Discovery and Development of Non-Dopaminergic Agents for the Treatment of Schizophrenia: Overview of the Preclinical and Early Clinical Studies

Author(s): Agnieszka Jankowska, Grzegorz Satała, Anna Partyka, Anna Wesołowska*, Andrzej J. Bojarski, Maciej Pawłowski, Grażyna Chłoń-Rzepa*.

Journal Name: Current Medicinal Chemistry

Volume 26 , Issue 25 , 2019

Abstract:

Schizophrenia is a chronic psychiatric disorder that affects about 1 in 100 people around the world and results in persistent emotional and cognitive impairments. Untreated schizophrenia leads to deterioration in quality of life and premature death. Although the clinical efficacy of dopamine D2 receptor antagonists against positive symptoms of schizophrenia supports the dopamine hypothesis of the disease, the resistance of negative and cognitive symptoms to these drugs implicates other systems in its pathophysiology. Many studies suggest that abnormalities in glutamate homeostasis may contribute to all three groups of schizophrenia symptoms. Scientific considerations also include disorders of gamma-aminobutyric acid-ergic and serotonergic neurotransmissions as well as the role of the immune system. The purpose of this review is to update the most recent reports on the discovery and development of non-dopaminergic agents that may reduce positive, negative, and cognitive symptoms of schizophrenia, and may be alternative to currently used antipsychotics. This review collects the chemical structures of representative compounds targeting metabotropic glutamate receptor, gamma-aminobutyric acid type A receptor, alpha 7 nicotinic acetylcholine receptor, glycine transporter type 1 and glycogen synthase kinase 3 as well as results of in vitro and in vivo studies indicating their efficacy in schizophrenia. Results of clinical trials assessing the safety and efficacy of the tested compounds have also been presented. Finally, attention has been paid to multifunctional ligands with serotonin receptor affinity or phosphodiesterase inhibitory activity as novel strategies in the search for dedicated medicines for patients with schizophrenia.

Keywords: Schizophrenia, mGlu receptor ligands, GABAA receptor ligands, α7 nACh receptor agonists, GlyT1 inhibitors, GSK-3 inhibitors, PDE inhibitors, 5-HT receptor ligands.

[1]
Javitt, D.C. Current and emergent treatments for symptoms and neurocognitive impairment in schizophrenia. Curr. Treat. Options Psychiatry, 2015, 1(2), 107-120.
[http://dx.doi.org/10.1007/s40501-014-0010-9] [PMID: 26301175]
[2]
Burton, C.Z.; Harvey, P.D.; Patterson, T.L.; Twamley, E.W. Neurocognitive insight and objective cognitive functioning in schizophrenia. Schizophr. Res., 2016, 171(1-3), 131-136.
[http://dx.doi.org/10.1016/j.schres.2016.01.021] [PMID: 26811232]
[3]
Talreja, B.T.; Shah, S.; Kataria, L. Cognitive function in schizophrenia and its association with socio-demographics factors. Ind. Psychiatry J., 2013, 22(1), 47-53.
[http://dx.doi.org/10.4103/0972-6748.123619] [PMID: 24459374]
[4]
Smith, T.E.; Hull, J.W.; Israel, L.M.; Willson, D.F. Insight, symptoms, and neurocognition in schizophrenia and schizoaffective disorder. Schizophr. Bull., 2000, 26(1), 193-200.
[http://dx.doi.org/10.1093/oxfordjournals.schbul.a033439] [PMID: 10755681]
[5]
Zhou, Y.; Rosenheck, R.; Mohamed, S.; Zhang, J.; Chang, Q.; Ou, Y.; Sun, B.; Ning, Y.; He, H. Insight in inpatients with schizophrenia: relationship to symptoms and neuropsychological functioning. Schizophr. Res., 2015, 161(2-3), 376-381.
[http://dx.doi.org/10.1016/j.schres.2014.12.009] [PMID: 25533592]
[6]
Kaneko, K. Negative Symptoms and Cognitive Impairments in Schizophrenia: Two Key Symptoms Negatively Influencing Social Functioning. Yonago Acta Med., 2018, 61(2), 91-102.
[http://dx.doi.org/10.33160/yam.2018.06.001] [PMID: 29946215]
[7]
Patel, K.R.; Cherian, J.; Gohil, K.; Atkinson, D. Schizophrenia: overview and treatment options. P&T, 2014, 39(9), 638-645.
[PMID: 25210417]
[8]
Faries, D.; Ascher-Svanum, H.; Zhu, B.; Correll, C.; Kane, J. Antipsychotic monotherapy and polypharmacy in the naturalistic treatment of schizophrenia with atypical antipsychotics. BMC Psychiatry, 2005, 5(1), 26.
[http://dx.doi.org/10.1186/1471-244X-5-26] [PMID: 15921508]
[9]
Gomes, F.V.; Llorente, R.; Del Bel, E.A.; Viveros, M.P.; López-Gallardo, M.; Guimarães, F.S.; Del Bel, E.A.; Viveros, M.P.; López-Gallardo, M.; Guimarães, F.S. Decreased glial reactivity could be involved in the antipsychotic-like effect of cannabidiol. Schizophr. Res., 2015, 164(1-3), 155-163.
[http://dx.doi.org/10.1016/j.schres.2015.01.015] [PMID: 25680767]
[10]
Chong, H.Y.; Teoh, S.L.; Wu, D.B.; Kotirum, S.; Chiou, C.F.; Chaiyakunapruk, N. Global economic burden of schizophrenia: a systematic review. Neuropsychiatr. Dis. Treat., 2016, 12, 357-373.
[PMID: 26937191]
[11]
Montgomery, W.; Liu, L.; Stensland, M.D.; Xue, H.B.; Treuer, T.; Ascher-Svanum, H. The personal, societal, and economic burden of schizophrenia in the People’s Republic of China: implications for antipsychotic therapy. Clinicoecon. Outcomes Res., 2013, 5(1), 407-418.
[http://dx.doi.org/10.2147/CEOR.S44325] [PMID: 23983478]
[12]
Loosbrock, D.L.; Zhao, Z.; Johnstone, B.M.; Morris, L.S. Antipsychotic medication use patterns and associated costs of care for individuals with schizophrenia. J. Ment. Health Policy Econ., 2003, 6(2), 67-75.
[PMID: 14578539]
[13]
Muench, J.; Hamer, A.M. Adverse effects of antipsychotic medications. Am. Fam. Physician, 2010, 81(5), 617-622.
[PMID: 20187598]
[14]
Tybura, P.; Trześniowska-Drukała, B.; Bienkowski, P.; Beszlej, A.; Frydecka, D.; Mierzejewski, P.; Samochowiec, A.; Grzywacz, A.; Samochowiec, J. Pharmacogenetics of adverse events in schizophrenia treatment: comparison study of ziprasidone, olanzapine and perazine. Psychiatry Res., 2014, 219(2), 261-267.
[http://dx.doi.org/10.1016/j.psychres.2014.05.039] [PMID: 24930580]
[15]
Sahni, S.; Chavan, B.S.; Sidana, A.; Kalra, P.; Kaur, G. Comparative study of clozapine versus risperidone in treatment-naive, first-episode schizophrenia: A pilot study. Indian J. Med. Res., 2016, 144(5), 697-703.
[http://dx.doi.org/10.4103/ijmr.IJMR_279_15] [PMID: 28361822]
[16]
Peluso, M.J.; Lewis, S.W.; Barnes, T.R.E.; Jones, P.B. Extrapyramidal motor side-effects of first- and second-generation antipsychotic drugs. Br. J. Psychiatry, 2012, 200(5), 387-392.
[http://dx.doi.org/10.1192/bjp.bp.111.101485] [PMID: 22442101]
[17]
Meltzer, H.Y. Clozapine: balancing safety with superior antipsychotic efficacy. Clin. Schizophr. Relat. Psychoses, 2012, 6(3), 134-144.
[http://dx.doi.org/10.3371/CSRP.6.3.5] [PMID: 23006238]
[18]
Mailman, R.B.; Murthy, V. Third generation antipsychotic drugs: partial agonism or receptor functional selectivity? Curr. Pharm. Des., 2010, 16(5), 488-501.
[http://dx.doi.org/10.2174/138161210790361461] [PMID: 19909227]
[19]
Diefenderfer, L.A.; Iuppa, C. Brexpiprazole: A review of a new treatment option for schizophrenia and major depressive disorder. Ment Health Clin, 2018, 7(5), 207-212.
[http://dx.doi.org/10.9740/mhc.2017.09.207] [PMID: 29955525]
[20]
Brisch, R.; Saniotis, A.; Wolf, R.; Bielau, H.; Bernstein, H.G.; Steiner, J.; Bogerts, B.; Braun, K.; Jankowski, Z.; Kumaratilake, J.; Henneberg, M.; Gos, T. The role of dopamine in schizophrenia from a neurobiological and evolutionary perspective: old fashioned, but still in vogue. Front. Psychiatry, 2014, 5, 47.
[PMID: 24904434]
[21]
Perez-Costas, E.; Melendez-Ferro, M.; Roberts, R.C. Basal ganglia pathology in schizophrenia: dopamine connections and anomalies. J. Neurochem., 2010, 113(2), 287-302.
[http://dx.doi.org/10.1111/j.1471-4159.2010.06604.x] [PMID: 20089137]
[22]
Kołaczkowski, M.; Mierzejewski, P.; Bienkowski, P.; Wesołowska, A.; Newman-Tancredi, A. Antipsychotic, antidepressant, and cognitive-impairment properties of antipsychotics: rat profile and implications for behavioral and psychological symptoms of dementia. Naunyn Schmiedebergs Arch. Pharmacol., 2014, 387(6), 545-557.
[http://dx.doi.org/10.1007/s00210-014-0966-4] [PMID: 24599316]
[23]
Howes, O.; McCutcheon, R.; Stone, J. Glutamate and dopamine in schizophrenia: an update for the 21st century. J. Psychopharmacol. (Oxford), 2015, 29(2), 97-115.
[http://dx.doi.org/10.1177/0269881114563634] [PMID: 25586400]
[24]
Ahnaou, A.; Biermans, R.; Drinkenburg, W.H. Modulation of mGlu2 Receptors, but Not PDE10A Inhibition Normalizes Pharmacologically-Induced Deviance in Auditory Evoked Potentials and Oscillations in Conscious Rats. PLoS One, 2016, 11(1)e0147365
[http://dx.doi.org/10.1371/journal.pone.0147365] [PMID: 26808689]
[25]
Williams, S.; Boksa, P. Gamma oscillations and schizophrenia. J. Psychiatry Neurosci., 2010, 35(2), 75-77.
[http://dx.doi.org/10.1503/jpn.100021] [PMID: 20184803]
[26]
Shin, Y.W.; O’Donnell, B.F.; Youn, S.; Kwon, J.S. Gamma oscillation in schizophrenia. Psychiatry Investig., 2011, 8(4), 288-296.
[http://dx.doi.org/10.4306/pi.2011.8.4.288] [PMID: 22216037]
[27]
Riečanský, I.; Kašpárek, T.; Rehulová, J.; Katina, S.; Přikryl, R. Aberrant EEG responses to gamma-frequency visual stimulation in schizophrenia. Schizophr. Res., 2010, 124(1-3), 101-109.
[http://dx.doi.org/10.1016/j.schres.2010.06.022] [PMID: 20692124]
[28]
Foxe, J.J.; Yeap, S.; Snyder, A.C.; Kelly, S.P.; Thakore, J.H.; Molholm, S. The N1 auditory evoked potential component as an endophenotype for schizophrenia: high-density electrical mapping in clinically unaffected first-degree relatives, first-episode, and chronic schizophrenia patients. Eur. Arch. Psychiatry Clin. Neurosci., 2011, 261(5), 331-339.
[http://dx.doi.org/10.1007/s00406-010-0176-0] [PMID: 21153832]
[29]
Müller, N. Inflammation in Schizophrenia: Pathogenetic Aspects and Therapeutic Considerations. Schizophr. Bull., 2018, 44(5), 973-982.
[http://dx.doi.org/10.1093/schbul/sby024] [PMID: 29648618]
[30]
Niswender, C.M.; Conn, P.J. Metabotropic glutamate receptors: physiology, pharmacology, and disease. Annu. Rev. Pharmacol. Toxicol., 2010, 50, 295-322.
[http://dx.doi.org/10.1146/annurev.pharmtox.011008.145533] [PMID: 20055706]
[31]
Kunishima, N.; Shimada, Y.; Tsuji, Y.; Sato, T.; Yamamoto, M.; Kumasaka, T.; Nakanishi, S.; Jingami, H.; Morikawa, K. Structural basis of glutamate recognition by a dimeric metabotropic glutamate receptor. Nature, 2000, 407(6807), 971-977.
[http://dx.doi.org/10.1038/35039564] [PMID: 11069170]
[32]
Doumazane, E.; Scholler, P.; Zwier, J.M.; Trinquet, E.; Rondard, P.; Pin, J.P. A new approach to analyze cell surface protein complexes reveals specific heterodimeric metabotropic glutamate receptors. FASEB J., 2011, 25(1), 66-77.
[http://dx.doi.org/10.1096/fj.10-163147] [PMID: 20826542]
[33]
Yin, S.; Noetzel, M.J.; Johnson, K.A.; Zamorano, R.; Jalan-Sakrikar, N.; Gregory, K.J.; Conn, P.J.; Niswender, C.M. Selective actions of novel allosteric modulators reveal functional heteromers of metabotropic glutamate receptors in the CNS. J. Neurosci., 2014, 34(1), 79-94.
[http://dx.doi.org/10.1523/JNEUROSCI.1129-13.2014] [PMID: 24381270]
[34]
Yin, S.; Zamorano, R.; Conn, P.J.; Niswender, C.M. Functional selectivity induced by mGlu4 receptor positive allosteric modulation and concomitant activation of Gq coupled receptors. Neuropharmacology, 2013, 66(66), 122-132.
[http://dx.doi.org/10.1016/j.neuropharm.2012.03.003] [PMID: 22426233]
[35]
Sheffler, D.J.; Conn, P.J. Allosteric potentiators of metabotropic glutamate receptor subtype 1a differentially modulate independent signaling pathways in baby hamster kidney cells. Neuropharmacology, 2008, 55(4), 419-427.
[http://dx.doi.org/10.1016/j.neuropharm.2008.06.047] [PMID: 18625258]
[36]
Volk, D.W.; Eggan, S.M.; Lewis, D.A. Alterations in metabotropic glutamate receptor 1α and regulator of G protein signaling 4 in the prefrontal cortex in schizophrenia. Am. J. Psychiatry, 2010, 167(12), 1489-1498.
[http://dx.doi.org/10.1176/appi.ajp.2010.10030318] [PMID: 20889653]
[37]
Satow, A.; Maehara, S.; Ise, S.; Hikichi, H.; Fukushima, M.; Suzuki, G.; Kimura, T.; Tanak, T.; Ito, S.; Kawamoto, H.; Ohta, H.; Tanaka, T.; Ito, S. Pharmacological effects of the metabotropic glutamate receptor 1 antagonist compared with those of the metabotropic glutamate receptor 5 antagonist and metabotropic glutamate receptor 2/3 agonist in rodents: detailed investigations with a selective allosteric metabotropic glutamate receptor 1 antagonist, FTIDC [4-[1-(2-fluoropyridine-3-yl)-5-methyl-1H-1,2,3-triazol-4-yl]-N-isopropyl-N-methyl-3,6-dihydropyridine-1(2H)-carboxamide J. Pharmacol. Exp. Ther., 2008, 326(2), 577-586.
[http://dx.doi.org/10.1124/jpet.108.138107] [PMID: 18487514]
[38]
Suzuki, G.; Kimura, T.; Satow, A.; Kaneko, N.; Fukuda, J.; Hikichi, H.; Sakai, N.; Maehara, S.; Kawagoe-Takaki, H.; Hata, M.; Azuma, T.; Ito, S.; Kawamoto, H.; Ohta, H. Pharmacological characterization of a new, orally active and potent allosteric metabotropic glutamate receptor 1 antagonist, 4-[1-(2-fluoropyridin-3-yl)-5-methyl-1H-1,2,3-triazol-4-yl]-N-isopropyl-N-methyl-3,6-dihydropyridine-1(2H)-carboxamide (FTIDC). J. Pharmacol. Exp. Ther., 2007, 321(3), 1144-1153.
[http://dx.doi.org/10.1124/jpet.106.116574] [PMID: 17360958]
[39]
Ito, S.; Satoh, A.; Nagatomi, Y.; Hirata, Y.; Suzuki, G.; Kimura, T.; Satow, A.; Maehara, S.; Hikichi, H.; Hata, M.; Kawamoto, H.; Ohta, H. Discovery and biological profile of 4-(1-aryltriazol-4-yl)-tetrahydropyridines as an orally active new class of metabotropic glutamate receptor 1 antagonist. Bioorg. Med. Chem., 2008, 16(22), 9817-9829.
[http://dx.doi.org/10.1016/j.bmc.2008.09.060] [PMID: 18849168]
[40]
Brody, S.A.; Dulawa, S.C.; Conquet, F.; Geyer, M.A. Assessment of a prepulse inhibition deficit in a mutant mouse lacking mGlu5 receptors. Mol. Psychiatry, 2004, 9(1), 35-41.
[http://dx.doi.org/10.1038/sj.mp.4001404] [PMID: 14699440]
[41]
Lu, Y.M.; Jia, Z.; Janus, C.; Henderson, J.T.; Gerlai, R.; Wojtowicz, J.M.; Roder, J.C. Mice lacking metabotropic glutamate receptor 5 show impaired learning and reduced CA1 long-term potentiation (LTP) but normal CA3 LTP. J. Neurosci., 1997, 17(13), 5196-5205.
[http://dx.doi.org/10.1523/JNEUROSCI.17-13-05196.1997] [PMID: 9185557]
[42]
Jia, Z.; Lu, Y.; Henderson, J.; Taverna, F.; Romano, C.; Abramow-Newerly, W.; Wojtowicz, J.M.; Roder, J. Selective abolition of the NMDA component of long-term potentiation in mice lacking mGluR5. Learn. Mem., 1998, 5(4-5), 331-343.
[PMID: 10454358]
[43]
Campbell, U.C.; Lalwani, K.; Hernandez, L.; Kinney, G.G.; Conn, P.J.; Bristow, L.J. The mGluR5 antagonist 2-methyl-6-(phenylethynyl)-pyridine (MPEP) potentiates PCP-induced cognitive deficits in rats. Psychopharmacology (Berl.), 2004, 175(3), 310-318.
[http://dx.doi.org/10.1007/s00213-004-1827-5] [PMID: 15024550]
[44]
Henry, S.A.; Lehmann-Masten, V.; Gasparini, F.; Geyer, M.A.; Markou, A. The mGluR5 antagonist MPEP, but not the mGluR2/3 agonist LY314582, augments PCP effects on prepulse inhibition and locomotor activity. Neuropharmacology, 2002, 43(8), 1199-1209.
[http://dx.doi.org/10.1016/S0028-3908(02)00332-5] [PMID: 12527469]
[45]
Kinney, G.G.; Burno, M.; Campbell, U.C.; Hernandez, L.M.; Rodriguez, D.; Bristow, L.J.; Conn, P.J. Metabotropic glutamate subtype 5 receptors modulate locomotor activity and sensorimotor gating in rodents. J. Pharmacol. Exp. Ther., 2003, 306(1), 116-123.
[http://dx.doi.org/10.1124/jpet.103.048702] [PMID: 12660307]
[46]
Zolkowska, D.; Kondrat-Wrobel, M.W.; Florek-Luszczki, M.; Luszczki, J.J. Influence of MPEP (a selective mGluR5 antagonist) on the anticonvulsant action of novel antiepileptic drugs against maximal electroshock-induced seizures in mice. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2016, 65, 172-178.
[http://dx.doi.org/10.1016/j.pnpbp.2015.10.005] [PMID: 26478256]
[47]
O’Brien, J.A.; Lemaire, W.; Chen, T.B.; Chang, R.S.; Jacobson, M.A.; Ha, S.N.; Lindsley, C.W.; Schaffhauser, H.J.; Sur, C.; Pettibone, D.J.; Conn, P.J.; Williams, D.L.J. Jr A family of highly selective allosteric modulators of the metabotropic glutamate receptor subtype 5. Mol. Pharmacol., 2003, 64(3), 731-740.
[http://dx.doi.org/10.1124/mol.64.3.731] [PMID: 12920211]
[48]
O’Brien, J.A.; Lemaire, W.; Wittmann, M.; Jacobson, M.A.; Ha, S.N.; Wisnoski, D.D.; Lindsley, C.W.; Schaffhauser, H.J.; Rowe, B.; Sur, C.; Duggan, M.E.; Pettibone, D.J.; Conn, P.J.; Williams, D.L.J. Jr A novel selective allosteric modulator potentiates the activity of native metabotropic glutamate receptor subtype 5 in rat forebrain. J. Pharmacol. Exp. Ther., 2004, 309(2), 568-577.
[http://dx.doi.org/10.1124/jpet.103.061747] [PMID: 14747613]
[49]
Uslaner, J.M.; Parmentier-Batteur, S.; Flick, R.B.; Surles, N.O.; Lam, J.S.; McNaughton, C.H.; Jacobson, M.A.; Hutson, P.H. Dose-dependent effect of CDPPB, the mGluR5 positive allosteric modulator, on recognition memory is associated with GluR1 and CREB phosphorylation in the prefrontal cortex and hippocampus. Neuropharmacology, 2009, 57(5-6), 531-538.
[http://dx.doi.org/10.1016/j.neuropharm.2009.07.022] [PMID: 19627999]
[50]
Kinney, G.G.; O’Brien, J.A.; Lemaire, W.; Burno, M.; Bickel, D.J.; Clements, M.K.; Chen, T.B.; Wisnoski, D.D.; Lindsley, C.W.; Tiller, P.R.; Smith, S.; Jacobson, M.A.; Sur, C.; Duggan, M.E.; Pettibone, D.J.; Conn, P.J.; Williams, D.L.J. Jr A novel selective positive allosteric modulator of metabotropic glutamate receptor subtype 5 has in vivo activity and antipsychotic-like effects in rat behavioral models. J. Pharmacol. Exp. Ther., 2005, 313(1), 199-206.
[http://dx.doi.org/10.1124/jpet.104.079244] [PMID: 15608073]
[51]
Horio, M.; Fujita, Y.; Hashimoto, K. Therapeutic effects of metabotropic glutamate receptor 5 positive allosteric modulator CDPPB on phencyclidine-induced cognitive deficits in mice. Fundam. Clin. Pharmacol., 2013, 27(5), 483-488.
[http://dx.doi.org/10.1111/j.1472-8206.2012.01045.x] [PMID: 22594375]
[52]
Clifton, N.E.; Morisot, N.; Girardon, S.; Millan, M.J.; Loiseau, F. Enhancement of social novelty discrimination by positive allosteric modulators at metabotropic glutamate 5 receptors: adolescent administration prevents adult-onset deficits induced by neonatal treatment with phencyclidine. Psychopharmacology (Berl.), 2013, 225(3), 579-594.
[http://dx.doi.org/10.1007/s00213-012-2845-3] [PMID: 22983144]
[53]
Chen, T.; Cao, L.; Dong, W.; Luo, P.; Liu, W.; Qu, Y.; Fei, Z. Protective effects of mGluR5 positive modulators against traumatic neuronal injury through PKC-dependent activation of MEK/ERK pathway. Neurochem. Res., 2012, 37(5), 983-990.
[http://dx.doi.org/10.1007/s11064-011-0691-z] [PMID: 22228200]
[54]
Chen, H.H.; Liao, P.F.; Chan, M.H. mGluR5 positive modulators both potentiate activation and restore inhibition in NMDA receptors by PKC dependent pathway. J. Biomed. Sci., 2011, 18, 19.
[http://dx.doi.org/10.1186/1423-0127-18-19] [PMID: 21342491]
[55]
Spear, N.; Gadient, R.A.; Wilkins, D.E.; Do, M.; Smith, J.S.; Zeller, K.L.; Schroeder, P.; Zhang, M.; Arora, J.; Chhajlani, V. Preclinical profile of a novel metabotropic glutamate receptor 5 positive allosteric modulator. Eur. J. Pharmacol., 2011, 659(2-3), 146-154.
[http://dx.doi.org/10.1016/j.ejphar.2011.02.003] [PMID: 21335002]
[56]
Liu, F.; Grauer, S.; Kelley, C.; Navarra, R.; Graf, R.; Zhang, G.; Atkinson, P.J.; Popiolek, M.; Wantuch, C.; Khawaja, X.; Smith, D.; Olsen, M.; Kouranova, E.; Lai, M.; Pruthi, F.; Pulicicchio, C.; Day, M.; Gilbert, A.; Pausch, M.H.; Brandon, N.J.; Beyer, K.L. ADX47273 [S-(4-Fluoro-Phenyl)-3-[3-(4-Fluoro-Phenyl)-[1,2,4]-Oxadiazol-5-yl]-Piperidin-1-yl-Methanone]: A Novel Metabotropic Glutamate Receptor 5-Selective Positive Allosteric Modulator with Preclinical Antipsychotic-like and Procognitive Activities. J. Pharmacol. Exp. Ther., 2008, 327(3), 827-839.
[http://dx.doi.org/10.1124/jpet.108.136580] [PMID: 18753411]
[57]
Schlumberger, C.; Pietraszek, M.; Gravius, A.; Danysz, W. Effects of a positive allosteric modulator of mGluR5 ADX47273 on conditioned avoidance response and PCP-induced hyperlocomotion in the rat as models for schizophrenia. Pharmacol. Biochem. Behav., 2010, 95(1), 23-30.
[http://dx.doi.org/10.1016/j.pbb.2009.12.002] [PMID: 19995568]
[58]
Schlumberger, C.; Pietraszek, M.; Gravius, A.; Klein, K.U.; Greco, S.; Morè, L.; Danysz, W. Comparison of the mGlu(5) receptor positive allosteric modulator ADX47273 and the mGlu(2/3) receptor agonist LY354740 in tests for antipsychotic-like activity. Eur. J. Pharmacol., 2009, 623(1-3), 73-83.
[http://dx.doi.org/10.1016/j.ejphar.2009.09.006] [PMID: 19765575]
[59]
Liu, F.; Grauer, S.; Kelley, C.; Navarra, R.; Graf, R.; Zhang, G.; Atkinson, P.J.; Popiolek, M.; Wantuch, C.; Khawaja, X.; Smith, D.; Olsen, M.; Kouranova, E.; Lai, M.; Pruthi, F.; Pulicicchio, C.; Day, M.; Gilbert, A.; Pausch, M.H.; Brandon, N.J.; Beyer, K.L. ADX47273 [S-(4-Fluoro-Phenyl)-3-[3-(4-Fluoro-Phenyl)-[1,2,4]-Oxadiazol-5-yl]-Piperidin-1-yl-Methanone]: A Novel Metabotropic Glutamate Receptor 5-Selective Positive Allosteric Modulator with Preclinical Antipsychotic-like and Procognitive Activities. J. Pharmacol. Exp. Ther., 2008, 327(3), 827-839.
[http://dx.doi.org/10.1124/jpet.108.136580] [PMID: 18753411]
[60]
Conde-Ceide, S.; Martínez-Viturro, C.M.; Alcázar, J.; Garcia-Barrantes, P.M.; Lavreysen, H.; Mackie, C.; Vinson, P.N.; Rook, J.M.; Bridges, T.M.; Daniels, J.S.; Megens, A.; Langlois, X.; Drinkenburg, W.H.; Ahnaou, A.; Niswender, C.M.; Jones, C.K.; Macdonald, G.J.; Steckler, T.; Conn, P.J.; Stauffer, S.R.; Bartolomé-Nebreda, J.M.; Lindsley, C.W. Discovery of VU0409551/JNJ-46778212: An mGlu5 Positive Allosteric Modulator Clinical Candidate Targeting Schizophrenia. ACS Med. Chem. Lett., 2015, 6(6), 716-720.
[http://dx.doi.org/10.1021/acsmedchemlett.5b00181] [PMID: 26157544]
[61]
Conde-Ceide, S.; Martínez-Viturro, C.M.; Alcázar, J.; Garcia-Barrantes, P.M.; Lavreysen, H.; Mackie, C.; Vinson, P.N.; Rook, J.M.; Bridges, T.M.; Daniels, J.S.; Megens, A.; Langlois, X.; Drinkenburg, W.H.; Ahnaou, A.; Niswender, C.M.; Jones, C.K.; Macdonald, G.J.; Steckler, T.; Conn, P.J.; Stauffer, S.R.; Bartolomé-Nebreda, J.M.; Lindsley, C.W. Discovery of VU0409551/JNJ-46778212: An mGlu5 Positive Allosteric Modulator Clinical Candidate Targeting Schizophrenia. ACS Med. Chem. Lett., 2015, 6(6), 716-720.
[http://dx.doi.org/10.1021/acsmedchemlett.5b00181] [PMID: 26157544]
[62]
Zhou, Y.; Malosh, C.; Conde-Ceide, S.; Martínez-Viturro, C.M.; Alcázar, J.; Lavreysen, H.; Mackie, C.; Bridges, T.M.; Daniels, J.S.; Niswender, C.M.; Jones, C.K.; Macdonald, G.J.; Steckler, T.; Conn, P.J.; Stauffer, S.R.; Bartolomé-Nebreda, J.M.; Lindsley, C.W. Further optimization of the mGlu5 PAM clinical candidate VU0409551/JNJ-46778212: Progress and challenges towards a back-up compound. Bioorg. Med. Chem. Lett., 2015, 25(17), 3515-3519.
[http://dx.doi.org/10.1016/j.bmcl.2015.06.096] [PMID: 26183084]
[63]
Muguruza, C.; Meana, J.J.; Callado, L.F.; Group, I.I.; Group, I.I. Metabotropic Glutamate Receptors as Targets for Novel Antipsychotic Drugs. Front. Pharmacol., 2016, 7, 130.
[http://dx.doi.org/10.3389/fphar.2016.00130] [PMID: 27242534]
[64]
Engel, M.; Snikeris, P.; Matosin, N.; Newell, K.A.; Huang, X.F.; Frank, E. mGluR2/3 agonist LY379268 rescues NMDA and GABAA receptor level deficits induced in a two-hit mouse model of schizophrenia. Psychopharmacology (Berl.), 2016, 233(8), 1349-1359.
[http://dx.doi.org/10.1007/s00213-016-4230-0] [PMID: 26861891]
[65]
Johnson, M.P.; Chamberlain, M. Modulation of stress-induced and stimulated hyperprolactinemia with the group II metabotropic glutamate receptor selective agonist, LY379268. Neuropharmacology, 2002, 43(5), 799-808.
[http://dx.doi.org/10.1016/S0028-3908(02)00142-9] [PMID: 12384165]
[66]
Wierońska, J.M.; Sławińska, A.; Stachowicz, K.; Łasoń-Tyburkiewicz, M.; Gruca, P.; Papp, M.; Pilc, A. The reversal of cognitive, but not negative or positive symptoms of schizophrenia, by the mGlu2/3 receptor agonist, LY379268, is 5-HT1A dependent. Behav. Brain Res., 2013, 256, 298-304.
[http://dx.doi.org/10.1016/j.bbr.2013.08.007] [PMID: 23948211]
[67]
Rorick-Kehn, L.M.; Johnson, B.G.; Knitowski, K.M.; Salhoff, C.R.; Witkin, J.M.; Perry, K.W.; Griffey, K.I.; Tizzano, J.P.; Monn, J.A.; McKinzie, D.L.; Schoepp, D.D. In vivo pharmacological characterization of the structurally novel, potent, selective mGlu2/3 receptor agonist LY404039 in animal models of psychiatric disorders. Psychopharmacology (Berl.), 2007, 193(1), 121-136.
[http://dx.doi.org/10.1007/s00213-007-0758-3] [PMID: 17384937]
[68]
Moghaddam, B.; Adams, B.W. Reversal of Phencyclidine Effects by a Group II Metabotropic Glutamate Receptor Agonist in Rats., 1998, 281(5381), 1349-1352.
[http://dx.doi.org/10.1126/science.281.5381.1349]
[69]
Monn, J.A.; Valli, M.J.; Massey, S.M.; Wright, R.A.; Salhoff, C.R.; Johnson, B.G.; Howe, T.; Alt, C.A.; Rhodes, G.A.; Robey, R.L.; Griffey, K.R.; Tizzano, J.P.; Kallman, M.J.; Helton, D.R.; Schoepp, D.D. Design, synthesis, and pharmacological characterization of (+)-2-aminobicyclo[3.1.0]hexane-2,6-dicarboxylic acid (LY354740): a potent, selective, and orally active group 2 metabotropic glutamate receptor agonist possessing anticonvulsant and anxiolytic properties. J. Med. Chem., 1997, 40(4), 528-537.
[http://dx.doi.org/10.1021/jm9606756] [PMID: 9046344]
[70]
Helton, D.R.; Tizzano, J.P.; Monn, J.A.; Schoepp, D.D.; Kallman, M.J. Anxiolytic and side-effect profile of LY354740: a potent, highly selective, orally active agonist for group II metabotropic glutamate receptors. J. Pharmacol. Exp. Ther., 1998, 284(2), 651-660.
[PMID: 9454811]
[72]
Downing, A.M.; Kinon, B.J.; Millen, B.A.; Zhang, L.; Liu, L.; Morozova, M.A.; Brenner, R.; Rayle, T.J.; Nisenbaum, L.; Zhao, F.; Gomez, J.C.A.A. Double-Blind, Placebo-Controlled Comparator Study of LY2140023 monohydrate in patients with schizophrenia. BMC Psychiatry, 2014, 14, 351.
[http://dx.doi.org/10.1186/s12888-014-0351-3] [PMID: 25539791]
[73]
Moulton, R.D.; Ruterbories, K.J.; Bedwell, D.W.; Mohutsky, M.A. In vitro characterization of the bioconversion of pomaglumetad methionil, a novel metabotropic glutamate 2/3 receptor agonist peptide prodrug. Drug Metab. Dispos., 2015, 43(5), 756-761.
[http://dx.doi.org/10.1124/dmd.114.062893] [PMID: 25755052]
[74]
Fell, M.J.; Svensson, K.A.; Johnson, B.G.; Schoepp, D.D. Evidence for the role of metabotropic glutamate (mGlu)2 not mGlu3 receptors in the preclinical antipsychotic pharmacology of the mGlu2/3 receptor agonist (-)-(1R,4S,5S,6S)-4-amino-2-sulfonylbicyclo[3.1.0]hexane-4,6-dicarboxylic acid (LY404039). J. Pharmacol. Exp. Ther., 2008, 326(1), 209-217.
[http://dx.doi.org/10.1124/jpet.108.136861] [PMID: 18424625]
[75]
Li, M.L.; Yang, S.S.; Xing, B.; Ferguson, B.R.; Gulchina, Y.; Li, Y.C.; Li, F.; Hu, X.Q.; Gao, W.J. LY395756, an mGluR2 agonist and mGluR3 antagonist, enhances NMDA receptor expression and function in the normal adult rat prefrontal cortex, but fails to improve working memory and reverse MK801-induced working memory impairment. Exp. Neurol., 2015, 273, 190-201.
[http://dx.doi.org/10.1016/j.expneurol.2015.08.019] [PMID: 26341392]
[76]
Wang, M-J.; Li, Y-C.; Snyder, M.A.; Wang, H.; Li, F.; Gao, W-J.; Group, I.I. Group II metabotropic glutamate receptor agonist LY379268 regulates AMPA receptor trafficking in prefrontal cortical neurons. PLoS One, 2013, 8(4)e61787
[http://dx.doi.org/10.1371/journal.pone.0061787] [PMID: 23593498]
[77]
Litman, R.E.; Smith, M.A.; Doherty, J.J.; Cross, A.; Raines, S.; Gertsik, L.; Zukin, S.R. AZD8529, a positive allosteric modulator at the mGluR2 receptor, does not improve symptoms in schizophrenia: A proof of principle study. Schizophr. Res., 2016, 172(1-3), 152-157.
[http://dx.doi.org/10.1016/j.schres.2016.02.001] [PMID: 26922656]
[78]
Sławińska, A.; Wierońska, J.M.; Stachowicz, K.; Marciniak, M.; Lasoń-Tyburkiewicz, M.; Gruca, P.; Papp, M.; Kusek, M.; Tokarski, K.; Doller, D.; Pilc, A. The antipsychotic-like effects of positive allosteric modulators of metabotropic glutamate mGlu4 receptors in rodents. Br. J. Pharmacol., 2013, 169(8), 1824-1839.
[http://dx.doi.org/10.1111/bph.12254] [PMID: 23714045]
[79]
Ossowska, K.; Wardas, J.; Berghauzen-Maciejewska, K.; Głowacka, U.; Kuter, K.; Pilc, A.; Zorn, S.H.; Doller, D. Lu AF21934, a positive allosteric modulator of mGlu4 receptors, reduces the harmaline-induced hyperactivity but not tremor in rats. Neuropharmacology, 2014, 83, 28-35.
[http://dx.doi.org/10.1016/j.neuropharm.2014.03.018] [PMID: 24726309]
[80]
Woźniak, M.; Gołembiowska, K.; Noworyta-Sokołowska, K.; Acher, F.; Cieślik, P.; Kusek, M.; Tokarski, K.; Pilc, A.; Wierońska, J.M. Neurochemical and behavioral studies on the 5-HT1A-dependent antipsychotic action of the mGlu4 receptor agonist LSP4-2022. Neuropharmacology, 2017, 115, 149-165.
[http://dx.doi.org/10.1016/j.neuropharm.2016.06.025] [PMID: 27465045]
[81]
Podkowa, K.; Rzeźniczek, S.; Marciniak, M.; Acher, F.; Pilc, A.; Pałucha-Poniewiera, A. A novel mGlu4 selective agonist LSP4-2022 increases behavioral despair in mouse models of antidepressant action. Neuropharmacology, 2015, 97, 338-345.
[http://dx.doi.org/10.1016/j.neuropharm.2015.05.039] [PMID: 26074092]
[82]
Pałucha-Poniewiera, A.; Kłodzińska, A.; Stachowicz, K.; Tokarski, K.; Hess, G.; Schann, S.; Frauli, M.; Neuville, P.; Pilc, A. Peripheral administration of group III mGlu receptor agonist ACPT-I exerts potential antipsychotic effects in rodents. Neuropharmacology, 2008, 55(4), 517-524.
[http://dx.doi.org/10.1016/j.neuropharm.2008.06.033] [PMID: 18619473]
[83]
Wierońska, J.M.; Stachowicz, K.; Acher, F.; Lech, T.; Pilc, A.; Wierońska, J.M.; Stachowicz, K.; Acher, F.; Lech, T. Opposing efficacy of group III mGlu receptor activators, LSP1-2111 and AMN082, in animal models of positive symptoms of schizophrenia. Psychopharmacology (Berl.), 2012, 220(3), 481-494.
[http://dx.doi.org/10.1007/s00213-011-2502-2] [PMID: 21952670]
[84]
Cajina, M.; Nattini, M.; Song, D.; Smagin, G.; Jørgensen, E.B.; Chandrasena, G.; Bundgaard, C.; Toft, D.B.; Huang, X.; Acher, F.; Doller, D. Qualification of LSP1-2111 as a Brain Penetrant Group III Metabotropic Glutamate Receptor Orthosteric Agonist. ACS Med. Chem. Lett., 2013, 5(2), 119-123.
[http://dx.doi.org/10.1021/ml400338f] [PMID: 24900783]
[85]
Wierońska, J.M.; Acher, F.C.; Sławińska, A.; Gruca, P.; Lasoń-Tyburkiewicz, M.; Papp, M.; Pilc, A. The antipsychotic-like effects of the mGlu group III orthosteric agonist, LSP1-2111, involves 5-HT1A signalling. Psychopharmacology (Berl.), 2013, 227(4), 711-725.
[http://dx.doi.org/10.1007/s00213-013-3005-0] [PMID: 23474845]
[87]
Mierzejewski, P.; Kolaczkowski, M.; Marcinkowska, M.; Wesolowska, A.; Samochowiec, J.; Pawlowski, M.; Bienkowski, P. Antipsychotic-like effects of zolpidem in Wistar rats. Eur. J. Pharmacol., 2016, 773, 51-58.
[http://dx.doi.org/10.1016/j.ejphar.2016.01.009] [PMID: 26825544]
[88]
Mierzejewski, P.; Kolaczkowski, M.; Nowak, N.; Korkosz, A.; Scinska, A.; Sienkiewicz-Jarosz, H.; Samochowiec, J.; Kostowski, W.; Bienkowski, P. Pharmacological characteristics of zolpidem-induced catalepsy in the rat. Neurosci. Lett., 2013, 556, 99-103.
[http://dx.doi.org/10.1016/j.neulet.2013.10.011] [PMID: 24135337]
[89]
Marcinkowska, M.; Kołaczkowski, M.; Kamiński, K.; Bucki, A.; Pawłowski, M.; Siwek, A.; Karcz, T.; Mordyl, B.; Starowicz, G.; Kubowicz, P.; Pękala, E.; Wesołowska, A.; Samochowiec, J.; Mierzejewski, P.; Bienkowski, P. Design, synthesis, and biological evaluation of fluorinated imidazo[1,2-a]pyridine derivatives with potential antipsychotic activity. Eur. J. Med. Chem., 2016, 124, 456-467.
[http://dx.doi.org/10.1016/j.ejmech.2016.08.059] [PMID: 27598234]
[90]
Marcinkowska, M.; Kołaczkowski, M.; Kamiński, K.; Bucki, A.; Pawłowski, M.; Siwek, A.; Karcz, T.; Starowicz, G.; Słoczyńska, K.; Pękala, E.; Wesołowska, A.; Samochowiec, J.; Mierzejewski, P.; Bienkowski, P. 3-Aminomethyl Derivatives of 2-Phenylimidazo[1,2-a]-pyridine as Positive Allosteric Modulators of GABAA Receptor with Potential Antipsychotic Activity. ACS Chem. Neurosci., 2017, 8(6), 1291-1298.
[http://dx.doi.org/10.1021/acschemneuro.6b00432] [PMID: 28211669]
[91]
Lewis, D.A.; Cho, R.Y.; Carter, C.S.; Eklund, K.; Forster, S.; Kelly, M.A.; Montrose, D. Subunit-selective modulation of GABA type A receptor neurotransmission and cognition in schizophrenia. Am. J. Psychiatry, 2008, 165(12), 1585-1593.
[http://dx.doi.org/10.1176/appi.ajp.2008.08030395] [PMID: 18923067]
[92]
Atack, J.R. GABA A Receptor Subtype-Selective Efficacy: TPA023, an A2/A3 Selective Non-Sedating Anxiolytic and A5IA, an A5 Selective Cognition Enhancer. CNS Drug Rev., 2008, 14(1), 25-35.
[http://dx.doi.org/10.1111/j.1527-3458.2007.00034.x] [PMID: 18482097]
[93]
Atack, J.R.; Wong, D.F.; Fryer, T.D.; Ryan, C.; Sanabria, S.; Zhou, Y.; Dannals, R.F.; Eng, W.S.; Gibson, R.E.; Burns, H.D.; Vega, J.M.; Vessy, L.; Scott-Stevens, P.; Beech, J.S.; Baron, J-C.; Sohal, B.; Schrag, M.L.; Aigbirhio, F.I.; McKernan, R.M.; Hargreaves, R.J. Benzodiazepine binding site occupancy by the novel GABAA receptor subtype-selective drug 7-(1,1-dimethylethyl)-6-(2-ethyl-2H-1,2,4-triazol-3-ylmethoxy)-3-(2-fluorophenyl)-1,2,4-triazolo[4,3-b]pyridazine (TPA023) in rats, primates, and humans. J. Pharmacol. Exp. Ther., 2010, 332(1), 17-25.
[http://dx.doi.org/10.1124/jpet.109.157909] [PMID: 19779131]
[94]
Buchanan, R.W.; Keefe, R.S.E.; Lieberman, J.A.; Barch, D.M.; Csernansky, J.G.; Goff, D.C.; Gold, J.M.; Green, M.F.; Jarskog, L.F.; Javitt, D.C.; Kimhy, D.; Kraus, M.S.; McEvoy, J.P.; Mesholam-Gately, R.I.; Seidman, L.J.; Ball, M.P.; McMahon, R.P.; Kern, R.S.; Robinson, J.; Marder, S.R. A randomized clinical trial of MK-0777 for the treatment of cognitive impairments in people with schizophrenia. Biol. Psychiatry, 2011, 69(5), 442-449.
[http://dx.doi.org/10.1016/j.biopsych.2010.09.052] [PMID: 21145041]
[95]
Fatemi, S.H.; Folsom, T.D.; Rooney, R.J.; Thuras, P.D. Expression of GABAA α2-, β1- and ε-receptors are altered significantly in the lateral cerebellum of subjects with schizophrenia, major depression and bipolar disorder. Transl. Psychiatry, 2013, 3(9)e303
[http://dx.doi.org/10.1038/tp.2013.64] [PMID: 24022508]
[96]
Yee, B.K.; Keist, R.; von Boehmer, L.; Studer, R.; Benke, D.; Hagenbuch, N.; Dong, Y.; Malenka, R.C.; Fritschy, J.M.; Bluethmann, H.; Feldon, J.; Möhler, H.; Rudolph, U. A schizophrenia-related sensorimotor deficit links alpha 3-containing GABAA receptors to a dopamine hyperfunction. Proc. Natl. Acad. Sci. USA, 2005, 102(47), 17154-17159.
[http://dx.doi.org/10.1073/pnas.0508752102] [PMID: 16284244]
[97]
Engin, E.; Liu, J.; Rudolph, U. α2-containing GABA(A) receptors: a target for the development of novel treatment strategies for CNS disorders. Pharmacol. Ther., 2012, 136(2), 142-152.
[http://dx.doi.org/10.1016/j.pharmthera.2012.08.006] [PMID: 22921455]
[98]
Hines, R.M.; Hines, D.J.; Houston, C.M.; Mukherjee, J.; Haydon, P.G.; Tretter, V.; Smart, T.G.; Moss, S.J. Disrupting the clustering of GABAA receptor α2 subunits in the frontal cortex leads to reduced γ-power and cognitive deficits. Proc. Natl. Acad. Sci. USA, 2013, 110(41), 16628-16633.
[http://dx.doi.org/10.1073/pnas.1308706110] [PMID: 24043839]
[99]
Dervaux, A.; Laqueille, X. [Smoking and schizophrenia: epidemiological and clinical features Encephale, 2008, 34(3), 299-305.
[http://dx.doi.org/[http://10.1016/j.encep.2007.04.003] [PMID: 18558153]
[100]
Bertrand, D.; Lee, C.H.L.; Flood, D.; Marger, F.; Donnelly-Roberts, D. Therapeutic Potential of α7 Nicotinic Acetylcholine Receptors. Pharmacol. Rev., 2015, 67(4), 1025-1073.
[http://dx.doi.org/10.1124/pr.113.008581] [PMID: 26419447]
[101]
McCloughen, A. The association between schizophrenia and cigarette smoking: a review of the literature and implications for mental health nursing practice. Int. J. Ment. Health Nurs., 2003, 12(2), 119-129.
[http://dx.doi.org/10.1046/j.1440-0979.2003.00278.x] [PMID: 12956023]
[102]
Sagud, M.; Mihaljević-Peles, A.; Mück-Seler, D.; Pivac, N.; Vuksan-Cusa, B.; Brataljenović, T.; Jakovljević, M. Smoking and schizophrenia. Psychiatr. Danub., 2009, 21(3), 371-375.
[PMID: 19794359]
[103]
Cattapan-Ludewig, K.; Ludewig, S.; Jaquenoud Sirot, E.; Etzensberger, M.; Hasler, F. [Why do schizophrenic patients smoke? Nervenarzt, 2005, 76(3), 287-294.
[http://dx.doi.org/10.1007/s00115-004-1818-0] [PMID: 15448920]
[104]
Leonard, S.; Breese, C.; Adams, C.; Benhammou, K.; Gault, J.; Stevens, K.; Lee, M.; Adler, L.; Olincy, A.; Ross, R.; Freedman, R. Smoking and schizophrenia: abnormal nicotinic receptor expression. Eur. J. Pharmacol., 2000, 393(1-3), 237-242.
[http://dx.doi.org/10.1016/S0014-2999(00)00035-2] [PMID: 10771019]
[105]
Freedman, R.; Olincy, A.; Ross, R.G.; Waldo, M.C.; Stevens, K.E.; Adler, L.E.; Leonard, S. The genetics of sensory gating deficits in schizophrenia. Curr. Psychiatry Rep., 2003, 5(2), 155-161.
[http://dx.doi.org/10.1007/s11920-003-0032-2] [PMID: 12685995]
[106]
Hajós, M.; Hurst, R.S.; Hoffmann, W.E.; Krause, M.; Wall, T.M.; Higdon, N.R.; Groppi, V.E. The Selective Alpha 7 Nicotinic Acetylcholine Receptor Agonist PNU-282987 Enhances GABAergic Synaptic Activity in Brain Slices and Restores Auditory Gating Deficits in Anesthetized Rats. J. Pharmacol. Exp. Ther., 2005, 312(3), 1213-1222.
[http://dx.doi.org/10.1124/jpet.104.076968] [PMID: 15523001]
[107]
Freedman, R.; Adams, C.E.; Leonard, S. The alpha7-nicotinic acetylcholine receptor and the pathology of hippocampal interneurons in schizophrenia. J. Chem. Neuroanat., 2000, 20(3-4), 299-306.
[http://dx.doi.org/10.1016/S0891-0618(00)00109-5] [PMID: 11207427]
[108]
Lin, H.; Hsu, F.C.; Baumann, B.H.; Coulter, D.A.; Anderson, S.A.; Lynch, D.R. Cortical parvalbumin GABAergic deficits with α7 nicotinic acetylcholine receptor deletion: implications for schizophrenia. Mol. Cell. Neurosci., 2014, 61, 163-175.
[http://dx.doi.org/10.1016/j.mcn.2014.06.007] [PMID: 24983521]
[109]
Lin, H.; Hsu, F.C.; Baumann, B.H.; Coulter, D.A.; Lynch, D.R. Cortical synaptic NMDA receptor deficits in α7 nicotinic acetylcholine receptor gene deletion models: implications for neuropsychiatric diseases. Neurobiol. Dis., 2014, 63, 129-140.
[http://dx.doi.org/10.1016/j.nbd.2013.11.021] [PMID: 24326163]
[110]
Young, J.W.; Meves, J.M.; Tarantino, I.S.; Caldwell, S.; Geyer, M.A. Delayed procedural learning in α7-nicotinic acetylcholine receptor knockout mice. Genes Brain Behav., 2011, 10(7), 720-733.
[http://dx.doi.org/10.1111/j.1601-183X.2011.00711.x] [PMID: 21679297]
[111]
Young, J.W.; Crawford, N.; Kelly, J.S.; Kerr, L.E.; Marston, H.M.; Spratt, C.; Finlayson, K.; Sharkey, J. Impaired attention is central to the cognitive deficits observed in alpha 7 deficient mice. Eur. Neuropsychopharmacol., 2007, 17(2), 145-155.
[http://dx.doi.org/10.1016/j.euroneuro.2006.03.008] [PMID: 16650968]
[112]
Mazurov, A.A.; Kombo, D.C.; Hauser, T.A.; Miao, L.; Dull, G.; Genus, J.F.; Fedorov, N.B.; Benson, L.; Sidach, S.; Xiao, Y.; Hammond, P.S.; James, J.W.; Miller, C.H.; Yohannes, D. Discovery of (2S,3R)-N-[2-(pyridin-3-ylmethyl)-1-azabicyclo[2.2.2]oct-3-yl]benzo[b]furan-2-carboxamide (TC-5619), a selective α7 nicotinic acetylcholine receptor agonist, for the treatment of cognitive disorders. J. Med. Chem., 2012, 55(22), 9793-9809.
[http://dx.doi.org/10.1021/jm301048a] [PMID: 23126648]
[113]
Haig, G.; Wang, D.; Othman, A.A.; Zhao, J. The α7 Nicotinic Agonist ABT-126 in the Treatment of Cognitive Impairment Associated with Schizophrenia in Nonsmokers: Results from a Randomized Controlled Phase 2b Study. Neuropsychopharmacology, 2016, 41(12), 2893-2902.
[http://dx.doi.org/10.1038/npp.2016.101] [PMID: 27319970]
[114]
Keefe, R.S.; Meltzer, H.A.; Dgetluck, N.; Gawryl, M.; Koenig, G.; Moebius, H.J.; Lombardo, I.; Hilt, D.C. Randomized, Double-Blind, Placebo-Controlled Study of Encenicline, an α7 Nicotinic Acetylcholine Receptor Agonist, as a Treatment for Cognitive Impairment in Schizophrenia. Neuropsychopharmacology, 2015, 40(13), 3053-3060.
[http://dx.doi.org/10.1038/npp.2015.176] [PMID: 26089183]
[115]
Feuerbach, D.; Pezous, N.; Weiss, M.; Shakeri-Nejad, K.; Lingenhoehl, K.; Hoyer, D.; Hurth, K.; Bilbe, G.; Pryce, C.R.; McAllister, K.; Chaperon, F.; Kucher, K.; Johns, D.; Blaettler, T.; Lopez Lopez, C. AQW051, a novel, potent and selective α7 nicotinic ACh receptor partial agonist: pharmacological characterization and phase I evaluation. Br. J. Pharmacol., 2015, 172(5), 1292-1304.
[http://dx.doi.org/10.1111/bph.13001] [PMID: 25363835]
[116]
Prickaerts, J.; van Goethem, N.P.; Chesworth, R.; Shapiro, G.; Boess, F.G.; Methfessel, C.; Reneerkens, O.A.; Flood, D.G.; Hilt, D.; Gawryl, M.; Bertrand, S.; Bertrand, D.; König, G. EVP-6124, a novel and selective α7 nicotinic acetylcholine receptor partial agonist, improves memory performance by potentiating the acetylcholine response of α7 nicotinic acetylcholine receptors. Neuropharmacology, 2012, 62(2), 1099-1110.
[http://dx.doi.org/10.1016/j.neuropharm.2011.10.024] [PMID: 22085888]
[117]
Stevens, K.E.; Cornejo, B.; Adams, C.E.; Zheng, L.; Yonchek, J.; Hoffman, K.L.; Christians, U.; Kem, W.R. Continuous administration of a selective alpha7 nicotinic partial agonist, DMXBA, improves sensory inhibition without causing tachyphylaxis or receptor upregulation in DBA/2 mice. Brain Res., 2010, 1352, 140-146.
[http://dx.doi.org/10.1016/j.brainres.2010.06.063] [PMID: 20599427]
[118]
Simosky, J.K.; Stevens, K.E.; Kem, W.R.; Freedman, R. Intragastric DMXB-A, an alpha7 nicotinic agonist, improves deficient sensory inhibition in DBA/2 mice. Biol. Psychiatry, 2001, 50(7), 493-500.
[http://dx.doi.org/10.1016/S0006-3223(01)01093-9] [PMID: 11600102]
[119]
Stevens, K.E.; Kem, W.R.; Mahnir, V.M.; Freedman, R. Selective alpha7-nicotinic agonists normalize inhibition of auditory response in DBA mice. Psychopharmacology (Berl.), 1998, 136(4), 320-327.
[http://dx.doi.org/10.1007/s002130050573] [PMID: 9600576]
[120]
O’Neill, H.C.; Rieger, K.; Kem, W.R.; Stevens, K.E. DMXB, an alpha7 nicotinic agonist, normalizes auditory gating in isolation-reared rats. Psychopharmacology (Berl.), 2003, 169(3-4), 332-339.
[http://dx.doi.org/10.1007/s00213-003-1482-2] [PMID: 12759805]
[121]
Hauser, T.A.; Kucinski, A.; Jordan, K.G.; Gatto, G.J.; Wersinger, S.R.; Hesse, R.A.; Stachowiak, E.K.; Stachowiak, M.K.; Papke, R.L.; Lippiello, P.M.; Bencherif, M. TC-5619: an alpha7 neuronal nicotinic receptor-selective agonist that demonstrates efficacy in animal models of the positive and negative symptoms and cognitive dysfunction of schizophrenia. Biochem. Pharmacol., 2009, 78(7), 803-812.
[http://dx.doi.org/10.1016/j.bcp.2009.05.030] [PMID: 19482012]
[122]
Barch, D.M.; Marder, S.R.; Harms, M.P.; Jarskog, L.F.; Buchanan, R.W.; Cronenwett, W.; Chen, L.S.; Weiss, M.; Maguire, R.P.; Pezous, N.; Feuerbach, D.; Lopez-Lopez, C.; Johns, D.R.; Behrje, R.B.; Gomez-Mancilla, B. Task-related fMRI responses to a nicotinic acetylcholine receptor partial agonist in schizophrenia: A randomized trial. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2016, 71, 66-75.
[http://dx.doi.org/10.1016/j.pnpbp.2016.06.013] [PMID: 27371157]
[123]
Beinat, C.; Banister, S.D.; Herrera, M.; Law, V.; Kassiou, M. The therapeutic potential of α7 nicotinic acetylcholine receptor (α7 nAChR) agonists for the treatment of the cognitive deficits associated with schizophrenia. CNS Drugs, 2015, 29(7), 529-542.
[http://dx.doi.org/10.1007/s40263-015-0260-0] [PMID: 26242477]
[124]
Huang, M.; Felix, A.R.; Flood, D.G.; Bhuvaneswaran, C.; Hilt, D.; Koenig, G.; Meltzer, H.Y. The novel α7 nicotinic acetylcholine receptor agonist EVP-6124 enhances dopamine, acetylcholine, and glutamate efflux in rat cortex and nucleus accumbens. Psychopharmacology (Berl.), 2014, 231(23), 4541-4551.
[http://dx.doi.org/10.1007/s00213-014-3596-0] [PMID: 24810107]
[125]
Boess, F.G.; de Vry, J.; Erb, C.; Flessner, T.; Hendrix, M.; Luithle, J.; Methfessel, C.; Schnizler, K.; van der Staay, F.J.; van Kampen, M.; Wiese, W.B.; König, G. Pharmacological and behavioral profile of N-[(3R)-1-azabicyclo[2.2.2]oct-3-yl]-6-chinolincarboxamide (EVP-5141), a novel α7 nicotinic acetylcholine receptor agonist/serotonin 5-HT3 receptor antagonist. Psychopharmacology (Berl.), 2013, 227(1), 1-17.
[http://dx.doi.org/10.1007/s00213-012-2933-4] [PMID: 23241647]
[126]
Young, J.W.; Meves, J.M.; Geyer, M.A. Nicotinic agonist-induced improvement of vigilance in mice in the 5-choice continuous performance test. Behav. Brain Res., 2013, 240, 119-133.
[http://dx.doi.org/10.1016/j.bbr.2012.11.028] [PMID: 23201359]
[127]
Walker, D.P.; Wishka, D.G.; Piotrowski, D.W.; Jia, S.; Reitz, S.C.; Yates, K.M.; Myers, J.K.; Vetman, T.N.; Margolis, B.J.; Jacobsen, E.J.; Acker, B.A.; Groppi, V.E.; Wolfe, M.L.; Thornburgh, B.A.; Tinholt, P.M.; Cortes-Burgos, L.A.; Walters, R.R.; Hester, M.R.; Seest, E.P.; Dolak, L.A.; Han, F.; Olson, B.A.; Fitzgerald, L.; Staton, B.A.; Raub, T.J.; Hajos, M.; Hoffmann, W.E.; Li, K.S.; Higdon, N.R.; Wall, T.M.; Hurst, R.S.; Wong, E.H.F.; Rogers, B.N. Design, synthesis, structure-activity relationship, and in vivo activity of azabicyclic aryl amides as alpha7 nicotinic acetylcholine receptor agonists. Bioorg. Med. Chem., 2006, 14(24), 8219-8248.
[http://dx.doi.org/10.1016/j.bmc.2006.09.019] [PMID: 17011782]
[128]
Hahn, B.; Gold, J.M.; Buchanan, R.W. The potential of nicotinic enhancement of cognitive remediation training in schizophrenia. Neuropharmacology, 2013, 64, 185-190.
[http://dx.doi.org/10.1016/j.neuropharm.2012.05.050] [PMID: 22705396]
[129]
Walling, D.; Marder, S.R.; Kane, J.; Fleischhacker, W.W.; Keefe, R.S.E.; Hosford, D.A.; Dvergsten, C.; Segreti, A.C.; Beaver, J.S.; Toler, S.M.; Jett, J.E.; Dunbar, G.C. Phase 2 Trial of an Alpha-7 Nicotinic Receptor Agonist (TC-5619) in Negative and Cognitive Symptoms of Schizophrenia. Schizophr. Bull., 2016, 42(2), 335-343.
[http://dx.doi.org/10.1093/schbul/sbv072] [PMID: 26071208]
[130]
Lieberman, J.A.; Dunbar, G.; Segreti, A.C.; Girgis, R.R.; Seoane, F.; Beaver, J.S.; Duan, N.; Hosford, D.A.; Lieberman, J.A.; Dunbar, G.; Segreti, A.C.; Girgis, R.R.; Seoane, F.; Beaver, J.S.; Duan, N.; Hosford, D.A. A randomized exploratory trial of an α-7 nicotinic receptor agonist (TC-5619) for cognitive enhancement in schizophrenia. Neuropsychopharmacology, 2013, 38(6), 968-975.
[http://dx.doi.org/10.1038/npp.2012.259] [PMID: 23303043]
[131]
Kitagawa, H.; Takenouchi, T.; Azuma, R.; Wesnes, K.A.; Kramer, W.G.; Clody, D.E.; Burnett, A.L. Safety, pharmacokinetics, and effects on cognitive function of multiple doses of GTS-21 in healthy, male volunteers. Neuropsychopharmacology, 2003, 28(3), 542-551.
[http://dx.doi.org/10.1038/sj.npp.1300028] [PMID: 12629535]
[132]
Hashimoto, K. Targeting of α7 Nicotinic Acetylcholine Receptors in the Treatment of Schizophrenia and the Use of Auditory Sensory Gating as a Translational Biomarker. Curr. Pharm. Des., 2015, 21(26), 3797-3806.
[http://dx.doi.org/10.2174/1381612821666150605111345] [PMID: 26044974]
[133]
Freedman, R.; Olincy, A.; Buchanan, R.W.; Harris, J.G.; Gold, J.M.; Johnson, L.; Allensworth, D.; Guzman-Bonilla, A.; Clement, B.; Ball, M.P.; Kutnick, J.; Pender, V.; Martin, L.F.; Stevens, K.E.; Wagner, B.D.; Zerbe, G.O.; Soti, F.; Kem, W.R. Initial phase 2 trial of a nicotinic agonist in schizophrenia. Am. J. Psychiatry, 2008, 165(8), 1040-1047.
[http://dx.doi.org/10.1176/appi.ajp.2008.07071135] [PMID: 18381905]
[134]
Cheng, Q.; Yakel, J.L. Activation of α7 nicotinic acetylcholine receptors increases intracellular cAMP levels via activation of AC1 in hippocampal neurons. Neuropharmacology, 2015, 95, 405-414.
[http://dx.doi.org/10.1016/j.neuropharm.2015.04.016] [PMID: 25937212]
[135]
Cheng, Q.; Yakel, J.L. Presynaptic α7 nicotinic acetylcholine receptors enhance hippocampal mossy fiber glutamatergic transmission via PKA activation. J. Neurosci., 2014, 34(1), 124-133.
[http://dx.doi.org/10.1523/JNEUROSCI.2973-13.2014] [PMID: 24381273]
[136]
Hashimoto, K. Glycine transporter-1: a new potential therapeutic target for schizophrenia. Curr. Pharm. Des., 2011, 17(2), 112-120.
[http://dx.doi.org/10.2174/138161211795049598] [PMID: 21355838]
[137]
Lindsley, C.W.; Shipe, W.D.; Wolkenberg, S.E.; Theberge, C.R.; Williams, D.L., Jr; Sur, C.; Kinney, G.G. Progress towards validating the NMDA receptor hypofunction hypothesis of schizophrenia. Curr. Top. Med. Chem., 2006, 6(8), 771-785.
[http://dx.doi.org/10.2174/156802606777057599] [PMID: 16719816]
[138]
Harsing, L.G., Jr; Juranyi, Z.; Gacsalyi, I.; Tapolcsanyi, P.; Czompa, A.; Matyus, P. Glycine transporter type-1 and its inhibitors. Curr. Med. Chem., 2006, 13(9), 1017-1044.
[http://dx.doi.org/10.2174/092986706776360932] [PMID: 16611082]
[139]
Strzelecki, D.; Podgórski, M.; Kałużyńska, O.; Stefańczyk, L.; Kotlicka-Antczak, M.; Gmitrowicz, A.; Grzelak, P. Adding Sarcosine to Antipsychotic Treatment in Patients with Stable Schizophrenia Changes the Concentrations of Neuronal and Glial Metabolites in the Left Dorsolateral Prefrontal Cortex. Int. J. Mol. Sci., 2015, 16(10), 24475-24489.
[http://dx.doi.org/10.3390/ijms161024475] [PMID: 26501260]
[140]
Lim, R.; Hoang, P.; Berger, A.J. Blockade of glycine transporter-1 (GLYT-1) potentiates NMDA receptor-mediated synaptic transmission in hypoglossal motorneurons. J. Neurophysiol., 2004, 92(4), 2530-2537.
[http://dx.doi.org/10.1152/jn.01123.2003] [PMID: 15175365]
[141]
Zhang, J.; Wu, J.; Toyohara, J.; Fujita, Y.; Chen, H.; Hashimoto, K. Pharmacological characterization of [3H]CHIBA-3007 binding to glycine transporter 1 in the rat brain. PLoS One, 2011, 6(6)e21322
[http://dx.doi.org/10.1371/journal.pone.0021322] [PMID: 21731704]
[142]
Black, M.D.; Varty, G.B.; Arad, M.; Barak, S.; De Levie, A.; Boulay, D.; Pichat, P.; Griebel, G.; Weiner, I. Procognitive and antipsychotic efficacy of glycine transport 1 inhibitors (GlyT1) in acute and neurodevelopmental models of schizophrenia: latent inhibition studies in the rat. Psychopharmacology (Berl.), 2009, 202(1-3), 385-396.
[http://dx.doi.org/10.1007/s00213-008-1289-2] [PMID: 18709358]
[143]
Boulay, D.; Bergis, O.; Avenet, P.; Griebel, G. The glycine transporter-1 inhibitor SSR103800 displays a selective and specific antipsychotic-like profile in normal and transgenic mice. Neuropsychopharmacology, 2010, 35(2), 416-427.
[http://dx.doi.org/10.1038/npp.2009.144] [PMID: 19759529]
[144]
Zhang, H.X.; Hyrc, K.; Thio, L.L. The glycine transport inhibitor sarcosine is an NMDA receptor co-agonist that differs from glycine. J. Physiol., 2009, 587(Pt 13), 3207-3220.
[http://dx.doi.org/10.1113/jphysiol.2009.168757] [PMID: 19433577]
[145]
Lee, M.Y.; Lin, Y.R.; Tu, Y.S.; Tseng, Y.J.; Chan, M.H.; Chen, H.H. Effects of sarcosine and N, N-dimethylglycine on NMDA receptor-mediated excitatory field potentials. J. Biomed. Sci., 2017, 24(1), 18.
[http://dx.doi.org/10.1186/s12929-016-0314-8] [PMID: 28245819]
[146]
Yang, S.Y.; Hong, C.J.; Huang, Y.H.; Tsai, S.J. The effects of glycine transporter I inhibitor, N-methylglycine (sarcosine), on ketamine-induced alterations in sensorimotor gating and regional brain c-Fos expression in rats. Neurosci. Lett., 2010, 469(1), 127-130.
[http://dx.doi.org/10.1016/j.neulet.2009.11.058] [PMID: 19944746]
[147]
Chen, H.H.; Stoker, A.; Markou, A. The glutamatergic compounds sarcosine and N-acetylcysteine ameliorate prepulse inhibition deficits in metabotropic glutamate 5 receptor knockout mice. Psychopharmacology (Berl.), 2010, 209(4), 343-350.
[http://dx.doi.org/10.1007/s00213-010-1802-2] [PMID: 20217053]
[148]
Pisani, A.; Gubellini, P.; Bonsi, P.; Conquet, F.; Picconi, B.; Centonze, D.; Bernardi, G.; Calabresi, P. Metabotropic glutamate receptor 5 mediates the potentiation of N-methyl-D-aspartate responses in medium spiny striatal neurons. Neuroscience, 2001, 106(3), 579-587.
[http://dx.doi.org/10.1016/S0306-4522(01)00297-4] [PMID: 11591458]
[149]
Strzelecki, D.; Podgórski, M.; Kałużyńska, O.; Gawlik-Kotelnicka, O.; Stefańczyk, L.; Kotlicka-Antczak, M.; Gmitrowicz, A.; Grzelak, P. Supplementation of antipsychotic treatment with sarcosine - GlyT1 inhibitor - causes changes of glutamatergic (1)NMR spectroscopy parameters in the left hippocampus in patients with stable schizophrenia. Neurosci. Lett., 2015, 606, 7-12.
[http://dx.doi.org/10.1016/j.neulet.2015.08.039] [PMID: 26306650]
[150]
Strzelecki, D.; Podgórski, M.; Kałużyńska, O.; Gawlik-Kotelnicka, O.; Stefańczyk, L.; Kotlicka-Antczak, M.; Gmitrowicz, A.; Grzelak, P. Supplementation of Antipsychotic Treatment with the Amino Acid Sarcosine Influences Proton Magnetic Resonance Spectroscopy Parameters in Left Frontal White Matter in Patients with Schizophrenia. Nutrients, 2015, 7(10), 8767-8782.
[http://dx.doi.org/10.3390/nu7105427] [PMID: 26506383]
[151]
Lane, H.Y.; Lin, C.H.; Huang, Y.J.; Liao, C.H.; Chang, Y.C.; Tsai, G.E.A. A randomized, double-blind, placebo-controlled comparison study of sarcosine (N-methylglycine) and D-serine add-on treatment for schizophrenia. Int. J. Neuropsychopharmacol., 2010, 13(4), 451-460.
[http://dx.doi.org/10.1017/S1461145709990939] [PMID: 19887019]
[152]
Amiaz, R.; Kent, I.; Rubinstein, K.; Sela, B.A.; Javitt, D.; Weiser, M. Safety, tolerability and pharmacokinetics of open label sarcosine added on to anti-psychotic treatment in schizophrenia - preliminary study. Isr. J. Psychiatry Relat. Sci., 2015, 52(1), 12-15.
[PMID: 25841105]
[153]
Huang, C.C.; Wei, I.H.; Huang, C.L.; Chen, K.T.; Tsai, M.H.; Tsai, P.; Tun, R.; Huang, K.H.; Chang, Y.C.; Lane, H.Y.; Tsai, G.E. Inhibition of glycine transporter-I as a novel mechanism for the treatment of depression. Biol. Psychiatry, 2013, 74(10), 734-741.
[http://dx.doi.org/10.1016/j.biopsych.2013.02.020] [PMID: 23562005]
[154]
Lidö, H.H.; Jonsson, S.; Hyytiä, P.; Ericson, M.; Söderpalm, B. Further characterization of the GlyT-1 inhibitor Org25935: anti-alcohol, neurobehavioral, and gene expression effects. J. Neural Transm. (Vienna), 2017, 124(5), 607-619.
[http://dx.doi.org/10.1007/s00702-017-1685-z] [PMID: 28161754]
[155]
Schoemaker, J.H.; Jansen, W.T.; Schipper, J.; Szegedi, A. The selective glycine uptake inhibitor org 25935 as an adjunctive treatment to atypical antipsychotics in predominant persistent negative symptoms of schizophrenia: results from the GIANT trial. J. Clin. Psychopharmacol., 2014, 34(2), 190-198.
[http://dx.doi.org/10.1097/JCP.0000000000000073] [PMID: 24525661]
[157]
Umbricht, D.; Alberati, D.; Martin-Facklam, M.; Borroni, E.; Youssef, E.A.; Ostland, M.; Wallace, T.L.; Knoflach, F.; Dorflinger, E.; Wettstein, J.G.; Bausch, A.; Garibaldi, G.; Santarelli, L. Effect of bitopertin, a glycine reuptake inhibitor, on negative symptoms of schizophrenia: a randomized, double-blind, proof-of-concept study. JAMA Psychiatry, 2014, 71(6), 637-646.
[http://dx.doi.org/10.1001/jamapsychiatry.2014.163] [PMID: 24696094]
[158]
Hirayasu, Y.; Sato, S.; Takahashi, H.; Iida, S.; Shuto, N.; Yoshida, S.; Funatogawa, T.; Yamada, T.; Higuchi, T. A double-blind randomized study assessing safety and efficacy following one-year adjunctive treatment with bitopertin, a glycine reuptake inhibitor, in Japanese patients with schizophrenia. BMC Psychiatry, 2016, 16, 66.
[http://dx.doi.org/10.1186/s12888-016-0778-9] [PMID: 26980460]
[159]
Hofmann, C.; Banken, L.; Hahn, M.; Swearingen, D.; Nagel, S.; Martin-Facklam, M. Evaluation of the Effects of Bitopertin (RG1678) on Cardiac Repolarization: A Thorough Corrected QT Study in Healthy Male Volunteers. Clin. Ther., 2012, 34(10), 2061-2071.
[160]
Bugarski-Kirola, D.; Wang, A.; Abi-Saab, D.; Blättler, T. A phase II/III trial of bitopertin monotherapy compared with placebo in patients with an acute exacerbation of schizophrenia - results from the CandleLyte study. Eur. Neuropsychopharmacol., 2014, 24(7), 1024-1036.
[http://dx.doi.org/10.1016/j.euroneuro.2014.03.007] [PMID: 24735806]
[161]
Bugarski-Kirola, D.; Iwata, N.; Sameljak, S.; Reid, C.; Blaettler, T.; Millar, L.; Marques, T.R.; Garibaldi, G.; Kapur, S. Efficacy and safety of adjunctive bitopertin versus placebo in patients with suboptimally controlled symptoms of schizophrenia treated with antipsychotics: results from three phase 3, randomised, double-blind, parallel-group, placebo-controlled, multicentre studies in the SearchLyte clinical trial programme. Lancet Psychiatry, 2016, 3(12), 1115-1128.
[http://dx.doi.org/10.1016/S2215-0366(16)30344-3] [PMID: 27816567]
[162]
Bugarski-Kirola, D.; Blaettler, T.; Arango, C.; Fleischhacker, W.W.; Garibaldi, G.; Wang, A.; Dixon, M.; Bressan, R.A.; Nasrallah, H.; Lawrie, S.; Napieralski, J.; Ochi-Lohmann, T.; Reid, C.; Marder, S.R. Bitopertin in Negative Symptoms of Schizophrenia-Results From the Phase III FlashLyte and DayLyte Studies. Biol. Psychiatry, 2017, 82(1), 8-16.
[http://dx.doi.org/10.1016/j.biopsych.2016.11.014] [PMID: 28117049]
[163]
Boetsch, C.; Parrott, N.; Fowler, S.; Poirier, A.; Hainzl, D.; Banken, L.; Martin-Facklam, M.; Hofmann, C. Effects of Cytochrome P450 3A4 Inhibitors-Ketoconazole and Erythromycin-on Bitopertin Pharmacokinetics and Comparison with Physiologically Based Modelling Predictions. Clin. Pharmacokinet., 2016, 55(2), 237-247.
[http://dx.doi.org/10.1007/s40262-015-0312-0] [PMID: 26341813]
[164]
Lipina, T.V.; Palomo, V.; Gil, C.; Martinez, A.; Roder, J.C. Dual inhibitor of PDE7 and GSK-3-VP1.15 acts as antipsychotic and cognitive enhancer in C57BL/6J mice. Neuropharmacology, 2013, 64, 205-214.
[http://dx.doi.org/10.1016/j.neuropharm.2012.06.032] [PMID: 22749842]
[165]
Sahin, C.; Unal, G.; Aricioglu, F. Regulation of GSK-3 Activity as a Shared Mechanism in Psychiatric Disorders. Klinik Psikofarmakol. Bülteni, 2014, 24(1), 97-108.
[http://dx.doi.org/10.5455/bcp.20140317063255]
[166]
Enman, N.M.; Unterwald, E.M. Inhibition of GSK3 attenuates amphetamine-induced hyperactivity and sensitization in the mouse. Behav. Brain Res., 2012, 231(1), 217-225.
[http://dx.doi.org/10.1016/j.bbr.2012.03.027] [PMID: 22649795]
[167]
Lipina, T.V.; Kaidanovich-Beilin, O.; Patel, S.; Wang, M.; Clapcote, S.J.; Liu, F.; Woodgett, J.R.; Roder, J.C. Genetic and pharmacological evidence for schizophrenia-related Disc1 interaction with GSK-3. Synapse, 2011, 65(3), 234-248.
[http://dx.doi.org/10.1002/syn.20839] [PMID: 20687111]
[168]
Chen, P.; Gu, Z.; Liu, W.; Yan, Z. Glycogen synthase kinase 3 regulates N-methyl-D-aspartate receptor channel trafficking and function in cortical neurons. Mol. Pharmacol., 2007, 72(1), 40-51.
[http://dx.doi.org/10.1124/mol.107.034942] [PMID: 17400762]
[169]
Del’Guidice, T.; Latapy, C.; Rampino, A.; Khlghatyan, J.; Lemasson, M.; Gelao, B.; Quarto, T.; Rizzo, G.; Barbeau, A.; Lamarre, C.; Bertolino, A.; Blasi, G.; Beaulieu, J.M. FXR1P is a GSK3β substrate regulating mood and emotion processing. Proc. Natl. Acad. Sci. USA, 2015, 112(33), E4610-E4619.
[http://dx.doi.org/10.1073/pnas.1506491112] [PMID: 26240334]
[170]
Martinez, A.; Alonso, M.; Castro, A.; Pérez, C.; Moreno, F.J. First non-ATP competitive glycogen synthase kinase 3 β (GSK-3β) inhibitors: thiadiazolidinones (TDZD) as potential drugs for the treatment of Alzheimer’s disease. J. Med. Chem., 2002, 45(6), 1292-1299.
[http://dx.doi.org/10.1021/jm011020u] [PMID: 11881998]
[171]
Miller, R. Mechanisms of action of antipsychotic drugs of different classes, refractoriness to therapeutic effects of classical neuroleptics, and individual variation in sensitivity to their actions: Part I. Curr. Neuropharmacol., 2009, 7(4), 302-314.
[http://dx.doi.org/10.2174/157015909790031229] [PMID: 20514210]
[172]
Garay, R.P.; Bourin, M.; de Paillette, E.; Samalin, L.; Hameg, A.; Llorca, P-M. Potential serotonergic agents for the treatment of schizophrenia. Expert Opin. Investig. Drugs, 2016, 25(2), 159-170.
[http://dx.doi.org/10.1517/13543784.2016.1121995] [PMID: 26576669]
[173]
Garcia-Garcia, A.L.; Newman-Tancredi, A.; Leonardo, E.D. 5-HT(1A) [corrected] receptors in mood and anxiety: recent insights into autoreceptor versus heteroreceptor function. Psychopharmacology (Berl.), 2014, 231(4), 623-636.
[http://dx.doi.org/10.1007/s00213-013-3389-x] [PMID: 24337875]
[174]
Rummel-Kluge, C.; Komossa, K.; Schwarz, S.; Hunger, H.; Schmid, F.; Kissling, W.; Davis, J.M.; Leucht, S. Second-generation antipsychotic drugs and extrapyramidal side effects: a systematic review and meta-analysis of head-to-head comparisons. Schizophr. Bull., 2012, 38(1), 167-177.
[http://dx.doi.org/10.1093/schbul/sbq042] [PMID: 20513652]
[175]
Mahmoudi, J.; Mohajjel Nayebi, A.; Samini, M.; Reyhani-Rad, S.; Babapour, V. 5-HT(1A) receptor activation improves anti-cataleptic effects of levodopa in 6-hydroxydopamine-lesioned rats. Daru, 2011, 19(5), 338-343.
[PMID: 22615679]
[176]
Cross, A.J.; Widzowski, D.; Maciag, C.; Zacco, A.; Hudzik, T.; Liu, J.; Nyberg, S.; Wood, M.W. Quetiapine and its metabolite norquetiapine: translation from in vitro pharmacology to in vivo efficacy in rodent models. Br. J. Pharmacol., 2016, 173(1), 155-166.
[http://dx.doi.org/10.1111/bph.13346] [PMID: 26436896]
[177]
Pogorelov, V.M.; Rodriguiz, R.M.; Cheng, J.; Huang, M.; Schmerberg, C.M.; Meltzer, H.Y.; Roth, B.L.; Kozikowski, A.P.; Wetsel, W.C. 5-HT2C Agonists Modulate Schizophrenia-Like Behaviors in Mice. Neuropsychopharmacology, 2017, 42(11), 2163-2177.
[http://dx.doi.org/10.1038/npp.2017.52] [PMID: 28294132]
[178]
Ellenbroek, B.A.; Prinssen, E.P.M. Can 5-HT3 antagonists contribute toward the treatment of schizophrenia? Behav. Pharmacol., 2015, 26(1-2), 33-44.
[http://dx.doi.org/10.1097/FBP.0000000000000102] [PMID: 25356732]
[179]
Kim, D.D.; Barr, A.M.; Honer, W.G.; Procyshyn, R.M. Exercise-induced hippocampal neurogenesis: 5-HT3 receptor antagonism by antipsychotics as a potential limiting factor in Schizophrenia. Mol. Psychiatry, 2018, 23(12), 2252-2253.
[http://dx.doi.org/10.1038/s41380-018-0022-8] [PMID: 29422519]
[180]
Lummis, S.C.R. 5-HT(3) receptors. J. Biol. Chem., 2012, 287(48), 40239-40245.
[http://dx.doi.org/10.1074/jbc.R112.406496] [PMID: 23038271]
[181]
Chaudhry, I.B.; Husain, N.; Husain, M.O.; Hallak, J.; Drake, R.; Kazmi, A.; Rahman, Ru.; Hamirani, M.M.; Kiran, T.; Mehmood, N.; Stirling, J.; Dunn, G.; Deakin, B. Ondansetron and simvastatin added to treatment as usual in patients with schizophrenia: study protocol for a randomized controlled trial. Trials, 2013, 14, 101.
[http://dx.doi.org/10.1186/1745-6215-14-101] [PMID: 23782463]
[182]
Chaudhry, I.B.; Husain, N.; Drake, R.; Dunn, G.; Husain, M.O.; Kazmi, A.; Hamirani, M.M.; Rahman, R.; Stirling, J.; Deakin, W. Add-on clinical effects of simvastatin and ondansetron in patients with schizophrenia stabilized on antipsychotic treatment: pilot study. Ther. Adv. Psychopharmacol., 2014, 4(3), 110-116.
[http://dx.doi.org/10.1177/2045125313511487] [PMID: 25057343]
[183]
Motavallian-Naeini, A.; Minaiyan, M.; Rabbani, M.; Mahzuni, P. Anti-inflammatory effect of ondansetron through 5-HT3 receptors on TNBS-induced colitis in rat. EXCLI J., 2012, 11, 30-44.
[PMID: 27350767]
[184]
Samadi, R.; Soluti, S.; Daneshmand, R.; Assari, S.; Manteghi, A.A. Efficacy of Risperidone Augmentation with Ondansetron in the Treatment of Negative and Depressive Symptoms in Schizophrenia: A Randomized Clinical Trial. Iran. J. Med. Sci., 2017, 42(1), 14-23.
[PMID: 28293046]
[185]
Kishi, T.; Mukai, T.; Matsuda, Y.; Iwata, N. Selective serotonin 3 receptor antagonist treatment for schizophrenia: meta-analysis and systematic review. Neuromolecular Med., 2014, 16(1), 61-69.
[http://dx.doi.org/10.1007/s12017-013-8251-0] [PMID: 23896722]
[186]
Darcet, F.; Gardier, A.M.; David, D.J.; Guilloux, J-P. Chronic 5-HT4 receptor agonist treatment restores learning and memory deficits in a neuroendocrine mouse model of anxiety/depression. Neurosci. Lett., 2016, 616, 197-203.
[http://dx.doi.org/10.1016/j.neulet.2016.01.055] [PMID: 26850572]
[187]
Nikiforuk, A.; Hołuj, M.; Kos, T.; Popik, P. The effects of a 5-HT5A receptor antagonist in a ketamine-based rat model of cognitive dysfunction and the negative symptoms of schizophrenia. Neuropharmacology, 2016, 105, 351-360.
[http://dx.doi.org/10.1016/j.neuropharm.2016.01.035] [PMID: 26826431]
[188]
Giannoni, P.; Gaven, F.; de Bundel, D.; Baranger, K.; Marchetti-Gauthier, E.; Roman, F.S.; Valjent, E.; Marin, P.; Bockaert, J.; Rivera, S.; Claeysen, S. Early administration of RS 67333, a specific 5-HT4 receptor agonist, prevents amyloidogenesis and behavioral deficits in the 5XFAD mouse model of Alzheimer’s disease. Front. Aging Neurosci., 2013, 5, 96.
[http://dx.doi.org/10.3389/fnagi.2013.00096] [PMID: 24399967]
[189]
Woods, S.; Clarke, N.N.; Layfield, R.; Fone, K.C. 5-HT(6) receptor agonists and antagonists enhance learning and memory in a conditioned emotion response paradigm by modulation of cholinergic and glutamatergic mechanisms. Br. J. Pharmacol., 2012, 167(2), 436-449.
[http://dx.doi.org/10.1111/j.1476-5381.2012.02022.x] [PMID: 22568655]
[190]
Kendall, I.; Slotten, H.A.; Codony, X.; Burgueño, J.; Pauwels, P.J.; Vela, J.M.; Fone, K.C. E-6801, a 5-HT6 receptor agonist, improves recognition memory by combined modulation of cholinergic and glutamatergic neurotransmission in the rat. Psychopharmacology (Berl.), 2011, 213(2-3), 413-430.
[http://dx.doi.org/10.1007/s00213-010-1854-3] [PMID: 20405281]
[191]
de Bruin, N.M.; Prickaerts, J.; van Loevezijn, A.; Venhorst, J.; de Groote, L.; Houba, P.; Reneerkens, O.; Akkerman, S.; Kruse, C.G. Two novel 5-HT6 receptor antagonists ameliorate scopolamine-induced memory deficits in the object recognition and object location tasks in Wistar rats. Neurobiol. Learn. Mem., 2011, 96(2), 392-402.
[http://dx.doi.org/10.1016/j.nlm.2011.06.015] [PMID: 21757018]
[192]
Wesołowska, A.; Jastrzębska-Więsek, M.; Mysłowska, K.; Rychtyk, J.; Partyka, A. Combined Administration of the 5-HT6 Receptor Antagonist and Haloperidol Improves Rat Cognitive Functions. Pharmacy in Poland -perspectives of science and profession, 2017, S373.
[193]
Partyka, A.; Rychtyk, J.; Jastrzębska-Więsek, M.; Mysłowska, K.; Wesołowska, A. The Add-on of 5-HT6 Antagonist, but Not Agonist, to Haloperidol Treatment Improves MK-801-Induced Memory Deficits in Rats. Eur. Neuropsychopharmacol., 2019, 29, S254.
[http://dx.doi.org/10.1016/j.euroneuro.2018.11.402]
[194]
Nikiforuk, A. Targeting the Serotonin 5-HT7 Receptor in the Search for Treatments for CNS Disorders: Rationale and Progress to Date. CNS Drugs, 2015, 29(4), 265-275.
[http://dx.doi.org/10.1007/s40263-015-0236-0] [PMID: 25721336]
[195]
Kołaczkowski, M.; Mierzejewski, P.; Bieńkowski, P.; Wesołowska, A.; Newman-Tancredi, A. ADN-1184 a monoaminergic ligand with 5-HT(6/7) receptor antagonist activity: pharmacological profile and potential therapeutic utility. Br. J. Pharmacol., 2014, 171(4), 973-984.
[PMID: 24199650]
[196]
Chłoń-Rzepa, G.; Bucki, A.; Kołaczkowski, M.; Partyka, A.; Jastrzębska-Więsek, M.; Satała, G.; Bojarski, A.J.; Kalinowska-Tłuścik, J.; Kazek, G.; Mordyl, B.; Głuch-Lutwin, M.; Wesołowska, A. Arylpiperazinylalkyl derivatives of 8-amino-1,3-dimethylpurine-2,6-dione as novel multitarget 5-HT/D receptor agents with potential antipsychotic activity. J. Enzyme Inhib. Med. Chem., 2016, 31(6), 1048-1062.
[http://dx.doi.org/10.3109/14756366.2015.1088844] [PMID: 26406608]
[197]
Czopek, A.; Kołaczkowski, M.; Bucki, A.; Byrtus, H.; Pawłowski, M.; Kazek, G.; Bojarski, A.J.; Piaskowska, A.; Kalinowska-Tłuścik, J.; Partyka, A.; Wesołowska, A. Novel spirohydantoin derivative as a potent multireceptor-active antipsychotic and antidepressant agent. Bioorg. Med. Chem., 2015, 23(13), 3436-3447.
[http://dx.doi.org/10.1016/j.bmc.2015.04.026] [PMID: 25936259]
[198]
Jankowska, A.; Wesołowska, A.; Pawłowski, M.; Chłoń-Rzepa, G. Multi-Target-Directed Ligands Affecting Serotonergic Neurotransmission for Alzheimer’s Disease Therapy: Advances in Chemical and Biological Research. Curr. Med. Chem., 2018, 25(17), 2045-2067.
[http://dx.doi.org/10.2174/0929867324666170529122802] [PMID: 28554324]
[199]
Butini, S.; Gemma, S.; Campiani, G.; Franceschini, S.; Trotta, F.; Borriello, M.; Ceres, N.; Ros, S.; Coccone, S.S.; Bernetti, M.; De Angelis, M.; Brindisi, M.; Nacci, V.; Fiorini, I.; Novellino, E.; Cagnotto, A.; Mennini, T.; Sandager-Nielsen, K.; Andreasen, J.T.; Scheel-Kruger, J.; Mikkelsen, J.D.; Fattorusso, C. Discovery of a new class of potential multifunctional atypical antipsychotic agents targeting dopamine D3 and serotonin 5-HT1A and 5-HT2A receptors: design, synthesis, and effects on behavior. J. Med. Chem., 2009, 52(1), 151-169.
[http://dx.doi.org/10.1021/jm800689g] [PMID: 19072656]
[200]
Jankowska, A.; Świerczek, A.; Chłoń-Rzepa, G.; Pawłowski, M.; Wyska, E. PDE7-Selective and Dual Inhibitors: Advances in Chemical and Biological Research. Curr. Med. Chem., 2017, 24(7), 673-700.
[http://dx.doi.org/10.2174/0929867324666170116125159] [PMID: 28093982]
[201]
Lugnier, C. Cyclic nucleotide phosphodiesterase (PDE) superfamily: a new target for the development of specific therapeutic agents. Pharmacol. Ther., 2006, 109(3), 366-398.
[http://dx.doi.org/10.1016/j.pharmthera.2005.07.003] [PMID: 16102838]
[202]
Murthy, V.S.; Mangot, A.G. Psychiatric aspects of phosphodiesterases: An overview. Indian J. Pharmacol., 2015, 47(6), 594-599.
[http://dx.doi.org/10.4103/0253-7613.169593] [PMID: 26729948]
[203]
Snyder, G.L.; Vanover, K.E. PDE Inhibitors for the Treatment of Schizophrenia. Adv. Neurobiol., 2017, 17, 385-409.
[http://dx.doi.org/10.1007/978-3-319-58811-7_14] [PMID: 28956340]
[204]
Jankowska, A.; Wesołowska, A.; Pawłowski, M.; Chłoń-Rzepa, G. Multifunctional Ligands Targeting Phosphodiesterase as the Future Strategy for the Symptomatic and Disease-Modifying Treatment of Alzheimer’s Disease. Curr. Med. Chem., 2019, 26(27) Epub ahead of print
[http://dx.doi.org/10.2174/0929867326666190620095623] [PMID: 31250747]
[205]
Bollen, E.; Puzzo, D.; Rutten, K.; Privitera, L.; De Vry, J.; Vanmierlo, T.; Kenis, G.; Palmeri, A.; D’Hooge, R.; Balschun, D.; Steinbusch, H.M.W.; Blokland, A.; Prickaerts, J. Improved long-term memory via enhancing cGMP-PKG signaling requires cAMP-PKA signaling. Neuropsychopharmacology, 2014, 39(11), 2497-2505.
[http://dx.doi.org/10.1038/npp.2014.106] [PMID: 24813825]
[206]
Lakics, V.; Karran, E.H.; Boess, F.G. Quantitative comparison of phosphodiesterase mRNA distribution in human brain and peripheral tissues. Neuropharmacology, 2010, 59(6), 367-374.
[http://dx.doi.org/10.1016/j.neuropharm.2010.05.004] [PMID: 20493887]
[207]
Jin, S-L.C.; Ding, S-L.; Lin, S-C. Phosphodiesterase 4 and its inhibitors in inflammatory diseases. Chang Gung Med. J., 2012, 35(3), 197-210.
[http://dx.doi.org/10.4103/2319-4170.106152] [PMID: 22735051]
[208]
Millar, J.K.; Mackie, S.; Clapcote, S.J.; Murdoch, H.; Pickard, B.S.; Christie, S.; Muir, W.J.; Blackwood, D.H.; Roder, J.C.; Houslay, M.D.; Porteous, D.J. Disrupted in schizophrenia 1 and phosphodiesterase 4B: towards an understanding of psychiatric illness. J. Physiol., 2007, 584(Pt 2), 401-405.
[http://dx.doi.org/10.1113/jphysiol.2007.140210] [PMID: 17823207]
[209]
Wiescholleck, V.; Manahan-Vaughan, D. PDE4 inhibition enhances hippocampal synaptic plasticity in vivo and rescues MK801-induced impairment of long-term potentiation and object recognition memory in an animal model of psychosis. Transl. Psychiatry, 2012, 2(3), e89-e89.
[http://dx.doi.org/10.1038/tp.2012.17] [PMID: 22832854]
[210]
Kanes, S.J.; Tokarczyk, J.; Siegel, S.J.; Bilker, W.; Abel, T.; Kelly, M.P. Rolipram: a specific phosphodiesterase 4 inhibitor with potential antipsychotic activity. Neuroscience, 2007, 144(1), 239-246.
[http://dx.doi.org/10.1016/j.neuroscience.2006.09.026] [PMID: 17081698]
[211]
Halene, T.B.; Siegel, S.J. Antipsychotic-like properties of phosphodiesterase 4 inhibitors: evaluation of 4-(3-butoxy-4-methoxybenzyl)-2-imidazolidinone (RO-20-1724) with auditory event-related potentials and prepulse inhibition of startle. J. Pharmacol. Exp. Ther., 2008, 326(1), 230-239.
[http://dx.doi.org/10.1124/jpet.108.138586] [PMID: 18420599]
[212]
Kodimuthali, A.; Jabaris, S.S.L.; Pal, M. Recent advances on phosphodiesterase 4 inhibitors for the treatment of asthma and chronic obstructive pulmonary disease. J. Med. Chem., 2008, 51(18), 5471-5489.
[http://dx.doi.org/10.1021/jm800582j] [PMID: 18686943]
[213]
Gilleen, J.; Farah, Y.; Davison, C.; Kerins, S.; Valdearenas, L.; Uz, T.; Lahu, G.; Tsai, M.; Ogrinc, F.; Reichenberg, A.; Williams, S.C.; Mehta, M.A.; Shergill, S.S. An experimental medicine study of the phosphodiesterase-4 inhibitor, roflumilast, on working memory-related brain activity and episodic memory in schizophrenia patients. Psychopharmacology (Berl.), 2018, •••, 1-11.
[http://dx.doi.org/10.1007/s00213-018-5134-y] [PMID: 30536081]
[214]
Heckman, P.R.A.; van Duinen, M.A.; Bollen, E.P.P.; Nishi, A.; Wennogle, L.P.; Blokland, A.; Prickaerts, J. Phosphodiesterase Inhibition and Regulation of Dopaminergic Frontal and Striatal Functioning: Clinical Implications. Int. J. Neuropsychopharmacol., 2016, 19(10)pyw030
[http://dx.doi.org/10.1093/ijnp/pyw030] [PMID: 27037577]
[215]
Li, H.; Zuo, J.; Tang, W. Phosphodiesterase-4 Inhibitors for the Treatment of Inflammatory Diseases. Front. Pharmacol., 2018, 9, 1048.
[http://dx.doi.org/10.3389/fphar.2018.01048] [PMID: 30386231]
[216]
Zhang, C.; Xu, Y.; Zhang, H-T.; Gurney, M.E.; O’Donnell, J.M. Comparison of the Pharmacological Profiles of Selective PDE4B and PDE4D Inhibitors in the Central Nervous System. Sci. Rep., 2017, 7(1), 40115.
[http://dx.doi.org/10.1038/srep40115] [PMID: 28054669]
[217]
Duinen, M.V.; Reneerkens, O.A.H.; Lambrecht, L.; Sambeth, A.; Rutten, B.P.F.; Os, J.V.; Blokland, A.; Prickaerts, J. Treatment of Cognitive Impairment in Schizophrenia: Potential Value of Phosphodiesterase Inhibitors in Prefrontal Dysfunction. Curr. Pharm. Des., 2015, 21(26), 3813-3828.
[http://dx.doi.org/10.2174/1381612821666150605110941] [PMID: 26044976]
[218]
Sand, M.; Brown, D.; Nakagome, K.; Cordes, J.; Brenner, R.; Gruender, G.; Keefe, R.; Riesenberg, R.; Walling, D.; Daniels, K.; Wang, L.; McGinniss, J. Evaluation of the Efficacy, Safety, and Tolerability of BI 409306, a Novel Phosphodiesterase 9 Inhibitor, in Cognitive Impairment in Schizophrenia: A Randomized, Double-Blind, Placebo-Controlled, Phase II Study. Schizophr. Bull. 2017, 43(suppl_1), S15-S15.
[219]
Jankowska, A.; Świerczek, A.; Wyska, E.; Gawalska, A.; Bucki, A.; Pawłowski, M.; Chłoń-Rzepa, G. Advances in Discovery of PDE10A Inhibitors for CNS-Related Disorders. Part 1: Overview of the Chemical and Biological Research. Curr. Drug Targets, 2019, 20(1), 122-143.
[http://dx.doi.org/10.2174/1389450119666180808105056] [PMID: 30091414]
[220]
Assié, M.B.; Carilla-Durand, E.; Bardin, L.; Maraval, M.; Aliaga, M.; Malfètes, N.; Barbara, M.; Newman-Tancredi, A. The antipsychotics clozapine and olanzapine increase plasma glucose and corticosterone levels in rats: comparison with aripiprazole, ziprasidone, bifeprunox and F15063. Eur. J. Pharmacol., 2008, 592(1-3), 160-166.
[http://dx.doi.org/10.1016/j.ejphar.2008.06.105] [PMID: 18640111]
[221]
Suzuki, K.; Harada, A.; Shiraishi, E.; Kimura, H. In vivo pharmacological characterization of TAK-063, a potent and selective phosphodiesterase 10A inhibitor with antipsychotic-like activity in rodents. J. Pharmacol. Exp. Ther., 2015, 352(3), 471-479.
[http://dx.doi.org/10.1124/jpet.114.218552] [PMID: 25525190]
[222]
Megens, A.A.H.P.; Hendrickx, H.M.R.; Hens, K.A.; Fonteyn, I.; Langlois, X.; Lenaerts, I.; Somers, M.V.F.; de Boer, P.; Vanhoof, G. Pharmacology of JNJ-42314415, a centrally active phosphodiesterase 10A (PDE10A) inhibitor: a comparison of PDE10A inhibitors with D2 receptor blockers as potential antipsychotic drugs. J. Pharmacol. Exp. Ther., 2014, 349(1), 138-154.
[http://dx.doi.org/10.1124/jpet.113.211904] [PMID: 24421319]
[223]
Kehler, J.; Nielsen, J. PDE10A inhibitors: novel therapeutic drugs for schizophrenia. Curr. Pharm. Des., 2011, 17(2), 137-150.
[http://dx.doi.org/10.2174/138161211795049624] [PMID: 21355834]
[224]
Susín, C.; Morales-Garcia, J.A.; Aguilar-Morante, D.; Palomo, V.; Sanz-Sancristobal, M.; Alonso-Gil, S.; Gil, C.; Santos, A.; Martinez, A.; Perez-Castillo, A. The new iminothiadiazole derivative VP1.14 ameliorates hippocampal damage after an excitotoxic injury. J. Neurochem., 2012, 122(6), 1193-1202.
[http://dx.doi.org/10.1111/j.1471-4159.2012.07866.x] [PMID: 22774807]
[225]
Freyberg, Z.; Ferrando, S.J.; Javitch, J.A. Roles of the Akt/GSK-3 and Wnt signaling pathways in schizophrenia and antipsychotic drug action. Am. J. Psychiatry, 2010, 167(4), 388-396.
[http://dx.doi.org/10.1176/appi.ajp.2009.08121873] [PMID: 19917593]
[226]
Wang, H.; Brown, J.; Martin, M. Glycogen synthase kinase 3: a point of convergence for the host inflammatory response. Cytokine, 2011, 53(2), 130-140.
[http://dx.doi.org/10.1016/j.cyto.2010.10.009] [PMID: 21095632]
[227]
Kadoshima-Yamaoka, K.; Murakawa, M.; Goto, M.; Tanaka, Y.; Inoue, H.; Murafuji, H.; Hayashi, Y.; Nagahira, K.; Miura, K.; Nakatsuka, T.; Chamoto, K.; Fukuda, Y.; Nishimura, T. Effect of phosphodiesterase 7 inhibitor ASB16165 on development and function of cytotoxic T lymphocyte. Int. Immunopharmacol., 2009, 9(1), 97-102.
[http://dx.doi.org/10.1016/j.intimp.2008.10.005] [PMID: 18992850]
[228]
Paterniti, I.; Mazzon, E.; Gil, C.; Impellizzeri, D.; Palomo, V.; Redondo, M.; Perez, D.I.; Esposito, E.; Martinez, A.; Cuzzocrea, S. PDE 7 inhibitors: new potential drugs for the therapy of spinal cord injury. PLoS One, 2011, 6(1)e15937
[http://dx.doi.org/10.1371/journal.pone.0015937] [PMID: 21297958]
[229]
Redondo, M.; Zarruk, J.G.; Ceballos, P.; Pérez, D.I.; Pérez, C.; Perez-Castillo, A.; Moro, M.A.; Brea, J.; Val, C.; Cadavid, M.I.; Loza, M.I.; Campillo, N.E.; Martínez, A.; Gil, C. Neuroprotective efficacy of quinazoline type phosphodiesterase 7 inhibitors in cellular cultures and experimental stroke model. Eur. J. Med. Chem., 2012, 47(1), 175-185.
[http://dx.doi.org/10.1016/j.ejmech.2011.10.040] [PMID: 22100138]
[230]
Goto, M.; Murakawa, M.; Kadoshima-Yamaoka, K.; Tanaka, Y.; Inoue, H.; Murafuji, H.; Hayashi, Y.; Miura, K.; Nakatsuka, T.; Nagahira, K.; Chamoto, K.; Fukuda, Y.; Nishimura, T. Phosphodiesterase 7A inhibitor ASB16165 suppresses proliferation and cytokine production of NKT cells. Cell. Immunol., 2009, 258(2), 147-151.
[http://dx.doi.org/10.1016/j.cellimm.2009.04.005] [PMID: 19477436]
[231]
Perez-Gonzalez, R.; Pascual, C.; Antequera, D.; Bolos, M.; Redondo, M.; Perez, D.I.; Pérez-Grijalba, V.; Krzyzanowska, A.; Sarasa, M.; Gil, C.; Ferrer, I.; Martinez, A.; Carro, E. Phosphodiesterase 7 inhibitor reduced cognitive impairment and pathological hallmarks in a mouse model of Alzheimer’s disease. Neurobiol. Aging, 2013, 34(9), 2133-2145.
[http://dx.doi.org/10.1016/j.neurobiolaging.2013.03.011] [PMID: 23582662]
[232]
Al-Nuaimi, S.; Chaves, C.; Hallak, J.E.C.; Baker, G.B.; Dursun, S. New perspectives and directions in schizophrenia therapeutics: advances related to non-dopaminergic systems. Br. J. Psychiatry, 2010, 32(4), 333-338.
[PMID: 21308251]
[233]
Yang, A.C.; Tsai, S-J. New Targets for Schizophrenia Treatment beyond the Dopamine Hypothesis. Int. J. Mol. Sci., 2017, 18(8), 1689.
[http://dx.doi.org/10.3390/ijms18081689] [PMID: 28771182]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 26
ISSUE: 25
Year: 2019
Page: [4885 - 4913]
Pages: 29
DOI: 10.2174/0929867326666190710172002
Price: $58

Article Metrics

PDF: 24
HTML: 1