Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

General Research Article

Targeted Drug Delivery of Teniposide by Magnetic Nanocarrier

Author(s): Saeed Kakaei*, Elham Sattarzadeh Khameneh, Effat Ghasemi and Mustafa Aghazadeh

Volume 16, Issue 4, 2020

Page: [608 - 616] Pages: 9

DOI: 10.2174/1573413715666190709114859

Price: $65

Abstract

Background: Drug delivery technologies adjust drug release profile, absorption, distribution, and elimination for benefiting to the improvement of product efficacy, effectiveness, and safety. The IONPs release drugs via enzymatic activity, changes in physiological conditions such as pH, osmolality radiation, or temperature. In the case of nanoparticles that respond to the magnetic stimulus, the drug directs its action towards the site of a detected magnetic field.

Objective: In this study, the synthesis of a specific drug-delivery system based on magnetic nanocarrier for teniposide as an anticancer drug is reported. The iron oxide@SiO2 core-shell nanoparticles were functionalized with APTS as a spacer then coupling to the DOTA molecules. Anticancer drug of teniposide conjugated to the acidic group of DOTA via an amide bond. Multi-purpose magnetic nanoparticles were synthesized for targeted delivery of teniposide.

Methods: Iron oxide nanoparticles were firstly coated with silica and their surface was then modified with aminopropyltriethoxysilane (APTES) through an in situ method. DOTA-NHS was also coupled to Fe3O4@SiO2-APTES via an amide bond formation. In the final step, teniposide as an anti-cancer drug was conjugated with DOTA through ester bonds, and the final compound of Fe3O4@SiO2- APTES-DOTA-Teniposide was obtained. The obtained nanocarrier was evaluated by various analyses.

Results: The multifunctional Fe3O4@SiO2-APTES-DOTA nanocarriers were successfully synthesized and characterized by XRD, FTIR, TGA, and UV-vis techniques. The silica-coated magnetic nanoparticle functionalized with aminopropyl triethoxysilane (APTES) was reacted with an acid group of DOTA, and teniposide was then coupled to DOTA through ester formation bonds. Drug release experiments showed that most of the conjugated teniposide were released within the first 12h.

Conclusion: The fabricated nano-carriers exhibited pH-sensitive drug release behavior, which can minimize the non-specific systemic spread of toxic drugs during circulation whilst maximizing the efficiency of tumor-targeted anticancer drug delivery for this purpose. The prepared teniposidegrafted Fe3O4@SiO2-APTES-DOTA core–shell structure nanoparticles showed a magnetic property with exposure to magnetic fields, indicating a great potential application in the treatment of cancer using magnetic targeting drug-delivery technology and multimodal imaging techniques.

Keywords: Multimodal, drug delivery, MRI, nanocarrier, teniposide, magnetic nanoparticles

Graphical Abstract
[1]
Li, K.; Shen, M.; Zheng, L.; Zhao, J.; Quan, Q.; Shi, X.; Zhang, G. Magnetic resonance imaging of glioma with novel APTS-coated superparamagnetic iron oxide nanoparticles. Nanoscale Res. Lett., 2014, 9(1), 304-314.
[http://dx.doi.org/10.1186/1556-276X-9-304] [PMID: 24994959]
[2]
Serrano, R.; Stafford, S.; Gunko, Y. Recent progress in synthesis and functionalization of multimodal fluorescent-magnetic nanoparticles for biological applications. Appl. Sci. (Basel), 2018, 8(2), 172-195.
[http://dx.doi.org/10.3390/app8020172]
[3]
Kumar, P.; Agnihotri, S.; Roy, I. Preparation and characterization of superparamagnetic iron oxide nanoparticles for magnetically guided drug delivery. Int. J. Nanomedicine., 2018, 13(T-NANO 2014 Abstracts), 43-46.
[http://dx.doi.org/10.2147/IJN.S125002] [PMID: 30880956]
[4]
Padmanabhan, P.; Kumar, A.; Kumar, S.; Chaudhary, R.K.; Gulyás, B. Nanoparticles in practice for molecular-imaging applications: An overview. Acta Biomater., 2016, 41, 1-16.
[http://dx.doi.org/10.1016/j.actbio.2016.06.003] [PMID: 27265153]
[5]
Cherukula, K.; Manickavasagam Lekshmi, K.; Uthaman, S.; Cho, K.; Cho, C.S.; Park, I.K. Multifunctional inorganic nanoparticles: Recent progress thermal therapy and imaging. Nanomaterials (Basel), 2016, 6(4), 76-101.
[http://dx.doi.org/10.3390/nano6040076] [PMID: 28335204]
[6]
Han, S.; Hu, L.; Liang, Z.; Wageh, S. One-step hydrothermal synthesis of 2D hexagonal nanoplates of α-Fe2O3/graphene composites with enhanced photocatalytic activity. Adv. Funct. Mater., 2014, 24(36), 5719-5727.
[http://dx.doi.org/10.1002/adfm.201401279]
[7]
Liu, S.; Zheng, L.; Yu, P.; Han, S. Novel composites of α-Fe2O3 tetrakaidecahedron and graphene oxide as an effective photoelectrode with enhanced photocurrent performances. Adv. Funct. Mater., 2016, 26(19), 3331-3339.
[http://dx.doi.org/10.1002/adfm.201505554]
[8]
Khan, M.R.; Khan, M.A.R.; Ahmad, I.; Khan, M.A.; Iqbal, T.; Ezema, F.I.; Malek, M. Joining of individual silicon carbide nanowires via proton beam irradiation. Curr. Nanosci., 2018, 14(5), 354-359.
[http://dx.doi.org/10.2174/1573413714666180328153514]
[9]
Das, S.; Hossain, M.J.; Leung, S.F.; Lenox, A.; Roy, T. A leaf-inspired photon management scheme using optically tuned bilayer nanoparticles for ultrathin and highly efficient photovoltaic devices. Nano Energy, 2019, 58, 47-56.
[http://dx.doi.org/10.1016/j.nanoen.2018.12.072]
[10]
Aghazadeh, M. Synthesis, characterization, and study of the supercapacitive performance of NiO nanoplates prepared by the cathodic electrochemical deposition-heat treatment (CED-HT) method. J. Mater. Sci. Mater. Electron., 2017, 28(3), 3108-3117.
[http://dx.doi.org/10.1007/s10854-016-5899-x]
[11]
Le, V.Q.; Do, T.H.; Retamal, J.R.D.; Shao, P.W.; Lai, Y-H.; Wu, W-W.; He, J-H.; Chueh, Y-L.; Chu, Y-H. Van der Waals heteroepitaxial AZO/NiO/AZO/muscovite (ANA/muscovite) transparent flexible memristor. Nano Energy, 2019, 56, 322-329.
[http://dx.doi.org/10.1016/j.nanoen.2018.10.042]
[12]
Bousiakou, L.G.; Ivanda, M.; Mikac, L.; Raptis, D.; Gotic, M.; Lianos, P.; Jurschat, K.; Johnston, C. Structural, Morphological and raman studies of CdS/CdSe sensitized TiO2 nanocrystalline thin films for quantum dot sensitized solar cell applications. Curr. Nanosci., 2018, 14(5), 421-431.
[http://dx.doi.org/10.2174/1573413714666180425121538]
[13]
Aghazadeh, M.; Ghaemi, M.; Golikand, A.N.; Ahmadi, A. Porous network of Y2O3 nanorods prepared by electrogeneration of base in chloride medium. Mater. Lett., 2011, 65(15-16), 2545-2548.
[http://dx.doi.org/10.1016/j.matlet.2011.02.044]
[14]
Chen, H.; Qu, J.; Liu, L.; Chen, W.; He, F. Carrier dynamics and morphology regulated by 1,8-Diiodooctane in chlorinated nonfullerene polymer solar cells. J. Phys. Chem. Lett., 2019, 10(5), 936-942.
[http://dx.doi.org/10.1021/acs.jpclett.9b00063] [PMID: 30758968]
[15]
Ouyang, W.; Teng, F.; He, H.; Fang, X. Enhancing the photoelectric performance of photodetectors based on metal oxide semiconductors by charge-carrier engineering. Adv. Funct. Mater., 2019, 29(9) 1807672
[http://dx.doi.org/10.1002/adfm.201807672]
[16]
Veiseh, O.; Gunn, J.W.; Zhang, M. Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv. Drug Deliv. Rev., 2010, 62(3), 284-304.
[http://dx.doi.org/10.1016/j.addr.2009.11.002] [PMID: 19909778]
[17]
Li, F.H.; Tang, N.; Wang, Y.Q.; Zhang, L.; Du, W.; Xiang, J. Synthesis and characterization of magnetic carriers based on immobilized enzyme. IOP Conf. Series Mater. Sci. Eng., 2018, 359, 012044
[http://dx.doi.org/10.1088/1757-899X/359/1/012044]
[18]
Yamaura, M.; Camilo, R. Preparation and characterization of (3-aminopropyl) triethoxysilane-coated magnetite nanoparticles. J. Magn. Magn. Mater., 2004, 279(2-3), 210-217.
[http://dx.doi.org/10.1016/j.jmmm.2004.01.094]
[19]
Zhang, F.; Wang, C.C. Fabrication of one dimensional iron oxide/silica nanostructures with high magnetic sensitivity by dipoledirected self-assembly. J. Phys. Chem. C, 2008, 112(39), 15151-15156.
[http://dx.doi.org/10.1021/jp804452r]
[20]
Yang, D.; Hu, J.; Fu, S. Controlled synthesis of magnetite-silica nano composites via a seeded sol-gel approach. J. Phys. Chem. C, 2009, 113(18), 7646-7451.
[http://dx.doi.org/10.1021/jp900868d]
[21]
Laurent, S.; Forge, D.; Port, M.; Roch, A.; Robic, C.; Vander Elst, L.; Muller, R.N. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev., 2008, 108(6), 2064-2110.
[http://dx.doi.org/10.1021/cr068445e] [PMID: 18543879]
[22]
Karimzadeh, I.; Aghazadeh, M.; Ganjali, M.R.; Norouzi, P.; Shirvani-Arani, S. A novel method for preparation of bare and poly(vinylpyrrolidone) coated superparamagnetic iron oxide nanoparticles for biomedical applications. Mater. Lett., 2016, 179, 5-8.
[http://dx.doi.org/10.1016/j.matlet.2016.05.048]
[23]
Karimzadeh, I.; Dizaji, H.R.; Aghazadeh, M. Preparation, characterization and PEGylation of superparamagnetic Fe3O4 nanoparticles from ethanol medium via cathodic electrochemical deposition (CED) method. Mater. Res. Express, 2016, 3(9) 095022
[http://dx.doi.org/10.1088/2053-1591/3/9/095022]
[24]
Aghazadeh, M. One-step cathodic electrosynthesis of surface capped Fe3O4 ultra-fine nanoparticles from ethanol medium without using coating agent. Mater. Lett., 2018, 211, 225-229.
[http://dx.doi.org/10.1016/j.matlet.2017.09.086]
[25]
Aghazadeh, M.; Ganjali, M.R. One-pot electrochemical synthesis and assessment of super-capacitive and super-paramagnetic performances of Co2+ doped Fe3O4 ultra-fine particles. J. Mater. Sci. Mater. Electron., 2018, 29(3), 2291-2300.
[http://dx.doi.org/10.1007/s10854-017-8145-2]
[26]
Karimzadeh, I.; Aghazadeh, M.; Ganjali, M.R. Preparation and characterization of amine-and carboxylic acid-functionalized superparamagnetic iron oxide nanoparticles through a one-step facile electrosynthesis method. Curr. Nanosci., 2019, 15(2), 169-177.
[27]
Karimzadeh, I.; Aghazadeh, M.; Ganjali, M.R.; Norouzi, P.; Doroudi, T. Saccharide-coated superparamagnetic Fe3O4 nanoparticles (SPIONs) for biomedical applications: An efficient and scalable route for preparation and in situ surface coating through cathodic electrochemical deposition (CED). Mater. Lett., 2017, 189, 290-294.
[http://dx.doi.org/10.1016/j.matlet.2016.12.010]
[28]
Yang, L.; Tian, J.; Meng, J. Modification and characterization of Fe3O4 nanoparticles for use in adsorption of alkaloids. Molecules, 2018, 23(3), 562-572.
[http://dx.doi.org/10.3390/molecules23030562]
[29]
Turcheniuk, K.; Tarasevych, A.V.; Kukhar, V.P.; Boukherroub, R.; Szunerits, S. Recent advances in surface chemistry strategies for the fabrication of functional iron oxide based magnetic nanoparticles. Nanoscale, 2013, 5(22), 10729-10752.
[http://dx.doi.org/10.1039/c3nr04131j] [PMID: 24091568]
[30]
Zhang, Z.; Ma, L.; Jiang, S.; Liu, Z.; Huang, J.; Chen, L.; Yu, H.; Li, Y. A self-assembled nanocarrier loading teniposide improves the oral delivery and drug concentration in tumor. J. Control. Release, 2013, 166(1), 30-37.
[http://dx.doi.org/10.1016/j.jconrel.2012.12.018] [PMID: 23266449]
[31]
Kim, D.; Milhaylava, K.; Zhang, M.; Muhammed, M. Protective coating of superparamagnetic iron oxide nanoparticles. Chem. Mater., 2003, 15(8), 1617-1627.
[http://dx.doi.org/10.1021/cm021349j]
[32]
Wilczewska, A.Z.; Niemirowicz, K.; Markiewicz, K.H.; Car, H. Nanoparticles as drug delivery systems. Pharmacol. Rep., 2012, 64(5), 1020-1037.
[http://dx.doi.org/10.1016/S1734-1140(12)70901-5] [PMID: 23238461]
[33]
Aghazadeh, M.; Maragheh, M.G.; Ganjali, M.R.; Norouzi, P. Preparation and characterization of Mn5O8 nanoparticles: A novel and facile pulse cathodic electrodeposition followed by heat-treatment. Inorg. Nano-Metal Chem., 2017, 27(7), 1085-1089.
[http://dx.doi.org/10.1080/24701556.2017.1284092]
[34]
Dobson, J. Magnetic nanoparticles for drug delivery. Drug Dev. Res., 2006, 67, 55-60.
[http://dx.doi.org/10.1002/ddr.20067]
[35]
Kakaei, S.; Chen, N.; Xu, J. Expenditious synthesis of 1-substituted taurines with diverse functionalized side-chain. Tetrahedron, 2013, 69(1), 302-309.
[http://dx.doi.org/10.1016/j.tet.2012.10.029]
[36]
Kakaei, S.; Xu, J. Efficient synthesis of protected sulfonopeptides from N-protected 2-aminoalkyl xanthates and thioacetates. Tetrahedron, 2013, 69(43), 9068-9075.
[http://dx.doi.org/10.1016/j.tet.2013.08.028]
[37]
Kakaei, S.; Xu, J. Synthesis of (2-alkylthiothiazolin-5-yl)methyl dodecanoates via tandem radical reaction. Org. Biomol. Chem., 2013, 11(33), 5481-5490.
[http://dx.doi.org/10.1039/c3ob41229f] [PMID: 23857510]
[38]
Kakaei, S.; Sattarzadeh, E. An efficient and simple ultrasoundassisted approach to synthesis of baclofen. Main Group Chem., 2018, 17(2), 161-164.
[http://dx.doi.org/10.3233/MGC-180258]
[39]
Khameneh, E.S.; Amini, M.A.; Kakaei, S.; Khanchi, A. Preparation of dual-modality yttrium-90 radiolabeled nanoparticles for therapeutic investigation. Radiochim. Acta, 2018, 106, 897-907.
[http://dx.doi.org/10.1515/ract-2017-2901]
[40]
Pourmanouchehri, Z.; Jafarzadeh, M.; Kakaei, S.; Sattarzadeh, E. Magnetic nanocarrier containing 68Ga-DTPA complex for targeted delivery of Doxorubicin. J. Inorg. Organomet. Polym., 2018, 28(5), 1980-1990.
[http://dx.doi.org/10.1007/s10904-018-0826-7]
[41]
Aghazadeh, M.; Ganjali, M.R. Samarium-doped Fe3O4 nanoparticles with improved magnetic and supercapacitive performance: A novel preparation strategy and characterization. J. Mater. Sci., 2018, 53(1), 295-308.
[http://dx.doi.org/10.1007/s10853-017-1514-7]
[42]
Aghazadeh, M.; Karimzadeh, I.; Ganjali, M.R. Electrochemical evaluation of the performance of cathodically grown ultra-fine magnetite nanoparticles as electrode material for supercapacitor applications. J. Mater. Sci. Mater. Electron., 2017, 28(18), 13532-13539.
[http://dx.doi.org/10.1007/s10854-017-7192-z]
[43]
Aghazadeh, M.; Karimzadeh, I.; Ganjali, M.R.; Behzad, A. Mn2+-doped Fe3O4 nanoparticles: A novel preparation method, structural, magnetic and electrochemical characterizations. J. Mater. Sci. Mater. Electron., 2017, 28(23), 18121-18129.
[http://dx.doi.org/10.1007/s10854-017-7757-x]
[44]
Dezfoolinezhad, E.; Ghodrati, K.; Badri, R. Fe3O4@SiO2@ polyionene/Br3- core–shell–shell magnetic nanoparticles: A novel catalyst for the synthesis of imidazole derivatives under solvent-free conditions. New J. Chem., 2016, 40, 4575-4587.
[http://dx.doi.org/10.1039/C5NJ02680F]
[45]
Sardon, H.; Irusta, L.; Santamaría, P.; Fernández-Berridi, M.J. Thermal and mechanical behaviour of self-curable waterborne hybrid polyurethanes functionalized with (3-aminopropyl) triethoxysilane (APTES). J. Polym. Res., 2012, 19, 9956-9965.
[http://dx.doi.org/10.1007/s10965-012-9956-8]
[46]
Bai, Y.; Li, Z.; Cheng, B.; Zhang, M.; Su, K. Higher UV-shielding ability and lower photocatalytic activity of TiO2@SiO2/APTES and its excellent performance in enhancing the photostability of poly(pphenylene sulfide). RSC Adv., 2017, 7(35), 21758-21767.
[http://dx.doi.org/10.1039/C6RA28098F]
[47]
Aghazadeh, M.; Ganjali, M.R. Evaluation of supercapacitive and magnetic properties of Fe3O4 nano-particles electrochemically doped with dysprosium cations: Development of novel iron-based electrode. Ceram. Int., 2018, 44(1), 520-529.
[http://dx.doi.org/10.1016/j.ceramint.2017.09.206]
[48]
Aghazadeh, M.; Barmi, A.A.M.; Shiri, H.M.; Sedaghat, S. Cathodic electrodeposition of Y(OH)3 and Y2O3 nanostructures from chloride bath. Part II: Effect of the bath temperature on the crystal structure, composition and morphology. Ceram. Int., 2013, 39(2), 1045-1055.
[http://dx.doi.org/10.1016/j.ceramint.2012.07.026]
[49]
Aghazadeh, M.; Karimzadeh, I. One-pot electro-synthesis and characterization of chitosan capped superparamagnetic iron oxide nanoparticles (SPIONs) from ethanol media. Curr. Nanosci., 2018, 14(1), 42-49.
[50]
Li, W.; Xu, Y.; Zhou, Y.; Ma, W.; Wang, S.; Dai, Y. Silica nanoparticles functionalized via click chemistry and ATRP for enrichment of Pb(II) ion. Nanoscale Res. Lett., 2012, 7(1), 485-490.
[http://dx.doi.org/10.1186/1556-276X-7-485] [PMID: 22931369]
[51]
Aghazadeh, M.; Karimzadeh, I.; Ganjali, M.R. PVP coated Mn2+ doped Fe3O4 nanoparticles: A novel preparation method, surface engineering and characterization. Mater. Lett., 2018, 228, 137-140.
[http://dx.doi.org/10.1016/j.matlet.2018.05.087]
[52]
Villa, S.; Riani, P.; Locardi, F.; Canepa, F. Functionalization of Fe3O4 NPs by silanization: Use of amine (APTES) and thiol (MPTMS) silanes and their physical characterization. Materials (Basel), 2016, 9, 826-831.
[http://dx.doi.org/10.3390/ma9100826]
[53]
Bayat, A.; Shakourian-Fard, M.; Ehyaeia, N.; Hashemi, M.M. A magnetic supported iron complex for selective oxidation of sulfides to sulfoxides using 30% hydrogen peroxide at room temperature. RSC Adv., 2014, 4, 44274-44281.
[http://dx.doi.org/10.1039/C4RA07356H]
[54]
Echeverr, J.; Estella, J.; Barber, V. Synthesis and characterization of ultramicroporous silica xerogels. J. Non-Cryst. Solids, 2010, 356(6-8), 378-382.
[http://dx.doi.org/10.1016/j.jnoncrysol.2009.11.044]
[55]
Wu, F.; Ye, G.; Yi, R.; Sun, T.; Xu, C.; Chen, J. Novel polyazamacrocyclic receptor decorated core-shell superparamagnetic microspheres for selective binding and magnetic enrichment of palladium: synthesis, adsorptive behavior and coordination mechanism. Dalton Trans., 2016, 45(23), 9553-9564.
[http://dx.doi.org/10.1039/C6DT01024E] [PMID: 27197846]
[56]
Karimzadeh, I.; Aghazadeh, M.; Ganjali, M.R.; Dourudi, T. Effective preparation, characterization and in situ surface coating of superparamagnetic Fe3O4 nanoparticles with polyethyleneimine through cathodic electrochemical deposition (CED). Curr. Nanosci., 2017, 13(2), 167-174.
[http://dx.doi.org/10.2174/1573413713666161129160640]
[57]
Xu, J.; Ju, C.; Sheng, J.; Wang, F.; Zhang, Q.; Sun, G.; Sun, M. Synthesis and characterization of magnetic nanoparticles and its application in lipase immobilization. Bull. Korean Chem. Soc., 2013, 34(8), 2804-2812.
[http://dx.doi.org/10.5012/bkcs.2013.34.8.2408]
[58]
Aghazadeh, M.; Karimzadeh, I.; Ganjali, M.R.; Morad, M.M. A novel preparation method for surface coated superparamagnetic Fe3O4 nanoparticles with vitamin C and sucrose. Mater. Lett., 2017, 196, 392-395.
[http://dx.doi.org/10.1016/j.matlet.2017.03.064]
[59]
Saif, B.; Wang, C.; Chuan, D.; Shuang, S. Synthesis and characterization of Fe3O4 coated on APTES as carriers for morin-anticancer drug. J. Biomater. Nanobiotechnol., 2015, 6(4), 60432.
[http://dx.doi.org/10.4236/jbnb.2015.64025]
[60]
Bayrakcl, M.; Malta, E.; Özmen, M. Synthesis and application of novel magnetite nanoparticle based azacrown ether for protein recognition. Macromol. Res., 2013, 21(9), 1029-1035.
[http://dx.doi.org/10.1007/s13233-013-1135-1]
[61]
Bini, R.A.; Marques, R.F.; Santos, F.J.; Chaker, J.A.; Jafelicci, M. Synthesis and functionalization of magnetite nanoparticles with different amino-function alalkoxy silanes. J. Magn. Magn. Mater., 2012, 324, 534-539.
[http://dx.doi.org/10.1016/j.jmmm.2011.08.035]
[62]
Karimzadeh, I.; Aghazadeh, M.; Doroudi, T.; Ganjali, M.R.; Kolivand, P.H.; Gharailou, D. Superparamagnetic iron oxide nanoparticles modified with alanine and leucine for biomedical applications: Development of a novel efficient preparation method. Curr. Nanosci., 2017, 13(3), 274-280.
[http://dx.doi.org/10.2174/1573413713666170118125937]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy