Active Nano-targeting of Macrophages

Author(s): Natasa Gaspar, Giorgia Zambito, Clemens M.W.G. Löwik, Laura Mezzanotte*.

Journal Name: Current Pharmaceutical Design

Volume 25 , Issue 17 , 2019


Abstract:

Macrophages play a role in almost every disease such as cancer, infections, injuries, metabolic and inflammatory diseases and are becoming an attractive therapeutic target. However, understanding macrophage diversity, tissue distribution and plasticity will help in defining precise targeting strategies and effective therapies. Active targeting of macrophages using nanoparticles for therapeutic purposes is still at its infancy but holds promises since macrophages have shown high specific uptake of nanoparticles. Here, we highlight recent progress in active nanotechnology-based systems gaining pivotal roles to target diverse macrophage subsets in diseased tissues.

Keywords: Nanoparticles, active and passive nano-targeting, macrophage polarization, macrophage reprogramming, macrophage depletion, cancer, asthma, metabolic diseases, inflammatory diseases, cardiovascular diseases.

[1]
Wynn TA, Chawla A, Pollard JW. Macrophage biology in development, homeostasis and disease. Nature 2013; 496(7446): 445-55.
[http://dx.doi.org/10.1038/nature12034] [PMID: 23619691]
[2]
Hume DA, Irvine KM, Pridans C. The mononuclear phagocyte system: The relationship between monocytes and macrophages. Trends Immunol 2018; pii: S1471-4906(18): 30226-6.
[3]
Gordon S. The macrophage: Past, present and future. Eur J Immunol 2007; 37(Suppl. 1): S9-S17.
[http://dx.doi.org/10.1002/eji.200737638] [PMID: 17972350]
[4]
Gentek R, Molawi K, Sieweke MH. Tissue macrophage identity and self-renewal. Immunol Rev 2014; 262(1): 56-73.
[http://dx.doi.org/10.1111/imr.12224] [PMID: 25319327]
[5]
Epelman S, Lavine KJ, Randolph GJ. Origin and functions of tissue macrophages. Immunity 2014; 41(1): 21-35.
[http://dx.doi.org/10.1016/j.immuni.2014.06.013] [PMID: 25035951]
[6]
Yang M, McKay D, Pollard JW, Lewis CE. Diverse functions of macrophages in different tumor microenvironments. Cancer Res 2018; 78(19): 5492-503.
[http://dx.doi.org/10.1158/0008-5472.CAN-18-1367] [PMID: 30206177]
[7]
Cassetta L, Pollard JW. Targeting macrophages: Therapeutic approaches in cancer. Nat Rev Drug Discov 2018; 17: 887-904.
[http://dx.doi.org/10.1038/nrd.2018.169]
[8]
Metschnikoff, Elias Ueber den Kampf der Zellen gegen Erysipelkokken. Archiv fur pathologische anatomie und phycologie und fur klinische medicin. 1887; 1432-2307. 107(2): 209-249.
[9]
Gordon S, Martinez FO. Alternative activation of macrophages: Mechanism and functions. Immunity 2010; 32(5): 593-604.
[http://dx.doi.org/10.1016/j.immuni.2010.05.007] [PMID: 20510870]
[10]
Martinez FO, Sica A, Mantovani A, Locati M. Macrophage activation and polarization. Front Biosci 2008; 13: 453-61.
[http://dx.doi.org/10.2741/2692] [PMID: 17981560]
[11]
Bertrand N, Wu J, Xu X, Kamaly N, Farokhzad OC. Cancer nanotechnology: The impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev 2014; 66: 2-25.
[http://dx.doi.org/10.1016/j.addr.2013.11.009] [PMID: 24270007]
[12]
Mostafavi SH. Jayachandra Babu. Nano-Sized Drug Delivery. J Mol Pharm Org Process Res 2013; 1(3)e108
[http://dx.doi.org/10.4172/2329-9053.1000e108]
[13]
Jaracz S, Chen J, Kuznetsova LV, Ojima I. Recent advances in tumor-targeting anticancer drug conjugates. Bioorg Med Chem 2005; 13(17): 5043-54.
[http://dx.doi.org/10.1016/j.bmc.2005.04.084] [PMID: 15955702]
[14]
Danhier F, Feron O, Préat V. To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release 2010; 148(2): 135-46.
[http://dx.doi.org/10.1016/j.jconrel.2010.08.027] [PMID: 20797419]
[15]
Shi J, Kantoff PW, Wooster R, Farokhzad OC. Cancer nanomedicine: Progress, challenges and opportunities. Nat Rev Cancer 2017; 17(1): 20-37.
[http://dx.doi.org/10.1038/nrc.2016.108] [PMID: 27834398]
[16]
Miller MA, Gadde S, Pfirschke C, et al. Predicting therapeutic nanomedicine efficacy using a companion magnetic resonance imaging nanoparticle. Sci Transl Med 2015; 7(314)314ra183
[http://dx.doi.org/10.1126/scitranslmed.aac6522]
[17]
Miller MA, Zheng YR, Gadde S, et al. Tumour-associated macrophages act as a slow-release reservoir of nano-therapeutic Pt(IV) pro-drug. Nat Commun 2015; 6: 8692.
[http://dx.doi.org/10.1038/ncomms9692] [PMID: 26503691]
[18]
Wakaskar RR. Passive and Active Targeting in Tumor Microenvironment. Int J Drug Dev Res 2017; 9: 2.
[19]
Ponzoni M, Pastorino F, Di Paolo D, Perri P, Brignole C. Targeting Macrophages as a Potential Therapeutic Intervention: Impact on Inflammatory Diseases and Cancer. Int J Mol Sci 2018; 19(7): 1953.
[http://dx.doi.org/10.3390/ijms19071953] [PMID: 29973487]
[20]
Toy R, Roy K. Engineering nanoparticles to overcome barriers to immunotherapy. Bioeng Transl Med 2016; 1(1): 47-62.
[http://dx.doi.org/10.1002/btm2.10005] [PMID: 29313006]
[21]
Edgington-Mitchell LE, Wartmann T, Fleming AK, et al. Legumain is activated in macrophages during pancreatitis. Am J Physiol Gastrointest Liver Physiol 2016; 311(3): G548-60.
[http://dx.doi.org/10.1152/ajpgi.00047.2016] [PMID: 27514475]
[22]
Liu C, Sun C, Huang H, Janda K, Edgington T. Overexpression of legumain in tumors is significant for invasion/metastasis and a candidate enzymatic target for prodrug therapy. Cancer Res 2003; 63(11): 2957-64.
[PMID: 12782603]
[23]
Solberg R, Smith R, Almlöf M, et al. Legumain expression, activity and secretion are increased during monocyte-to-macrophage differentiation and inhibited by atorvastatin. Biol Chem 2015; 396(1): 71-80.
[24]
Binnemars-Postma K, Storm G, Prakash J. Nanomedicine strategies to target Tumor-associated macrophages. Int J Mol Sci 2017; 18(5): 979.
[http://dx.doi.org/10.3390/ijms18050979]
[25]
Liu Z, Xiong M, Gong J, et al. Legumain protease-activated TAT-liposome cargo for targeting tumours and their microenvironment. Nat Commun 2014; 5: 4280.
[http://dx.doi.org/10.1038/ncomms5280] [PMID: 24969588]
[26]
Zhang X, Tian W, Cai X, et al. Hydrazinocurcumin Encapsuled nanoparticles “re-educate” tumor-associated macrophages and exhibit anti-tumor effects on breast cancer following STAT3 suppression. PLoS One 2013; 8(6)e65896
[http://dx.doi.org/10.1371/journal.pone.0065896] [PMID: 3825527]
[27]
Casals C, Campanero-Rhodes MA, García-Fojeda B, et al. The Role of Collectins and Galectins in Lung Innate Immune Defense. Front Immunol 1998; 2018: 9.
[PMID: 30233589]
[28]
Chavez-Santoscoy AV, Roychoudhury R, Pohl NL, Wannemuehler MJ, Narasimhan B, Ramer-Tait AE. Tailoring the immune response by targeting C-type lectin receptors on alveolar macrophages using “pathogen-like” amphiphilic polyanhydride nanoparticles. Biomaterials 2012; 33(18): 4762-72.
[http://dx.doi.org/10.1016/j.biomaterials.2012.03.027] [PMID: 22465338]
[29]
Porcheray F, Viaud S, Rimaniol AC, et al. Macrophage activation switching: An asset for the resolution of inflammation. Clin Exp Immunol 2005; 142(3): 481-9.
[http://dx.doi.org/10.1111/j.1365-2249.2005.02934.x] [PMID: 16297160]
[30]
Yu SS, Lau CM, Barham WJ, et al. Macrophage-specific RNA interference targeting via “click”, mannosylated polymeric micelles. Mol Pharm 2013; 10(3): 975-87.
[http://dx.doi.org/10.1021/mp300434e] [PMID: 23331322]
[31]
Düffels A, Green LG, Ley SV, Miller AD. Synthesis of high-mannose type neoglycolipids: Active targeting of liposomes to macrophages in gene therapy. Chemistry 2000; 6(8): 1416-30.
[http://dx.doi.org/10.1002/(SICI)1521-3765(20000417)6:8<1416:AID-CHEM1416>3.0.CO;2-O] [PMID: 10840965]
[32]
Ortega RA, Barham W, Sharman K, Tikhomirov O, Giorgio TD, Yull FE. Manipulating the NF-κB pathway in macrophages using mannosylated, siRNA-delivering nanoparticles can induce immunostimulatory and tumor cytotoxic functions. Int J Nanomedicine 2016; 11: 2163-77.
[http://dx.doi.org/10.2147/IJN.S93483] [PMID: 27274241]
[33]
Song Y, Tang C, Yin C. Combination antitumor immunotherapy with VEGF and PIGF siRNA via systemic delivery of multi-functionalized nanoparticles to tumor-associated macrophages and breast cancer cells. Biomaterials 2018; 185: 117-32.
[http://dx.doi.org/10.1016/j.biomaterials.2018.09.017] [PMID: 30241030]
[34]
Nimje N, Agarwal A, Saraogi GK, et al. Mannosylated nanoparticulate carriers of rifabutin for alveolar targeting. J Drug Target 2009; 17(10): 777-87.
[http://dx.doi.org/10.3109/10611860903115308] [PMID: 19938949]
[35]
Turk MJ, Breur GJ, Widmer WR, et al. Folate-targeted imaging of activated macrophages in rats with adjuvant-induced arthritis. Arthritis Rheum 2002; 46(7): 1947-55.
[http://dx.doi.org/10.1002/art.10405] [PMID: 12124880]
[36]
Hattori Y, Yamashita J, Sakaida C, Kawano K, Yonemochi E. Evaluation of antitumor effect of zoledronic acid entrapped in folate-linked liposome for targeting to tumor-associated macrophages. J Liposome Res 2015; 25(2): 131-40.
[http://dx.doi.org/10.3109/08982104.2014.954128] [PMID: 25203609]
[37]
Turk MJ, Waters DJ, Low PS. Folate-conjugated liposomes preferentially target macrophages associated with ovarian carcinoma. Cancer Lett 2004; 213(2): 165-72.
[http://dx.doi.org/10.1016/j.canlet.2003.12.028] [PMID: 15327831]
[38]
Penn CA, Yang K, Zong H, et al. Therapeutic Impact of Nanoparticle Therapy Targeting Tumor-Associated Macrophages. Mol Cancer Ther 2018; 17(1): 96-106.
[http://dx.doi.org/10.1158/1535-7163.MCT-17-0688] [PMID: 29133618]
[39]
Cieslewicz M, Tang J, Yu JL, et al. Targeted delivery of proapoptotic peptides to tumor-associated macrophages improves survival. Proc Natl Acad Sci USA 2013; 110(40): 15919-24.
[http://dx.doi.org/10.1073/pnas.1312197110] [PMID: 24046373]
[40]
Kakoschky B, Pleli T, Schmithals C, et al. Selective targeting of tumor associated macrophages in different tumor models. PLoS One 2018; 13(2)e0193015
[http://dx.doi.org/10.1371/journal.pone.0193015] [PMID: 9447241]
[41]
Qian Y, Qiao S, Dai Y, et al. Molecular-Targeted Immunotherapeutic Strategy for Melanoma via Dual-Targeting Nanoparticles Delivering Small Interfering RNA to Tumor-Associated Macrophages. ACS Nano 2017; 11(9): 9536-49.
[http://dx.doi.org/10.1021/acsnano.7b05465] [PMID: 28858473]
[42]
Scodeller P, Simón-Gracia L, Kopanchuk S, et al. Precision Targeting of Tumor Macrophages with a CD206 Binding Peptide. Sci Rep 2017; 7(1): 14655.
[http://dx.doi.org/10.1038/s41598-017-14709-x] [PMID: 29116108]
[43]
Lee C, Jeong H, Bae H. Development of melittin-based anti-cancer drug for targeting tumor-associated macrophages The Journal of Immunology 2018; 200(1 Supplement): 56.22.56.22;.
[44]
Jain S, Amiji M. Tuftsin-modified alginate nanoparticles as a noncondensing macrophage-targeted DNA delivery system. Biomacromolecules 2012; 13(4): 1074-85.
[http://dx.doi.org/10.1021/bm2017993] [PMID: 22385328]
[45]
Soto ER, Caras AC, Kut LC, Castle MK, Ostroff GR. Glucan particles for macrophage targeted delivery of nanoparticles. J Drug Deliv 2012; 2012: 143524-4.
[http://dx.doi.org/10.1155/2012/143524] [PMID: 22013535]
[46]
Zhang M, Kim JA, Huang AY-C. Optimizing Tumor Microenvironment for Cancer Immunotherapy: B-Glucan-Based Nanoparticles. Front Immunol 2018; 9: 341-1.
[http://dx.doi.org/10.3389/fimmu.2018.00341] [PMID: 29535722]
[47]
Upadhyay TK, Fatima N, Sharma D, Saravanakumar V, Sharma R. Preparation and characterization of beta-glucan particles containing a payload of nanoembedded rifabutin for enhanced targeted delivery to macrophages. EXCLI J 2017; 16: 210-28.
[PMID: 28507467]
[48]
Hoffmann F, Ender F, Schmudde I, et al. Origin, Localization, and Immunoregulatory Properties of Pulmonary Phagocytes in Allergic Asthma. Front Immunol 2016; 7(107): 107.
[http://dx.doi.org/10.3389/fimmu.2016.00107] [PMID: 27047494]
[49]
Tsapis N, Bennett D, Jackson B, Weitz DA, Edwards DA. Trojan particles: Large porous carriers of nanoparticles for drug delivery. Proc Natl Acad Sci USA 2002; 99(19): 12001-5.
[http://dx.doi.org/10.1073/pnas.182233999] [PMID: 12200546]
[50]
Tsugita M, Morimoto N, Tashiro M, Kinoshita K, Nakayama M Sr. -B1 Is a Silica Receptor that Mediates Canonical Inflammasome Activation. Cell Rep 2017; 18(5): 1298-311.
[http://dx.doi.org/10.1016/j.celrep.2017.01.004] [PMID: 28147282]
[51]
Geiser M, Wigge C, Conrad ML, et al. Nanoparticle uptake by airway phagocytes after fungal spore challenge in murine allergic asthma and chronic bronchitis. BMC Pulm Med 2014; 14(1): 116.
[http://dx.doi.org/10.1186/1471-2466-14-116] [PMID: 25027175]
[52]
Al Faraj A, Shaik AS, Afzal S, Al Sayed B, Halwani R. MR imaging and targeting of a specific alveolar macrophage subpopulation in LPS-induced COPD animal model using antibody-conjugated magnetic nanoparticles. Int J Nanomedicine 2014; 9: 1491-503.
[http://dx.doi.org/10.2147/IJN.S59394] [PMID: 24711699]
[53]
Al Faraj A, Shaik AS, Afzal S, Al-Muhsen S, Halwani R. Specific targeting and noninvasive magnetic resonance imaging of an asthma biomarker in the lung using polyethylene glycol functionalized magnetic nanocarriers. Contrast Media Mol Imaging 2016; 11(3): 172-83.
[http://dx.doi.org/10.1002/cmmi.1678] [PMID: 26708935]
[54]
Halwani R, Sultana Shaik A, Ratemi E, et al. A novel anti-IL4Rα nanoparticle efficiently controls lung inflammation during asthma. Exp Mol Med 2016; 48(10)e262
[http://dx.doi.org/10.1038/emm.2016.89] [PMID: 7713399]
[55]
Chung S, Lee TJ, Reader BF, et al. FoxO1 regulates allergic asthmatic inflammation through regulating polarization of the macrophage inflammatory phenotype. Oncotarget 2016; 7(14): 17532-46.
[http://dx.doi.org/10.18632/oncotarget.8162] [PMID: 27007158]
[56]
Firestein GS. Evolving concepts of rheumatoid arthritis. Nature 2003; 423(6937): 356-61.
[http://dx.doi.org/10.1038/nature01661] [PMID: 12748655]
[57]
Nogueira E, Gomes AC, Preto A, Cavaco-Paulo A. Folate-targeted nanoparticles for rheumatoid arthritis therapy. Nanomedicine (Lond) 2016; 12(4): 1113-26.
[http://dx.doi.org/10.1016/j.nano.2015.12.365] [PMID: 26733257]
[58]
Paulos CM, Turk MJ, Breur GJ, et al. Folate receptor-mediated targeting of therapeutic and imaging agents to activated macrophages in rheumatoid arthritis. Adv Drug Deliv Rev 2004; 56(8): 1205-17.
[http://dx.doi.org/10.1016/j.addr.2004.01.012]
[59]
Alekseeva AA, Moiseeva EV, Onishchenko NR, et al. Liposomal formulation of a methotrexate lipophilic prodrug: Assessment in tumor cells and mouse T-cell leukemic lymphoma. Int J Nanomedicine 2017; 12: 3735-49.
[http://dx.doi.org/10.2147/IJN.S133034] [PMID: 28553111]
[60]
Zhou M, Hou J, Zhong Z, Hao N, Lin Y, Li C. Targeted delivery of hyaluronic acid-coated solid lipid nanoparticles for rheumatoid arthritis therapy. Drug Deliv 2018; 25(1): 716-22.
[http://dx.doi.org/10.1080/10717544.2018.1447050] [PMID: 29516758]
[61]
Poupot R, Goursat C, Fruchon S. Multivalent nanosystems: Targeting monocytes/macrophages. Int J Nanomedicine 2018; 13: 5511-21.
[http://dx.doi.org/10.2147/IJN.S146192] [PMID: 30271144]
[62]
Xiao B, Laroui H, Ayyadurai S, et al. Mannosylated bioreducible nanoparticle-mediated macrophage-specific TNF-α RNA interference for IBD therapy. Biomaterials 2013; 34(30): 7471-82.
[http://dx.doi.org/10.1016/j.biomaterials.2013.06.008] [PMID: 23820013]
[63]
Harrison C. Inflammatory disorders: Monocytes derailed by microparticles. Nat Rev Drug Discov 2014; 13(3): 175.
[http://dx.doi.org/10.1038/nrd4263] [PMID: 24525780]
[64]
Gan J, Dou Y, Li Y, et al. Producing anti-inflammatory macrophages by nanoparticle-triggered clustering of mannose receptors. Biomaterials 2018; 178: 95-108.
[http://dx.doi.org/10.1016/j.biomaterials.2018.06.015] [PMID: 29920405]
[65]
Ahsan F, Rivas IP, Khan MA, Torres Suarez AI. Targeting to macrophages: Role of physicochemical properties of particulate carriers--liposomes and microspheres--on the phagocytosis by macrophages. J Control Release 2002; 79(1-3): 29-40.
[http://dx.doi.org/10.1016/S0168-3659(01)00549-1] [PMID: 11853916]
[66]
Lee WH, Loo CY, Traini D, Young PM. Nano- and micro-based inhaled drug delivery systems for targeting alveolar macrophages. Expert Opin Drug Deliv 2015; 12(6): 1009-26.
[http://dx.doi.org/10.1517/17425247.2015.1039509] [PMID: 25912721]
[67]
Ortega RA, Barham WJ, Kumar B, et al. Biocompatible mannosylated endosomal-escape nanoparticles enhance selective delivery of short nucleotide sequences to tumor associated macrophages. Nanoscale 2015; 7(2): 500-10.
[http://dx.doi.org/10.1039/C4NR03962A] [PMID: 25408159]
[68]
Mantovani A, Marchesi F, Malesci A, Laghi L, Allavena P. Tumour-associated macrophages as treatment targets in oncology. Nat Rev Clin Oncol 2017; 14(7): 399-416.
[http://dx.doi.org/10.1038/nrclinonc.2016.217] [PMID: 28117416]
[69]
Zhang M, Gao Y, Caja K, Zhao B, Kim JA. Non-viral nanoparticle delivers small interfering RNA to macrophages in vitro and in vivo. PLoS One 2015; 10(3)e0118472
[http://dx.doi.org/10.1371/journal.pone.0118472] [PMID: 5799489]
[70]
Nishihira J. Macrophage migration inhibitory factor (MIF): Its essential role in the immune system and cell growth. J Interferon Cytokine Res 2000; 20(9): 751-62.
[http://dx.doi.org/10.1089/10799900050151012] [PMID: 11032394]
[71]
Bifulco C, McDaniel K, Leng L, Bucala R. Tumor growth-promoting properties of macrophage migration inhibitory factor. Curr Pharm Des 2008; 14(36): 3790-801.
[http://dx.doi.org/10.2174/138161208786898608] [PMID: 19128232]
[72]
Song M, Liu T, Shi C, Zhang X, Chen X. Bioconjugated Manganese Dioxide Nanoparticles Enhance Chemotherapy Response by Priming Tumor-Associated Macrophages toward M1-like Phenotype and Attenuating Tumor Hypoxia. ACS Nano 2016; 10(1): 633-47.
[http://dx.doi.org/10.1021/acsnano.5b06779] [PMID: 26650065]
[73]
Huang Z, Zhang Z, Jiang Y, et al. Targeted delivery of oligonucleotides into tumor-associated macrophages for cancer immunotherapy. J Control Release 2012; 158(2): 286-92.
[http://dx.doi.org/10.1016/j.jconrel.2011.11.013] [PMID: 22119956]
[74]
Daldrup-Link HE, Golovko D, Ruffell B, et al. MRI of tumor-associated macrophages with clinically applicable iron oxide nanoparticles. Clin Cancer Res 2011; 17(17): 5695-704.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-3420] [PMID: 21791632]
[75]
Zanganeh S, Hutter G, Spitler R, et al. Iron oxide nanoparticles inhibit tumour growth by inducing pro-inflammatory macrophage polarization in tumour tissues. Nat Nanotechnol 2016; 11(11): 986-94.
[http://dx.doi.org/10.1038/nnano.2016.168] [PMID: 27668795]
[76]
Turk MJ, Waters DJ, Low PS. Folate-conjugated liposomes preferentially target macrophages associated with ovarian carcinoma. Cancer Lett 2004; 213(2): 165-72.
[http://dx.doi.org/10.1016/j.canlet.2003.12.028] [PMID: 15327831]
[77]
Nagai T, Tanaka M, Tsuneyoshi Y, et al. Targeting tumor-associated macrophages in an experimental glioma model with a recombinant immunotoxin to folate receptor β. Cancer Immunol Immunother 2009; 58(10): 1577-86.
[http://dx.doi.org/10.1007/s00262-009-0667-x] [PMID: 19238383]
[78]
Etzerodt A, Maniecki MB, Graversen JH, Møller HJ, Torchilin VP, Moestrup SK. Efficient intracellular drug-targeting of macrophages using stealth liposomes directed to the hemoglobin scavenger receptor CD163. J Control Release 2012; 160(1): 72-80.
[http://dx.doi.org/10.1016/j.jconrel.2012.01.034] [PMID: 22306335]
[79]
Gabizon AA. Stealth liposomes and tumor targeting: One step further in the quest for the magic bullet. Clin Cancer Res 2001; 7(2): 223-5.
[PMID: 11234871]
[80]
Ries CH, Cannarile MA, Hoves S, et al. Targeting tumor-associated macrophages with anti-CSF-1R antibody reveals a strategy for cancer therapy. Cancer Cell 2014; 25(6): 846-59.
[http://dx.doi.org/10.1016/j.ccr.2014.05.016] [PMID: 24898549]
[81]
Strachan DC, Ruffell B, Oei Y, et al. CSF1R inhibition delays cervical and mammary tumor growth in murine models by attenuating the turnover of tumor-associated macrophages and enhancing infiltration by CD8+ T cells. OncoImmunology 2013; 2(12): E26968-8.
[http://dx.doi.org/10.4161/onci.26968] [PMID: 24498562]
[82]
Papadopoulos KP, Gluck L, Martin LP, et al. First-in-Human Study of AMG 820, a Monoclonal Anti-Colony-Stimulating Factor 1 Receptor Antibody, in Patients with Advanced Solid Tumors. Clin Cancer Res 2017; 23(19): 5703-10.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-3261] [PMID: 28655795]
[83]
Van Rooijen N, Sanders A. Liposome mediated depletion of macrophages: Mechanism of action, preparation of liposomes and applications. J Immunol Methods 1994; 174(1-2): 83-93.
[http://dx.doi.org/10.1016/0022-1759(94)90012-4] [PMID: 8083541]
[84]
Banciu M, Metselaar JM, Schiffelers RM, Storm G. Antitumor activity of liposomal prednisolone phosphate depends on the presence of functional tumor-associated macrophages in tumor tissue. Neoplasia 2008; 10(2): 108-17.
[http://dx.doi.org/10.1593/neo.07913] [PMID: 18283332]
[85]
Zeisberger SM, Odermatt B, Marty C, Zehnder-Fjällman AH, Ballmer-Hofer K, Schwendener RA. Clodronate-liposome-mediated depletion of tumour-associated macrophages: A new and highly effective antiangiogenic therapy approach. Br J Cancer 2006; 95(3): 272-81.
[http://dx.doi.org/10.1038/sj.bjc.6603240] [PMID: 16832418]
[86]
Piaggio F, Kondylis V, Pastorino F, et al. A novel liposomal Clodronate depletes tumor-associated macrophages in primary and metastatic melanoma: Anti-angiogenic and anti-tumor effects. J Control Release 2016; 223: 165-77.
[http://dx.doi.org/10.1016/j.jconrel.2015.12.037] [PMID: 26742942]
[87]
Song X, Wan Z, Chen T, et al. Development of a multi-target peptide for potentiating chemotherapy by modulating tumor microenvironment. Biomaterials 2016; 108: 44-56.
[http://dx.doi.org/10.1016/j.biomaterials.2016.09.001] [PMID: 27619239]
[88]
Niu M, Valdes S, Naguib YW, Hursting SD, Cui Z. Tumor-Associated Macrophage-Mediated Targeted Therapy of Triple-Negative Breast Cancer. Mol Pharm 2016; 13(6): 1833-42.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00987] [PMID: 27074028]
[89]
Zhan X, Jia L, Niu Y, et al. Targeted depletion of tumour-associated macrophages by an alendronate-glucomannan conjugate for cancer immunotherapy. Biomaterials 2014; 35(38): 10046-57.
[http://dx.doi.org/10.1016/j.biomaterials.2014.09.007] [PMID: 25245263]
[90]
Ross R. Atherosclerosis--an inflammatory disease. N Engl J Med 1999; 340(2): 115-26.
[http://dx.doi.org/10.1056/NEJM199901143400207] [PMID: 9887164]
[91]
Bobryshev YV, Ivanova EA, Chistiakov DA, Nikiforov NG, Orekhov AN. Macrophages and Their Role in Atherosclerosis: Pathophysiology and Transcriptome Analysis. BioMed Res Int 2016; 20169582430
[http://dx.doi.org/10.1155/2016/9582430] [PMID: 27493969]
[92]
DiStasio N, Lehoux S, Khademhosseini A, Tabrizian M. The Multifaceted Uses and Therapeutic Advantages of Nanoparticles for Atherosclerosis Research. Materials (Basel) 2018; 11(5): 75493.
[http://dx.doi.org/10.3390/ma11050754] [PMID: 29738480]
[93]
Petersen LK, York AW, Lewis DR, et al. Amphiphilic nanoparticles repress macrophage atherogenesis: Novel core/shell designs for scavenger receptor targeting and down-regulation. Mol Pharm 2014; 11(8): 2815-24.
[http://dx.doi.org/10.1021/mp500188g] [PMID: 24972372]
[94]
Lee GY, Kim JH, Choi KY, et al. Hyaluronic acid nanoparticles for active targeting atherosclerosis. Biomaterials 2015; 53: 341-8.
[http://dx.doi.org/10.1016/j.biomaterials.2015.02.089] [PMID: 25890732]
[95]
Dellinger A, Olson J, Link K, et al. Functionalization of gadolinium metallofullerenes for detecting atherosclerotic plaque lesions by cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2013; 15(1): 7.
[http://dx.doi.org/10.1186/1532-429X-15-7] [PMID: 23324435]
[96]
Uchida M, Kosuge H, Terashima M, et al. Protein cage nanoparticles bearing the LyP-1 peptide for enhanced imaging of macrophage-rich vascular lesions. ACS Nano 2011; 5(4): 2493-502.
[http://dx.doi.org/10.1021/nn102863y] [PMID: 21391720]
[97]
Kim JB, Park K, Ryu J, et al. Intravascular optical imaging of high-risk plaques in vivo by targeting macrophage mannose receptors. Sci Rep 2016; 6: 22608.
[http://dx.doi.org/10.1038/srep22608] [PMID: 26948523]
[98]
Terashima M, Uchida M, Kosuge H, et al. Human ferritin cages for imaging vascular macrophages. Biomaterials 2011; 32(5): 1430-7.
[http://dx.doi.org/10.1016/j.biomaterials.2010.09.029] [PMID: 21074263]
[99]
Peterson KR, Cottam MA, Kennedy AJ, Hasty AH. Macrophage-Targeted Therapeutics for Metabolic Disease. Trends Pharmacol Sci 2018; 39(6): 536-46.
[http://dx.doi.org/10.1016/j.tips.2018.03.001] [PMID: 29628274]
[100]
Ma L, Liu TW, Wallig MA, et al. Efficient Targeting of Adipose Tissue Macrophages in Obesity with Polysaccharide Nanocarriers. ACS Nano 2016; 10(7): 6952-62.
[http://dx.doi.org/10.1021/acsnano.6b02878] [PMID: 27281538]
[101]
Bu L, Gao M, Qu S, Liu D. Intraperitoneal injection of clodronate liposomes eliminates visceral adipose macrophages and blocks high-fat diet-induced weight gain and development of insulin resistance. AAPS J 2013; 15(4): 1001-11.
[http://dx.doi.org/10.1208/s12248-013-9501-7] [PMID: 23821353]
[102]
Duffield JS. The inflammatory macrophage: A story of Jekyll and Hyde. Clin Sci (Lond) 2003; 104(1): 27-38.
[http://dx.doi.org/10.1042/CS20020240] [PMID: 12519085]
[103]
Aouadi M, Tesz GJ, Nicoloro SM, et al. Orally delivered siRNA targeting macrophage Map4k4 suppresses systemic inflammation. Nature 2009; 458(7242): 1180-4.
[http://dx.doi.org/10.1038/nature07774] [PMID: 19407801]
[104]
Won Y-W, Adhikary PP, Lim KS, Kim HJ, Kim JK, Kim YH. Oligopeptide complex for targeted non-viral gene delivery to adipocytes. Nat Mater 2014; 13(12): 1157-64.
[http://dx.doi.org/10.1038/nmat4092] [PMID: 25282508]
[105]
Black RA. Tumor necrosis factor-α converting enzyme. Int J Biochem Cell Biol 2002; 34(1): 1-5.
[http://dx.doi.org/10.1016/S1357-2725(01)00097-8] [PMID: 11733179]
[106]
Yong S-B, Song Y, Kim Y-H. Visceral adipose tissue macrophage-targeted TACE silencing to treat obesity-induced type 2 diabetes. Biomaterials 2017; 148: 81-9.
[http://dx.doi.org/10.1016/j.biomaterials.2017.09.023] [PMID: 28985514]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 25
ISSUE: 17
Year: 2019
Page: [1951 - 1961]
Pages: 11
DOI: 10.2174/1381612825666190710114108
Price: $58

Article Metrics

PDF: 23
HTML: 2
EPUB: 1

Special-new-year-discount