, D.; Quinn, T.C.; Chadwick, K.; Margolick, J.B.; Kovacs, C.; Gange, S.J.; Siliciano, R.F. Long-term follow-up studies confirm the stability of the latent reservoir for HIV-1 in resting CD4+ T cells. Nat. Med., 2003, 9(6), 727-728.
[http://dx.doi.org/10.1038/nm880] [PMID: 12754504]
[216]
Geeraert, L.; Kraus, G.; Pomerantz, R.J. Hide-and-seek: the challenge of viral persistence in HIV-1 infection. Annu. Rev. Med., 2008, 59, 487-501.
[http://dx.doi.org/10.1146/annurev.med.59.062806.123001] [PMID: 17845138]
[217]
Hamer, D.H. Can HIV be Cured? Mechanisms of HIV persistence and strategies to combat it. Curr. HIV Res., 2004, 2(2), 99-111.
[http://dx.doi.org/10.2174/1570162043484915] [PMID: 15078175]
[218]
Katlama, C.; Deeks, S.G.; Autran, B.; Martinez-Picado, J.; van Lunzen, J.; Rouzioux, C.; Miller, M.; Vella, S.; Schmitz, J.E.; Ahlers, J.; Richman, D.D.; Sekaly, R.P. Barriers to a cure for HIV: new ways to target and eradicate HIV-1 reservoirs. Lancet, 2013, 381(9883), 2109-2117.
[http://dx.doi.org/10.1016/S0140-6736(13)60104-X] [PMID: 23541541]
[219]
Richman, D.D.; Margolis, D.M.; Delaney, M.; Greene, W.C.; Hazuda, D.; Pomerantz, R.J. The challenge of finding a cure for HIV infection. Science, 2009, 323(5919), 1304-1307.
[http://dx.doi.org/10.1126/science.1165706] [PMID: 19265012]
[220]
Kim, Y.; Anderson, J.L.; Lewin, S.R. Getting the “kill” into “shock and kill”: Strategies to eliminate latent HIV. Cell Host Microbe, 2018, 23(1), 14-26.
[http://dx.doi.org/10.1016/j.chom.2017.12.004] [PMID: 29324227]
[221]
Hattori, S.I.; Matsuda, K.; Tsuchiya, K.; Gatanaga, H.; Oka, S.; Yoshimura, K.; Mitsuya, H.; Maeda, K. Combination of a latency-reversing agent with a smac mimetic minimizes secondary HIV-1 infection in vitro. Front. Microbiol., 2018, 9, 2022.
[http://dx.doi.org/10.3389/fmicb.2018.02022] [PMID: 30283406]
[222]
Archin, N.M.; Liberty, A.L.; Kashuba, A.D.; Choudhary, S.K.; Kuruc, J.D.; Crooks, A.M.; Parker, D.C.; Anderson, E.M.; Kearney, M.F.; Strain, M.C.; Richman, D.D.; Hudgens, M.G.; Bosch, R.J.; Coffin, J.M.; Eron, J.J.; Hazuda, D.J.; Margolis, D.M. Administration of vorinostat disrupts HIV-1 latency in patients on antiretroviral therapy. Nature, 2012, 487(7408), 482-485.
[http://dx.doi.org/10.1038/nature11286] [PMID: 22837004]
[223]
Rasmussen, T.A.; Tolstrup, M.; Brinkmann, C.R.; Olesen, R.; Erikstrup, C.; Solomon, A.; Winckelmann, A.; Palmer, S.; Dinarello, C.; Buzon, M.; Lichterfeld, M.; Lewin, S.R.; Østergaard, L.; Søgaard, O.S. Panobinostat, a histone deacetylase inhibitor, for latent-virus reactivation in HIV-infected patients on suppressive antiretroviral therapy: a phase 1/2, single group, clinical trial. Lancet HIV, 2014, 1(1), e13-e21.
[http://dx.doi.org/10.1016/S2352-3018(14)70014-1] [PMID: 26423811]
[224]
Gutiérrez, C.; Serrano-Villar, S.; Madrid-Elena, N.; Pérez-Elías, M.J.; Martín, M.E.; Barbas, C.; Ruipérez, J.; Muñoz, E.; Muñoz-Fernández, M.A.; Castor, T.; Moreno, S. Bryostatin-1 for latent virus reactivation in HIV-infected patients on antiretroviral therapy. AIDS, 2016, 30(9), 1385-1392.
[http://dx.doi.org/10.1097/QAD.0000000000001064] [PMID: 26891037]
[225]
Elliott, J.H.; McMahon, J.H.; Chang, C.C.; Lee, S.A.; Hartogensis, W.; Bumpus, N.; Savic, R.; Roney, J.; Hoh, R.; Solomon, A.; Piatak, M.; Gorelick, R.J.; Lifson, J.; Bacchetti, P.; Deeks, S.G.; Lewin, S.R. Short-term administration of disulfiram for reversal of latent HIV infection: a phase 2 dose-escalation study. Lancet HIV, 2015, 2(12), e520-e529.
[http://dx.doi.org/10.1016/S2352-3018(15)00226-X] [PMID: 26614966]
[226]
Søgaard, O.S.; Graversen, M.E.; Leth, S.; Olesen, R.; Brinkmann, C.R.; Nissen, S.K.; Kjaer, A.S.; Schleimann, M.H.; Denton, P.W.; Hey-Cunningham, W.J.; Koelsch, K.K.; Pantaleo, G.; Krogsgaard, K.; Sommerfelt, M.; Fromentin, R.; Chomont, N.; Rasmussen, T.A.; Østergaard, L.; Tolstrup, M. The depsipeptide romidepsin reverses HIV-1 latency in vivo. PLoS Pathog., 2015, 11(9)e1005142
[http://dx.doi.org/10.1371/journal.ppat.1005142] [PMID: 26379282]
[227]
Mbonye, U.; Karn, J. Transcriptional control of HIV latency: Cellular signaling pathways, epigenetics, happenstance and the hope for a cure. Virology, 2014, 454-455, 328-339.
[http://dx.doi.org/10.1016/j.virol.2014.02.008] [PMID: 24565118]
[228]
Ho, Y.C.; Shan, L.; Hosmane, N.N.; Wang, J.; Laskey, S.B.; Rosenbloom, D.I.; Lai, J.; Blankson, J.N.; Siliciano, J.D.; Siliciano, R.F. Replication-competent noninduced proviruses in the latent reservoir increase barrier to HIV-1 cure. Cell, 2013, 155(3), 540-551.
[http://dx.doi.org/10.1016/j.cell.2013.09.020] [PMID: 24243014]
[229]
Bullen, C.K.; Laird, G.M.; Durand, C.M.; Siliciano, J.D.; Siliciano, R.F. New ex vivo approaches distinguish effective and ineffective single agents for reversing HIV-1 latency in vivo. Nat. Med., 2014, 20(4), 425-429.
[http://dx.doi.org/10.1038/nm.3489] [PMID: 24658076]
[230]
Boehm, D.; Calvanese, V.; Dar, R.D.; Xing, S.; Schroeder, S.; Martins, L.; Aull, K.; Li, P.C.; Planelles, V.; Bradner, J.E.; Zhou, M.M.; Siliciano, R.F.; Weinberger, L.; Verdin, E.; Ott, M. BET bromodomain-targeting compounds reactivate HIV from latency via a Tat-independent mechanism. Cell Cycle, 2013, 12(3), 452-462.
[http://dx.doi.org/10.4161/cc.23309] [PMID: 23255218]
[231]
Williams, S.A.; Chen, L.F.; Kwon, H.; Fenard, D.; Bisgrove, D.; Verdin, E.; Greene, W.C. Prostratin antagonizes HIV latency by activating NF-kappaB. J. Biol. Chem., 2004, 279(40), 42008-42017.
[http://dx.doi.org/10.1074/jbc.M402124200] [PMID: 15284245]
[232]
Laird, G.M.; Bullen, C.K.; Rosenbloom, D.I.; Martin, A.R.; Hill, A.L.; Durand, C.M.; Siliciano, J.D.; Siliciano, R.F. Ex vivo analysis identifies effective HIV-1 latency-reversing drug combinations. J. Clin. Invest., 2015, 125(5), 1901-1912.
[http://dx.doi.org/10.1172/JCI80142] [PMID: 25822022]
[233]
Gohda, J.; Suzuki, K.; Liu, K.; Xie, X.; Takeuchi, H.; Inoue, J.I.; Kawaguchi, Y.; Ishida, T. BI-2536 and BI-6727, dual Polo-like kinase/bromodomain inhibitors, effectively reactivate latent HIV-1. Sci. Rep., 2018, 8(1), 3521.
[http://dx.doi.org/10.1038/s41598-018-21942-5] [PMID: 29476067]
[234]
Matsuda, K.; Kobayakawa, T.; Tsuchiya, K.; Hattori, S.I.; Nomura, W.; Gatanaga, H.; Yoshimura, K.; Oka, S.; Endo, Y.; Tamamura, H.; Mitsuya, H.; Maeda, K. Benzolactam-related compounds promote apoptosis of HIV-infected human cells via protein kinase C-induced HIV latency reversal. J. Biol. Chem., 2019, 294(1), 116-129.
[http://dx.doi.org/10.1074/jbc.RA118.005798] [PMID: 30413535]
[235]
Sengupta, S.; Siliciano, R.F. Targeting the latent reservoir for HIV-1. Immunity, 2018, 48(5), 872-895.
[http://dx.doi.org/10.1016/j.immuni.2018.04.030] [PMID: 29768175]
[236]
Cillo, A.R.; Sobolewski, M.D.; Bosch, R.J.; Fyne, E.; Piatak, M., Jr; Coffin, J.M.; Mellors, J.W. Quantification of HIV-1 latency reversal in resting CD4+ T cells from patients on suppressive antiretroviral therapy. Proc. Natl. Acad. Sci. USA, 2014, 111(19), 7078-7083.
[http://dx.doi.org/10.1073/pnas.1402873111] [PMID: 24706775]
[237]
Lucera, M.B.; Tilton, C.A.; Mao, H.; Dobrowolski, C.; Tabler, C.O.; Haqqani, A.A.; Karn, J.; Tilton, J.C. The histone deacetylase inhibitor vorinostat (SAHA) increases the susceptibility of uninfected CD4+ T cells to HIV by increasing the kinetics and efficiency of postentry viral events. J. Virol., 2014, 88(18), 10803-10812.
[http://dx.doi.org/10.1128/JVI.00320-14] [PMID: 25008921]
[238]
Tamamura, H.; Bienfait, B.; Nacro, K.; Lewin, N.E.; Blumberg, P.M.; Marquez, V.E. Conformationally constrained analogues of diacylglycerol (DAG). 17. Contrast between sn-1 and sn-2 DAG lactones in binding to protein kinase C. J. Med. Chem., 2000, 43(17), 3209-3217.
[http://dx.doi.org/10.1021/jm990613q] [PMID: 10966739]
[239]
Newton, A.C. Protein kinase C: Structure, function, and regulation. J. Biol. Chem., 1995, 270(48), 28495-28498.
[http://dx.doi.org/10.1074/jbc.270.48.28495] [PMID: 7499357]
[240]
Margolis, D.M. Confronting proviral HIV infection. Curr. HIV/AIDS Rep., 2007, 4(2), 60-64.
[http://dx.doi.org/10.1007/s11904-007-0009-6] [PMID: 17547826]
[241]
Jiang, G.; Mendes, E.A.; Kaiser, P.; Wong, D.P.; Tang, Y.; Cai, I.; Fenton, A.; Melcher, G.P.; Hildreth, J.E.; Thompson, G.R.; Wong, J.K.; Dandekar, S. Synergistic reactivation of latent HIV expression by ingenol-3-angelate, PEP005, Targeted NF-kB signaling in combination with JQ1 induced p-TEFb activation. PLoS Pathog., 2015, 11(7)e1005066
[http://dx.doi.org/10.1371/journal.ppat.1005066] [PMID: 26225771]
[242]
Borducchi, E.N.; Liu, J.; Nkolola, J.P.; Cadena, A.M.; Yu, W.H.; Fischinger, S.; Broge, T.; Abbink, P.; Mercado, N.B.; Chandrashekar, A.; Jetton, D.; Peter, L.; McMahan, K.; Moseley, E.T.; Bekerman, E.; Hesselgesser, J.; Li, W.; Lewis, M.G.; Alter, G.; Geleziunas, R.; Barouch, D.H. Antibody and TLR7 agonist delay viral rebound in SHIV-infected monkeys. Nature, 2018, 563(7731), 360-364.
[http://dx.doi.org/10.1038/s41586-018-0600-6] [PMID: 30283138]
[243]
Salie, Z.L.; Kirby, K.A.; Michailidis, E.; Marchand, B.; Singh, K.; Rohan, L.C.; Kodama, E.N.; Mitsuya, H.; Parniak, M.A.; Sarafianos, S.G. Structural basis of HIV inhibition by translocation-defective RT inhibitor 4′-ethynyl-2-fluoro-2′-deoxyadenosine (EFdA). Proc. Natl. Acad. Sci. USA, 2016, 113(33), 9274-9279.
[http://dx.doi.org/10.1073/pnas.1605223113] [PMID: 27489345]
[244]
Michailidis, E.; Marchand, B.; Kodama, E.N.; Singh, K.; Matsuoka, M.; Kirby, K.A.; Ryan, E.M.; Sawani, A.M.; Nagy, E.; Ashida, N.; Mitsuya, H.; Parniak, M.A.; Sarafianos, S.G. Mechanism of inhibition of HIV-1 reverse transcriptase by 4′-Ethynyl-2-fluoro-2′-deoxyadenosine triphosphate, a translocation-defective reverse transcriptase inhibitor. J. Biol. Chem., 2009, 284(51), 35681-35691.
[http://dx.doi.org/10.1074/jbc.M109.036616] [PMID: 19837673]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 19
ISSUE: 18
Year: 2019
Page: [1621 - 1649]
Pages: 29
DOI: 10.2174/1568026619666190712204603

Article Metrics

PDF: 37
HTML: 9